首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The Vestmannaeyjar archipelago is composed of alkalic lavas erupted at the southern end of the active, southward propagating, Eastern Volcanic Zone. Recent eruptions include the most primitive (Surtsey) and most evolved (Eldfell) compositions found in this area. We studied time-stratigraphic sample suites from both eruptions to characterize the magmatic environment of Vestmannacyjar. All samples are nearly homogeneous in radiogenic isotopic ratios (87Sr/86Sr 0.70304 to 0.70327;143Nd/144Nd 0.51301 to 0.50307;206Pb/204Pb 18.96 to 19.18;207Pb/204Pb 15.50 to 15.53;208Pb/204Pb 38.47 to 38.76; KH Park and A Zindler, in preparation). Compositional trends of lavas from the two eruptions are not consistent with fractionation in a near-surface environment, but indicate rather moderate pressure evolution of small magma batches. At Eldfell, mugearite lavas can be modeled by 30% closed-system fractional crystallization of olivine+plagioclase+clinopyroxene+Fe–Ti oxides from parental hawaiite. The phase proportions are consistent with an experimentally determined moderate pressure (8 kbar) cotectic in mildly alkaline systems (Mahood and Baker 1986). Compositional variations of Surtsey lavas can be modeled by crystallization of clinopyroxene+olivine+plagioclase+minor Fe–Ti oxides. The presence of sodic plagioclase megacrysts and clinopyroxene with 8 wt% Al2O3 in xenoliths from Surtsey lavas are consistent with a moderate pressure fractionation event. Based on major-element and REE data the most primitive Surtsey lavas formed by small degrees of melting of a lherzolite source. The alkaline nature of Vestmannaeyjar lavas is not the result of assimilation of lower crustal melts (cf. Oskarsson et al. 1985; Steinthorsson et al. 1985).  相似文献   

2.
Rodrigues Island is composed of a differentiated series of transitional-mildly alkaline olivine basalts. The lavas contain phenocrysts of olivine (Fo88–68)±plagioclase (An73–50), together with a megacryst suite involving olivine, plagioclase, kaersutite, clinopyroxene, apatite, magnetite and hercynite-rich spinels. Troctolitic-anorthositic gabbro xenoliths are widely dispersed throughout the lavas and are probably derived from the upper parts of an underlying layered complex: the megacrysts may originate from coarse, easily disaggregated differentiates near the top of this body.Modelling of major and trace element data suggests that the majority of chemical variation in the lavas results from up to 45% fractionation of olivine, clinopyroxene, plagioclase and magnetite at low pressures, in the ratio 2035396. The clinopyroxene-rich nature of this extract assemblage is significantly different to that of the xenoliths, and suggests that clinopyroxene-rich gabbros and/or ultrabasic rocks may lie at greater depth.Sr and Nd isotopic data (87Sr/86Sr 0.70357–070406,143Nd/144Nd 0.51283–0.51289) indicate a mantle source with relative LREE depletion, and emphasise an unusual degree of uniformity in Indian Ocean island sources. A small group of lavas with strong HREE enrichment suggest a garnet-poor source for these, while high overall Al2O3/ CaO ratios imply high clinopyroxene/garnet ratios in refractory residua.  相似文献   

3.
Mid-ocean ridge basalts (MORBs) from East Pacific Rise (EPR) 13°N are analysed for major and trace elements, both of which show a continuous evolving trend. Positive MgO-Al2O3 and negative MgO-Sc relationships manifest the cotectic crystallization of plagioclase and olivine, which exist with the presence of plagioclase and olivine phenocrysts and the absence of clinopyroxene phenocrysts. However, the fractionation of clinopyroxene is proven by the positive correlation of MgO and CaO. Thus, MORB samples are believed to show a "clinopyroxene paradox". The highest magnesium.bearing MORB sample E13-3B (MGO=9.52%) is modelled for isobaric crystallization with COMAGMAT at different pressures. Observed CaO/Al2O3 ratios can be derived from E13-3B only by fractional crystallization at pressure >4±1 kbar, which necessitates clinopyroxene crystallization and is not consistent with cotectic crystallization of olivine plus plagioclase in the magma chamber (at pressure~1 kbar). The initial compositions of the melt inclusions, which could represent potential parental magmas, are reconstructed by correcting for post-entrapment crystallization (PEC). The simulated crystallization of initial melt inclusions also produce observed CaO/Al2O3 ratios only at >4±1 kbar, in which clinopyroxene takes part in crystallization. It is suggested that MORB magmas have experienced clinopyroxene fractionation in the lower crust, in and below the Moho transition zone. The MORB magmas have experienced transition from clinopyroxene+plagioclase+olivine crystallization at >4±1 kbar to mainly olivine+plagioclase crystallization at <1 kbar, which contributes to the explanation of the "clinopyroxene paradox".  相似文献   

4.
Three genetically unrelated magma suites are found in the extrusivesequences of the Troodos ophiolite, Cyprus. A stratigraphicallylower pillow lava suite contains andesite and dacite glassesand shows the crystallization order plagioclase; augite, orthopyroxene;titanomagnetite (with the pyroxenes appearing almost simultaneously).These lavas can in part be correlated chemically and mineralogicallywith the sheeted dikes and the upper part of the gabbro complexof the ophiolite. The second magma suite is represented in astratigraphically upper extrusive suite and contains basalticandesite and andesite glasses with the crystallizaton orderchromite; olivine; Ca-rich pyroxene; plagioclase. This magmasuite can be correlated chemically and mineralogically withparts of the ophiolitic ultramafic and mafic cumulate sequence,which has the crystallization order olivine; Ca-rich pyroxene;orthopyroxene; plagioclase. The third magma suite is representedby basaltic andesite lavas along the Arakapas fault zone andshows a boninitic crystallization order olivine; orthopyroxene;Ca-rich pyroxene; plagioclase. One-atmosphere, anhydrous phaseequilibria experiments on a lava from the second suite indicateplagioclase crystallization from 1225?C, pigeonite from 1200?C,and augite from 1165?C. These experimental data contrast withthe crystallization order suggested by the lavas and the associatedcumulates. The observed crystallization orders and the presenceof magmatic water in the fresh glasses of all suites are consistentwith evolution under relatively high partial water pressures.In particular, high PH2O (1–3 kb) can explain the lateappearances of plagioclase and Ca-poor pyroxene in the majorityof the basaltic andesite lavas as the effects of suppressedcrystallization temperatures and shifting of cotectic relations.The detailed crystallization orders are probably controlledby relatively minor differences in the normative compositionsof the parental magmas. The basaltic andesite lavas are likelyto reach augite saturation before Ca-poor pyroxene saturation,whereas the Arakapas fault zone lavas, which have relativelyless normative diopside and more quartz, reached the Ca-poorpyroxene-olivine reaction surface and crystallized Ca-poor pyroxeneafter olivine.  相似文献   

5.
Mid-ocean ridge basalts (MORBs) from East Pacific Rise (EPR) 13°N are analysed for major and trace elements, both of which show a continuous evolving trend. Positive MgO–Al2O3 and negative MgO–Sc relationships manifest the cotectic crystallization of plagioclase and olivine, which exist with the presence of plagioclase and olivine phenocrysts and the absence of clinopyroxene phenocrysts. However, the fractionation of clinopyroxene is proven by the positive correlation of MgO and CaO. Thus, MORB samples are believed to show a “clinopyroxene paradox”. The highest magnesium-bearing MORB sample E13-3B (MgO=9.52%) is modelled for isobaric crystallization with COMAGMAT at different pressures. Observed CaO/Al2O3 ratios can be derived from E13-3B only by fractional crystallization at pressure >4 ±1 kbar, which necessitates clinopyroxene crystallization and is not consistent with cotectic crystallization of olivine plus plagioclase in the magma chamber (at pressure ~1 kbar). The initial compositions of the melt inclusions, which could represent potential parental magmas, are reconstructed by correcting for post-entrapment crystallization (PEC). The simulated crystallization of initial melt inclusions also produce observed CaO/Al2O3 ratios only at >4±1 kbar, in which clinopyroxene takes part in crystallization. It is suggested that MORB magmas have experienced clinopyroxene fractionation in the lower crust, in and below the Moho transition zone. The MORB magmas have experienced transition from clinopyroxene+plagioclase+olivine crystallization at >4±1 kbar to mainly olivine+plagioclase crystallization at <1 kbar, which contributes to the explanation of the “clinopyroxene paradox”.  相似文献   

6.
The Medicine Lake shield volcano is part of the Oregon high alumina plateau basalt petrologic province, as defined by Waters (1962) and Higgins (1973). The early eruptions are basaltic andesites and they constitute a significant portion of the shield-forming lavas. These lavas are characterized by a mild iron enrichment trend produced by fractionation of plagioclase and olivine, together with lesser amounts of clinopyroxene. Siliceous andesites of less areal extent form the shield-capping lavas. Their formation is initiated by the appearance of titanomagnetite as a liquidus phase which prevents further iron enrichment. Additional fractionation of plagioclase, clinopyroxene, orthopyroxene, and minor olivine continued during this interval.An origin for the basaltic andesites which involves the derivation of a liquid by partial melting of lithosphere composed of low Sr87/Sr86 material previously subducted along the continental margin is favored. This magma subsequently fractionated under low pressure conditions, a conclusion supported by least squares mixing calculations.  相似文献   

7.
Bulk rock major and trace element variations in selected basalts from the Famous area, in conjunction with a detailed study of the chemical compositions of phenocryst minerals and associated melt inclusions are used to place constraints on the genetic relationship among the various lava types. The distribution of NiO in olivine and Cr-spinel phenocrysts distinguishes the picritic basalts, plagioclase phyric basalts and plagioclase-pyroxene basalts from the olivine basalts. For a given Mg/Mg+Fe2+ atomic ratio of the mineral, the NiO content of these phenocrysts in the former three basalt types is low relative to that in the phenocrysts in the olivine basalts. The Zr/Nb ratio of the lavas similarly distinguishes the olivine basalts from the plagioclase phyric and plagioclase pyroxene basalts and, in addition, distinguishes the picritic basalts from the other basalt types. These differences indicate that the different magma groups could not have been processed through the same magma chamber, and preclude any direct inter-relationship via open or closed system fractional crystallization.The Fe-Mg partitioning between olivine and host rock suggests that the picritic basalts represent olivine (±Cr-spinel) enriched magmas, derived from a less MgO rich parental magma. The partitioning of Fe and Mg between olivine, Cr-spinel and coexisting liquid is used to predict a primary magma composition parental to the picritic basalts. This magma is characterized by relatively high MgO (12.3%) and CaO (12.6%) and low FeO* (7.96%) and TiO2 (0.63%).Least squares calculations indicate that the plagioclase phyric basalts are related to the plagioclase-pyroxene basalts by plagioclase and minor clinopyroxene and olivine accumulation. The compositional variations within the olivine basalts can be accounted for by fractionation of plagioclase, clinopyroxene and olivine in an open system, steady state, magma chamber in the average proportions 453223. It is suggested that the most primitive olivine basalts can be derived from a pristine mantle composition by approximately 17% equilibrium partial melting. Although distinguished by its higher Zr/Nb ratio and lower NiO content of phenocryst phases, the magma parental to the picritic basalts can be derived from a similar source composition by approximately 27% equilibrium partial melting. It is suggested that the parental magma to the plagioclase-pyroxene and plagioclase phyric basalts might have been derived from greater depth resulting in the fractionation of the Zr/Nb ratio by equilibration with residual garnet.C.O.B. Contribution No. 722  相似文献   

8.
Certain petrological features of oceanic volcanic and plutonic rocks are not completely consistent with previously proposed models of crystal fractionation or magma mixing. For example, Sr is often higher in the differentiated basalts of a suite of aphyric rocks than in the relatively primitive basalts even though the differentiated basalts have apparently been produced by crystallization of large amounts of plagioclase with olivine and clinopyroxene. Additionally, oceanic basalts and gabbroic rocks often contain plagioclase crystals in excess of the appropriate cotectic proportions. Certain differentiated oceanic basaltic glasses and aphyric rocks crystallize plagioclase as the liquidus mineral, which would seem inconsistent with the strongly cotectic nature of the olivine + plagioclase + liquid surface.It is proposed here that plagioclase in mid-ocean ridge magma chambers separates from the basaltic liquid that it crystallizes in at a slower rate than does co-crystallizing olivine or pyroxene. Magma mixing in which a portion of the plagioclase remains suspended in the liquid during crystallization results in much more complex liquid lines of descent in mixed magmas and appears to resolve the apparent discrepancies noted above.  相似文献   

9.
Pleistocene lavas from Monte S. Angelo and Chiesa Vecchia volcanoes on Lipari contain two suites of inclusions. A metapelitic suite consists of gneisses and granulites with combinations of cordierite, garnet, corundum, hercynite, andalusite, sillimanite, orthopyroxene, ilmenite, magnetite, biotite, plagioclase, and quartz. A gabbroic suite has cumulus texture and contains plagioclase, orthopyroxene, clinopyroxene, and magnetite. All megacryst phases in the lavas appear to be derived from rock fragments, with the exception of euhedral strongly zoned calcic plagioclase, and none has grown by homogeneous nucleation from liquid represented by the groundmass, which is peraluminous rhyolite (>70 wt% SiO2, >6 wt% K2O). Ground-mass microcrysts were nearly all derived from disaggregated metapelites; overgrowths of alkali feldspar on plagioclase and of orthopyroxene on clinopyroxene, and quartz intergrown with alkali feldspar, are the only phases that grew from the rhyolitic liquid. Euhedral cordierite, hercynite, and plagioclase at the margins of some rock fragments grew by reaction of metapelite with liquid.For grains in contact within metapelite inclusions, geothermometers and geobarometers yield estimates of equilibration conditions in the range of 800±100° C and 5±1 kbar. Compositions of phases in the same thin section, but not in the same inclusion, yield broadly erratic P and T estimates indicating disequilibrium among metapelite inclusions. Pyroxene thermometry in the gabbro suite indicates a crystallization temperature of 1020±50° C and a lack of subsequent thermal equilibration with the rhyolitic liquid.The metapelite suite may partly be restite, but much is xenolithic, derived from a vertical interval of perhaps several kilometers, and may have undergone a much earlier episode of melting. The gabbro fragments are accidental xenoliths incorporated as the magma rose. Contaminants (metapelite and gabbro) account for 50 vol.% of the lavas, and cause them to be classified as high-K andesite according to whole-rock major element analysis.The rhyolitic liquid may have originated by partial fusion of metapelites in the lower crust, or by fractional crystallization of mafic mantle-derived magma combined with assimilation of metapelite; the bulk of the evidence favors assimilation-fractional crystallization. Miocene and younger metapelite-contaminated rhyolites also occur in Tuscany, SE Spain, E Morocco, and NW Tunisia, and are associated in each region with mafic silica-undersaturated lavas, implying crustal underplating around the western Mediterranean before, during, and after formation of the Tyrrhenian basin.  相似文献   

10.
Lavas of the Biu and Jos Plateaus, Northern Cameroon Volcanic Line (CVL), contain abundant genetically related megacrysts of clinopyroxene, garnet and subordinately plagioclase, ilmenite and amphibole. P, T-estimates of crystallization for the primitive group of cpx and gnt megacrysts are 1.7–2.3 GPa and ~1,400 °C. Because crustal thickness in these areas is only ~30 km (~0.9 GPa), megacrysts must have formed within the lithospheric mantle. Primitive Biu and Jos lavas are isotopically heterogeneous in Sr-Nd isotope space (87Sr/86Sr=0.70285–0.70360 and Nd=7.5–4.6). Biu Plateau megacrysts overlap the range of Biu lavas in Sr-Nd isotope composition, indicating that crustal contamination of Biu lavas was minor. Jos Plateau lavas are isotopically more enriched than their associated megacrysts. Therefore an additional contamination of Jos lavas due to assimilation of continental crust (~5%) or enriched shallow lithospheric mantle is indicated. Lavas of Biu and Jos Plateau do not reflect simple fractionation or equilibrium crystallization products, but instead reflect mixing between primary melts and their fractionated derivatives.Editorial Responsibility: I. Carmichael  相似文献   

11.
Six crystalline mixtures, picrite, olivine-rich tholeiite, nepheline basanite, alkali picrite, olivine-rich basanite, and olivine-rich alkali basalt were recrystallized at pressures to 40 kb, and the phase equilibria and sequences of phases in natural basaltic and peridotitic rocks were investigated.The picrite was recrystallized along the solidus to the assemblages (1) olivine+orthopyroxene+ clinopyroxene +plagioclase+spinel below 13 kb, (2) olivine+orthopyroxene+clinopyroxene+spinel between 13 kb and 18 kb, (3) olivine+orthopyroxene+clinopyroxene+ garnet+spinel between 18 kb and 26 kb, and (4) olivine+clinopyroxene+garnet above 26 kb. The solidus temperature at 1 atm is slightly below 1,100° and rises to 1,320° at 20 kb and 1,570° at 40 kb. Olivine is the primary phase crystallizing from the melt at all pressures to 40 kb.The olivine-rich tholeiite was recrystallized along the solidus into the assemblages (1) olivine+ clinopyroxene+plagioclase+spinel below 13 kb, (2) clinopyroxene+orthopyroxene+ spinel between 13 kb and 18 kb, (3) clinopyroxene+garnet+spinel above 18 kb. The solidus temperature is slightly below 1,100° at 1 atm, 1,370° at 20 kb, and 1,590° at 40 kb. The primary phase is olivine below 20 kb but is orthopyroxene at 40 kb.In the nepheline basanite, olivine is the primary phase below 14 kb, but clinopyroxene is the first phase to appear above 14 kb. In the alkali-picrite the primary phase is olivine to 40 kb. In the olivine-rich basanite, olivine is the primary phase below 35 kb and garnet is the primary phase above 35 kb. In the olivine-rich alkali basalt the primary phase is olivine below 20 kb and is garnet at 40 kb.Mineral assemblages in a granite-basalt-peridotite join are summarized according to reported experimental data on natural rocks. The solidus of mafic rock is approximately given by T=12.5 P Kb+1,050°. With increasing pressure along the solidus, olivine disappears by reaction with plagioclase at 9 kb in mafic rocks and plagioclase disappears by reaction with olivine at 13 kb in ultramafic rocks. Plagioclase disappears at around 22 kb in mafic rocks, but it persists to higher pressure in acidic rocks. Garnet appears at somewhat above 18 kb in acidic rocks, at 17 kb in mafic rocks, and at 22 kb in ultramafic rocks.The subsolidus equilibrium curves of the reactions are extrapolated according to equilibrium curves of related reactions in simple systems. The pyroxene-hornfels and sanidinite facies is the lowest pressure mineral facies. The pyroxene-granulite facies is an intermediate low pressure mineral facies in which olivine and plagioclase are incompatible and garnet is absent in mafic rocks. The low pressure boundary is at 7.5 kb at 750° C and at 9.5 kb at 1,150° C. The high pressure boundary is 8.0 kb at 750° C and 15.0 kb at 1,150° C. The garnet-granulite facies is an intermediate high pressure facies and is characterized by coexisting garnet and plagioclase in mafic rocks. The upper boundary is at 10.3 kb at 750° C and 18.0 kb at 1,150° C. The eclogite facies is the highest pressure mineral facies, in which jadeite-rich clinopyroxene is stable.Compositions of minerals in natural rocks of the granulite facies and the eclogite facies are considered. Clinopyroxenes in the granulite-facies rocks have smaller jadeite-Tschermak's molecule ratios and higher amounts of Tschermak's molecule than clinopyroxenes in the eclogite-facies rocks. The distribution coefficients of Mg between orthopyroxene and clinopyroxene are normally in the range of 0.5–0.6 in metamorphic rocks in the granulite facies. The distribution coefficients of Mg between garnet and clinopyroxene suggest increasing crystallization temperature of the rocks in the following order: eclogite in glaucophane schist, eclogite and granulite in gneissic terrain, garnet peridotite, and peridotite nodules in kimberlite.Temperatures near the bottom of the crust in orogenic zones characterized by kyanitesillimanite metamorpbism are estimated from the mineral assemblages of metamorphic rocks in Precambrian shields to be about 700° C at 7 kb and 800° C at 9 kb, although heat-flow data suggest that the bottom of Precambrian shield areas is about 400° C and the eclogite facies is stable.The composition of liquid which is in equilibrium with peridotite is estimated to be close to tholeiite basalt at the surface pressure and to be picrite at around 30 kb. The liquid composition becomes poorer in normative olivine with decreasing pressure and temperature.During crystallization at high pressure, olivine and orthopyroxene react with liquid to form clinopyroxene, and a discontinuous reaction series, olivine orthopyroxene clinopyroxene is suggested. By fractional crystallization of pyroxenes the liquid will become poorer in SiO2. Therefore, if liquid formed by partial melting of peridotite in the mantle slowly rises maintaining equilibrium with the surrounding peridotite, the liquid will become poorer in MgO by crystallization of olivine, and tholeiite basalt magma will arrive at the surface. On the other hand, if the liquid undergoes fractional crystallization in the mantle, the liquid may change in composition to alkali-basalt magma and alkali-basalt volcanism may be seen at a late stage of volcanic activity.Publication No. 681, Institute of Geophysics and Planetary Physics, University of California, Los Angeles.  相似文献   

12.
The major element composition of plagioclase, pyroxene, olivine,and magnetite, and whole-rock 87Sr/86Sr data are presented forthe uppermost 2·1 km of the layered mafic rocks (upperMain Zone and Upper Zone) at Bierkraal in the western BushveldComplex. Initial 87Sr/86Sr ratios are near-constant (0·7073± 0·0001) for 24 samples and imply crystallizationfrom a homogeneous magma sheet without major magma rechargeor assimilation. The 2125 m thick section investigated in drillcore comprises 26 magnetitite and six nelsonite (magnetite–ilmenite–apatite)layers and changes up-section from gabbronorite (An72 plagioclase;Mg# 74 clinopyroxene) to magnetite–ilmenite–apatite–fayaliteferrodiorite (An43; Mg# 5 clinopyroxene; Fo1 olivine). The overallfractionation trend is, however, interrupted by reversals characterizedby higher An% of plagioclase, higher Mg# of pyroxene and olivine,and higher V2O5 of magnetite. In the upper half of the successionthere is also the intermittent presence of cumulus olivine andapatite. These reversals in normal fractionation trends definethe bases of at least nine major cycles. We have calculateda plausible composition for the magma from which this entiresuccession formed. Forward fractional crystallization modelingof this composition predicts an initial increase in total iron,near-constant SiO2 and an increasing density of the residualmagma before magnetite crystallizes. After magnetite beginsto crystallize the residual magma shows a near-constant totaliron, an increase in SiO2 and decrease in density. We explainthe observed cyclicity by bottom crystallization. Initiallymagma stratification developed during crystallization of thebasal gabbronorites. Once magnetite began to crystallize, periodicdensity inversion led to mixing with the overlying magma layer,producing mineralogical breaks between fractionation cycles.The magnetitite and nelsonite layers mainly occur within fractionationcycles, not at their bases. In at least two cases, crystallizationof thick magnetitite layers may have lowered the density ofthe basal layer of melt dramatically, and triggered the proposeddensity inversion, resulting in close, but not perfect, coincidenceof mineralogical breaks and packages of magnetitite layers. KEY WORDS: layered intrusion; mineral chemistry; isotopes; magma; convection; differentiation  相似文献   

13.
The post-caldera Kameni islands of the Santorini volcanic complex, Aegean Sea, Greece are entirely volcanic and were formed by eleven eruptions between 197 B.C. and 1950. Petrographic, mineral chemical and whole-rock major and trace element data are presented for samples of lava collected from the products of seven eruptive cycles which span the entire period of activity. The main phenocryst phases are plagioclase, clinopyroxene, orthopyroxene and titaniferous magnetite, which are weakly zoned (e.g. plagioclase — An55 to An42). The lavas are typical calc-alkaline dacites and show a restricted range of composition (from 64.1 to 68.4 wt. % SiO2). The phenocrysts were in equilibrium with the melts at temperatures of 960–1012 °C, pressures of 800–1500 bars and oxygen fugacities of 10–9.6-10–9.9 bars. The pre-eruptive water content of the magmas was 3–4 wt. % but since the lavas contain only 0.1–0.4 wt. % H2O, a considerable amount (about 0.01–0.015 km3) of water was lost prior to or during eruption. This indicates that the magmas rose to the surface gradually allowing the (largely) non-explosive loss of volatiles. The lavas were probably extruded initially from more or less cylindrical conduits which developed into fissures as the eruptions proceeded. The post-caldera lavas evolved from more mafic parental magmas (basalt-andesite) via fractional crystallization. The small range of compositional variation shown by these lavas can be explained in terms of near-equilibrium crystallization. Analyses of samples of lavas belonging to single eruption cycles and to individual flows indicate that the underlying magma chamber is compositionally zoned. The average composition of erupted magma has remained approximately constant since 1570 A.D. but that fact that the 197 B.C. magma was sligthly richer in SiO2 provides additional evidence that the magma chamber is compositionally zoned. Crystal settling has not affected the composition of the magma over a 2,200 year period of time which indicates that the melts do not behave as Newtonian fluids. Zonation was thus probably established prior to the 197 B.C. eruption though it is possible that it is developed and maintained by crystal-liquid differentiation processes other than crystal settling (e.g. boundary layer crystallization). The data indicate that there has been no significant cooling during 2,200 years; the maximum amount of cooling is <50 °C and is probably less than 30 °C. Two hypotheses are considered to explain the thermal and chemical buffering of the post-caldera magma chamber: (i) The magma chamber is large and heat losses due to conduction are largely compensated by latent heat supplied by thick, partially crystalline cumulate sequences. (ii) Periodic influx of hot mafic magma, which does not mix with the dacitic magma, inhibits cooling. The second alternative is favored because the post-caldera lavas differ geochemically from the pre-caldera lavas which signifies that a new batch of magma was formed and/or emplaced after the catastrophic eruption of 1390 B.C., and hence that mafic magmas may still be reaching upper crustal levels.  相似文献   

14.
Experimental study of natural alkalic lava compositions at low pressures (pO2QFM) reveals that crystallization of primitive lavas often occurs in the sequence olivine, plagioclase, clinopyroxene, nepheline without obvious reaction relation. Pseudoternary liquidus projections of multiply saturated liquids coexisting with plagioclase (±olivine±clinopyroxene±nepheline) have been prepared to facilitate graphical analysis of the evolution of lava compositions during hypabyssal cooling. Use of (TiAl2)(MgSi2)–1 and Fe3+ (Al)–1 exchange components is a key aspect of the projection procedure which is succesful in reducing a wide range of compositions to a systematic graphical representation. These projections, and the experiments on which they are based, show that low pressure fractionation plays a significant role in the petrogenesis of many alkalic lava suites from both continental and oceanic settings. However, the role of polybaric fractionation is more evident in the major element chemistry of these lava suites than in many tholeiitic suites of comparable extent. For example, the lavas of Karisimbi, East Africa, show a range of compositions reflecting a polybaric petrogenesis from primitive picrites at 1360° C/18 kb and leading to advanced low pressure differentiates. Evolved leucite-bearing potassic members of this and other suites may be treated in a nepheline-diopside-kspar (+olivine+leucite) projection. Compositional curvature on the plagioclase+clinopyroxene+olivine+leucite cotectic offers a mechanism to explain resorption of plagioclase in alkalic groundmass assemblages and the incompatibility of albite and leucite. This projection is useful for evaluating the extent of assimilation of the alkalic portions of crustal granulites. Assimilation appears to have played some role in the advanced differentiates from Karisimbi.  相似文献   

15.
Isotopic studies of rocks from oceanic island arcs such as the Marianas indicate that little, if any, recycling of continental material (e.g. oceanic sediments) occurs in these arcs. Because oceanic arcs are on the average more mafic than the dominantly andesitic continental arcs, an important question is whether the andesites of continental arcs are produced by a fundamentally different (more complex?) mechanism than the lavas of oceanic arcs. An excellent opportunity for study of this question is provided by the island of Sarigan, in the Mariana active arc, on which calc-alkaline andesites (including hornblende-bearing types) are exposed along with more mafic lavas. Available isotope data suggest the Sarigan lavas (including the andesites) were derived from mantle material with little or no involvement of continental components. Ratios of incompatible elements suggest that most of the Sarigan lavas were derived from similar source materials. Absolute abundances of incompatible elements vary irregularly within the eruptive sequence and indicate at least 5 distinct magma batches are represented on Sarigan. Major element data obtained on the lavas and mineral phases in them, combined with modal mineral abundances, suggest that the calc-alkaline nature of the volcanic rocks on Sarigan results from the fractional crystallization of titanomagnetite in combination with other anhydrous phases. Amphibole, although present in some samples, is mainly a late-crystallizing phase and did not produce the calc-alkline characteristics of these lavas. Gabbroic samples found in the volcanic sequence have mineralogc and geochemical characteristics that would be expected of residual solids produced during fractional crystallization of the Sarigan lavas. When combined, data on the lavas and the gabbros suggest the following crystallization sequence: olivine — plagioclase — clinopyroxene — titanomagnetite — orthopyroxene±hornblende, biotite and accessory phases. These results lead to the conclusion that calc-alkaline magmas can be generated directly from mantle sources.  相似文献   

16.
Summary A suite of clinopyroxenite nodules, megacrysis and associated lavas from Somma-Vesuvius, Italy, has been investigated to establish its possible genetic relationships with the leucitebearing lavas of the Roman Region. The clinopyroxenites are essentially composed of clinopyroxene + mica and subordinate olivine, plagioclase, spinels, apatite and glass. The megacrysts are clinopyroxene fragments. The associated lavas are leucite-tephrites and a tephritic leucitite.The mineralogy of the clinopyroxenites is distinctive but gradational to that of the Somma-Vesuvius lavas and reflects subvolcanic crystallization of a silica-undersaturated, mafic magma. The megacrystic clinopyroxene is probably related to the clinopyroxenites.The chemical composition of the clinopyroxenites shows strong affinites to that of the Somma-Vesuvius lavas and corresponds to leucite basanite compositions. Interstitial glass in the clinopyroxenites represents a residual liquid from clinopyroxenite crystallization. This glass approaches the chemical composition of the Somma tephrites.The experimental melting of two clinopyroxenites at 1 atm demonstrates that the essential assemblage of the Somma-Vesuvius lava, leucite + clinopyroxene, may develop from basanite compositions where olivine disappears by reaction with the liquid to form clinopyroxene. It is concluded that the clinopyroxenites represent basanitic magma crystallized at depth and that the Somma-Vesuvius leucite-bearing lavas are potential derivatives of this magma.
Petrologie von Klinopyroxenit-Auswürflingen von Somma-Vesuv und ihre genetische Bedeutung
Zusammenfassung Leucit-Tephrite und tephritische Leucitite der Romana enthalten Klinopyroxenit-Einschlüsse sowie Kristalle von Klinopyroxen, Glimmer, und untergeordnet Olivin, Plagioklas, Spinell, Apatit und Glas. Die genetischen Beziehungen zwischen Laven und Einschlüssen wurden an Hand der Ergebnisse petrologischer und geochemischer Untersuchungen überprüft.Die Mineralogie der Klinopyroxenite kann mit der der Somma-Vesuv-Laven korreliert werden und weist auf subvulkanische Kristallisation eines Si-untersättigten, mafischen Magmas hin.Die chemische Zusammensetzung der Klinopyroxenite zeigt deutliche Beziehungen zu den Laven von Somma-Vesuv und entspricht einem leucit-basanitischen Typ. Restschmelze der Klinopyroxenit-Kristallisation ist als Glas auf der Intergranulare erhalten. Die Zusammensetzung dieser Gläser ähnelt der von Somma-Tephriten.Schmelzversuche an zwei Klinopyroxeniten bei 1 atm zeigen, daß die wichtigste Mineralassoziation der Somma-Vesuv-Laven, Leucit und Klinopyroxen, aus einer basanitischen Zusammensetzung abzuleiten sind. Olivin verschwindet dabei durch Reaktion mit der Schmelze und Klinopyroxen wird gebildet. Die Untersuchungen lassen erkennen, daß die Klinopyroxenite Kristallisationsprodukte in der Tiefe erstarrter basanitischer Magmen sind, und daß die leucitführenden Magmen von Somma-Vesuv als mögliche Abkömmlinge dieser Magmen zu sehen sind.


With 3 Figures  相似文献   

17.
Mg-skarns enclosed in dunite cumulates of the Neo-Proterozoic Ioko-Dovyren intrusion (northern Baikal region, Russia) can be traced to silica-poor dolomitic host rock layers. The dominant minerals of the skarns are brucite (pseudomorph after periclase), forsterite and Cr-poor spinel. Rapid heating of quartz-poor dolomitic xenoliths led to the formation of minor olivine, followed by the breakdown of dolomite to calcite and periclase. Xenoliths were partially melted upon further heating resulting in a calcite melt. This low-density melt was quantitatively squeezed out, mixed with the surrounding mafic magma and left behind periclase and olivine. This caused the crystallization of new olivine with elevated CaO contents in zones above skarn-bearing horizons. Mixing of calcite melt with the surrounding mafic magma also resulted in the crystallization of Cats-rich clinopyroxene instead of plagioclase. The mineralogy of contaminated dunite cumulates is consistent with assimilation of approximately 4wt% CaO by the Ioko-Dovyren mafic magma.  相似文献   

18.
Major and trace element data for a sequence of peralkaline silicic lavas and pyroclastic flows, exposed in the caldera wall of the Paisano volcano, west Texas, document systematic fractional crystallization during magmatic evolution and an open system, magma mixing event in the upper parts of the sequence. Stratigraphically lowest flows are comendite and comenditic quartz trachyte lavas and ash flow tufts. Overlying these units is a trachyte with compositional, textural and mineralogical features indicating that it is the product of magma-mixing; similar flows occur in other parts of the volcano at the same stratigraphic level. This composite trachyte is considered to be a mixture of mugearitic or mafic trachytic magma, derived from a similar source region which yielded the earlier caldera wall flows. Trace element concentrations of the post-trachyte comenditic quartz trachyte lavas suggest they were erupted from a chamber whose magma was diluted by an influx of mugearitic or mafic trachytic magma during a magma mixing event.Rayleigh fractionation calculations show that the comendites and comenditic quartz trachytes can be derived from a parental mugearite magma by 88% to 93% fractionation of dominantly plagioclase and alkali feldspar, with lesser amounts of clinopyroxene, magnetite and apatite. Zircon was not a significant fractionating phase. The composition, mineralogy and depth of the source region(s) which generated these magmas cannot be constrained from the present data set.  相似文献   

19.
The ophiolitic sequence which crops out along the Aspropotamos Valley, Northern Pindos, Greece is composed from the bottom to the top of cumulates, dolerites, basaltic lavas, upper pillow lavas with basaltic/andesitic composition, and scarce basaltic dykes. The intrusive sequence, which is the subject of the present paper, exhibits magmatic layering more pronounced at the bottom than at the top where isotropic gabbros occur; they grade into the overlying dolerites. Troctolites with rare ultramafites prevail in the lower section and olivine gabbros in the upper section; at the top two-pyroxene gabbros appear. The rocks are mainly adcumulates and mesocumulates with subordinate heteradcumulates. The cumulus phases separated in the order: olivine and Cr-spinel, plagioclase, clinopyroxene, orthopyroxene. Olivine, plagioclase and pyroxenes frequently exhibit adeumulus overgrowth. Intercumulus phases may be plagioclase, clinopyroxene, orthopyroxene, pale brown amphibole and magnetite. Where pore material is present, it is composed of plagioclase, clinopyroxene, orthopyroxene, hornblende and ores. Cr-spinel occurs mainly at the bottom of the sequence (Cr2O3 between 30·5 and 39·8 per cent), while magnetite appears as a very rare phase in the upper section. Olivine, orthopyroxene, clinopyroxene exhibit slight cryptic variation (Mg × 100/(Mg + Fe) in the range 90–79, 90–70, 93–72 respectively). The investigated dolerites are non-cumulus rocks where clinopyroxene may be more magnesian than in the uppermost gabbros. The cumulate sequence and dolerites underwent variable but generally slight spilitization, in contrast to the overlying lavas. The sequence was generated through crystal accumulation probably from periodic pulses of tholeiitic magma; newly injected magma batches mixing with magma fractions already differentiated in the magma chamber. The high fluid pressure evidenced by the fluid inclusions in plagioclase and the whole chemical trend of the cumulate sequence are consistent with a genesis above a subduction zone, as already hypothesized for the overlying lavas.  相似文献   

20.
Four magma series are distinguished in the northeastern TroodosExtrusive Series: (A) a Lower Low-Ti Series (Lo-LTS) of basalticandesites, (B) a High-Ti Series (HTS) of basaltic andesitesto rhyodacites, (C) a Low-Ti Series(DLTS), the last two beingof basaltic andesite. Trace-element characteristics vary systematicallyfrom Series A to D and are interpreted in terms of a variablecontribution of three major source components (SCs). LILE-enrichedwater-rich fluids (SCI) derived from dehydration of a subductedlithosphere slab were continuously added to the overlying mantlewedge. Increasing LILE/HFSE and LILE/REE ratios and decreasingabsolute HFSE and REE concentrations from Series A to Dindicateprogressive depletion of the actual mantle source (SCII). Anegative Ta anomaly in the lavas decreases from Series A toD and is interpreted to have resulted from partial melting ofthe lower crust (SCII) where Ta-Nb-Ti may be fractionated byTi-rich accessory phases. The contribution of SCIII decreaseswhen the eruptive sites successively move away from the centralaxial zone and the temperature of the lower crust decreases,preventing partial melting of the lower crust. Chemical compositionsof fresh glass separates and phenocrysts indicate a change ofmajor petrogenetic processes from series A to D. Lo-LTS andIITS lavas are intrepreted to be directly related by open-systemfractional crystallization in crustal magma chambers. Removalof observed phenocryst phases clinopyroxene, orthopyroxene,plagioclase, and magnetite, and repeated subsequent mixing ofdacitc to rhyodacitic magmas with batches of replenshing basalticandesites are the major processes, possibly induced by vesicleformation in the mafic layer after a period of some crystallization.LTS and DLTS magmas were directly fed to the surface withoutstagnating at crustal levels, with feeder dykes positioned marginalto the central rift zone and thus by-passing the central magmachambers. These magmas apparently experienced only limited fractionalcrystallization of 10–15 wt.% olivine+clinopyroxene+chromite,probably at the mantle-crust boundary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号