首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Based on the physical background that varying solar activity should lead to variations of the ‘solar constant’ and that the climate system may respond sensitively even to small solar variations, a correlation analysis is performed where hemispheric and global averages of the annual mean surface air temperature are compared with the variations of a variety of solar forcing parameters: sunspots, related hypotheses including variations of the quasi-eleven-year solar cycle length, solar diameter variations and gravitational effects. This analysis is based on the 1881–1988 period, for the northern hemisphere including proxy data 1671–1988. Cross correlations and correlations moving in time reveal some instability effects which are hard to interpret. The temperature variance components which may be hypothetically explained by solar forcing are small. Similarly, a seasonal and regional signal and signal-to-noise analysis based on a gridded temperature time series 1890–1985 reveals small signals which do not exceed roughly 1.5 K in the arctic winter (maximum) or 0.2-0.3 K on a global average.  相似文献   

2.
Intrinsic properties of Sahel precipitation anomalies and rainfall   总被引:3,自引:2,他引:1  
The estimation of the future projected precipitation and rainfall on short- and long-term basis is crucial because their substantial changes are closely associated with severe socioeconomic and ecological consequences. For this reason, the detrended fluctuation analysis is applied on the Sahel precipitation and standardized rainfall anomalies in order to explore the intrinsic properties of their temporal variability. The results obtained show that the Sahel precipitation anomalies the period 1900–2010 exhibit persistent long-range correlations for all the time lags between 4 months and 28 years. This result states that the fluctuations of the Sahel precipitation anomalies in small time intervals are positively correlated to those in longer time intervals in a power law fashion. In opposite, the Sahel standardized rainfall fluctuations during the periods 1948–2001 show an almost random walk behavior. It should be emphasized that these findings could substantially contribute to the precipitation forecast and the advanced simulation of the variability of the global climate system. For instance, the data of the precipitation forecast modeling must exhibit the long-range correlations dictated by the precipitation data in the past. A detailed analysis on this topic will be published elsewhere.  相似文献   

3.
Intra-annual link of spring and autumn precipitation over France   总被引:2,自引:0,他引:2  
In a previous study, an intra-annual relationship of observed precipitation, manifested by negative correlations between domain-averaged spring and autumn precipitation of the same year, was found in two domains covering France and Central Europe for the period 1972–1990 (Hirschi et al., J Geophys Res 112(D22109), 2007). Here, this link and its temporal evolution over France during the twentieth century is further investigated and related to the atmospheric circulation and North Atlantic/Mediterranean sea surface temperature (SST) patterns. Observational datasets of precipitation, mean sea level pressure (MSLP), atmospheric teleconnection patterns, and SST, as well as various global and regional climate model simulations are analyzed. The investigation of observed precipitation by means of a running correlation with a 30-year time window for the period 1901–present reveals a decreasing trend in the spring-to-autumn correlations, which become significantly negative in the second half of the twentieth century. These negative correlations are connected with similar spring-to-autumn correlations in observed MSLP, and with negatively correlated spring East Atlantic (EA) and autumn Scandinavian (SCA) teleconnection pattern indices. Maximum covariance analyses of SST with these atmospheric variables indicate that at least part of the identified spring-to-autumn link is mediated through SST, as spring precipitation and MSLP are connected with the same autumn SST pattern as are autumn precipitation, MSLP and the SCA pattern index. Except for ERA-40 driven regional climate models from the EU-FP6 project ENSEMBLES, the analyzed regional and global climate models, including Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) simulations, do not capture this observed variability in precipitation. This is associated with the failure of most models in simulating the observed correlations between spring and autumn MSLP. While the causes for the identified relationship cannot be fully established its timing suggests a possible link with increased aerosol loading in the global dimming period.  相似文献   

4.
Long-term characteristics of the onset dates of spring ice phases at hydrological stations in the mouth areas of the Ob and Yenisei rivers for 1936–2006 are obtained. The correlations are analyzed between these dates and the frequency of different synoptic processes over the Atlantic and Eurasia in the fall-winter months, the dates when the accumulated temperatures at meteorological stations in the middle parts of the river basins reach 5, 10, 20, 30, and 40°C, and the dates of the start of ice drift at the upstream sections of the Yenisei. Prognostic relations are suggested and test forecasts of the onset dates of ice phases are verified. The percentage of correct forecasts was 67–86%, which makes it possible to recommend the relations for using in prognostic practice. The forecast lead time ranges from 3 to 110 days.  相似文献   

5.
We present an annually resolved reconstruction of spring-summer precipitation variability in East Anglia, UK (52–53°N, 0–2°E) for the period AD 900–2009. A continuous regional network of 723 living (AD 1590–2009) and historical (AD 781–1790) oak (Quercus sp.) ring-width series has been constructed and shown to display significant sensitivity to precipitation variability during the March-July season. The existence of a coherent common growth signal is demonstrated in oaks growing across East Anglia, containing evidence of near-decadal aperiodic variability in precipitation throughout the last millennium. Positive correlations are established between oak growth and precipitation variability across a large region of northwest Europe, although climate-growth relationships appear time transgressive with correlations significantly weakening during the early twentieth century. Examination of the relationship between oak growth, precipitation, and the North Atlantic Oscillation (NAO), reveals no evidence that the NAO plays any significant role in the control of precipitation or tree growth in this region. Using Regional Curve Standardisation to preserve evidence of low-frequency growth variability in the East Anglian oak chronology, we produce a millennial length reconstruction that is capable of explaining 32–35% of annual-to-decadal regional-scale precipitation variance during 1901–2009. The full length reconstruction indicates statistically significant anomalous dry conditions during AD 900–1100 and circa-1800. An apparent prolonged wetter phase is estimated for the twelfth and thirteen centuries, whilst precipitation fluctuates between wetter and drier phases at near centennial timescales throughout the fourteenth to seventeenth centuries. Above average precipitation reconstructed for the twenty-first century is comparable with that reproduced for the 1600s. The main estimated wet and dry phases reconstructed here appear largely coherent with an independent tree-ring reconstruction for southern-central England.  相似文献   

6.
Based on the surface 2?m monthly minimum temperature from the National Centers for Environmental Prediction/National Center for Atmospheric Research reanalysis dataset, the spatial and temporal characteristics of winter minimum temperature during 1961–2010 have been analyzed in China. Results showed that the minimum temperature in China has a significant increasing rate of 0.25° per decade calculated by the Mann–Kendall statistical test, which is consistent with the global warming trend. Empirical orthogonal function (EOF) analysis reveals that there are three main patterns that can explain more than 57.6% of the total variance of the winter minimum temperature. The EOF1, EOF2, and EOF3 account for 34.8%, 13.5%, and 13.5% of the total inter-annual variance, respectively. The EOF1, EOF2, and EOF3 patterns are synchronous in northern China, central China, and on the Tibetan Plateau. There exist a decrease trend in the corresponding time coefficients of EOF1 and EOF2 and an increase trend in that of EOF3 since the 1960s. Both the corresponding time coefficients of EOF1 and EOF2 have significant positive correlations with the 500?hPa geopotential heights of the Arctic region and negative correlations in the regions lower than 40°N, while a significant positive correlation is found between the corresponding time coefficients of EOF3 and 500?hPa geopotential heights in the low latitudes. This suggests that rapid warming occurs in northern China and on the Tibetan Plateau, while the weakest trend locates in southeast China. Thus, warming in winter is more pronounced at higher altitudes and latitudes. These patterns are tightly connected with the atmospheric circulation.  相似文献   

7.
太阳活动,大气臭氧和平流层温度相关分析研究   总被引:1,自引:4,他引:1  
言穆弘  华贵义 《高原气象》1993,12(3):302-311
  相似文献   

8.
The interdecadal variation of the association of the stratospheric quasi-biennial oscillation (QBO) with tropical sea surface temperature (SST) anomalies (SSTA) and with the general circulation in the troposphere and lower stratosphere is examined using the ERA40 and NCEP/NCAR reanalyses, as well as other observation-based analyses. It is found that the relationship between the QBO and tropical SSTA changed once around 1978–1980, and again in 1993–1995. During 1966–1974, negative correlation between the QBO and NINO3.4 indices reached its maximum when the NINO3.4 index lagged the QBO by less than 6?months. Correspondingly, the positive correlations were observed when the NINO3.4 index led the QBO by about 11–13?months or lagged by about 12–18?months. However, maximum negative correlations were shifted from the NINO3.4 index lagging the QBO by about 0–6?months during 1966–1974 to about 3–12?months during 1985–1992. During 1975–1979, both the negative and positive correlations were relatively small and the QBO and ENSO were practically unrelated to each other. The phase-based QBO life cycle composites also confirm that, on average, there are two phase (6–7?months) delay in the evolution of the QBO-associated anomalous Walker circulation, tropical SST, atmospheric stability, and troposphere and lower stratosphere temperature anomalies during 1980–1994 in comparison with those in 1957–1978. The interdecadal variation of the association between the QBO and the troposphere variability may be largely due to the characteristic change of El Ni?o-Southern Oscillation. The irregularity of the QBO may play a secondary role in the interdecadal variation of the association.  相似文献   

9.
Weather is an important factor for air quality. While there have been increasing attentions to long-term (monthly and seasonal) air pollution such as regional hazes from land-clearing fires during El Niño, the weather-air quality relationships are much less understood at long-term than short-term (daily and weekly) scales. This study is aimed to fill this gap through analyzing correlations between meteorological variables and air quality at various timescales. A regional correlation scale was defined to measure the longest time with significant correlations at a substantial large number of sites. The air quality index (API) and five meteorological variables during 2001–2012 at 40 eastern China sites were used. The results indicate that the API is correlated to precipitation negatively and air temperature positively across eastern China, and to wind, relative humidity and air pressure with spatially varied signs. The major areas with significant correlations vary with meteorological variables. The correlations are significant not only at short-term but also at long-term scales, and the important variables are different between the two types of scales. The concurrent regional correlation scales reach seasonal at p < 0.05 and monthly at p < 0.001 for wind speed and monthly at p < 0.01 for air temperature and relative humidity. Precipitation, which was found to be the most important variable for short-term air quality conditions, and air pressure are not important for long-term air quality. The lagged correlations are much smaller in magnitude than the concurrent correlations and their regional correction scales are at long term only for wind speed and relative humidity. It is concluded that wind speed should be considered as a primary predictor for statistical prediction of long-term air quality in a large region over eastern China. Relative humidity and temperature are also useful predictors but at less significant levels.  相似文献   

10.
The Barents Sea is the most productive sea in the Arctic. The main causes of phytoplankton spring blooms are studied for a decadal time period of 2003–2013 at the region of (70 °N-80 °N, 30 °E-40 °E) in Barents Sea. Due to the rapidly ice melt in the southern region (70 °N-75 °N), almost no ice left after year 2005, sea surface temperature (SST) and wind speed (WIND) are two main dominant factors influencing phytoplankton blooming in the southern region. Ice melt is another important factor of phytoplankton blooming in the northern region (75 °N–80 °N). SST and CHL had positive correlations during blooming season but negative correlations during summer time. The lower SST in spring could result in earlier blooming in the region. Higher SST and higher WIND could result in later blooming. Positive NAO after April 2013 caused higher SST in 2013. Increasing WIND would cause CHL reduced accordingly. Blooming period is from late April to late May in the southern region, and 1–2 weeks later in the northern region. During blooming season, SST was less than 4 °C and WIND was less than 10 m/s. The higher winds (over 15 m/s) in early spring would brought more nutrients from bottom to surface and cause higher blooming (near 10 mg/m3 in year 2010) after WIND is reduced to 5−8 m/s. Higher WIND (around 10 m/s) could generate longer blooming period (more than a week) during late May in the southern region. Decrease of WIND and increase of melting ice, with slightly increase of SST and decrease of mixed layer depth (MLD), are all the factors of phytoplankton blooming in late spring and early summer.  相似文献   

11.
The present study focuses on the impact of ocean state (i.e., salinity and temperature) updates on the sea-ice analysis and short-term forecast in an assimilative sea ice–ocean coupled system. A relatively simple sea-ice assimilation scheme was applied to the sea ice–ocean coupled North Atlantic Nucleus for European Modelling of the Ocean (NEMO) system with a focus on the Canadian East Coast. In this assimilation scheme the ocean state was updated directly based on the correlations between the model's sea-ice concentration and the upper ocean salinity and temperature. These correlations were based on a limited time ensemble generated by applying random perturbations to the atmospheric forcing fields. High deviations in the sea-ice conditions were found along the ice edge, implying that the sea-ice edge position is sensitive to small atmospheric forcing variations. Assimilation runs with and without ocean state updates (i.e., sea-ice concentration nudging) were conducted and compared for the winter of 2002. Both continuous and intermittent assimilation schemes were examined. In a continuous sea-ice assimilation experiment, the ocean direct update is unnecessary. When the sea-ice updates are introduced intermittently the ocean state has to be altered to accommodate them, or they will be rapidly diminished by the model's dynamics. The correlations between sea-ice concentration and ocean salinity and temperature based on the first 15 days of January were used for corrections during the entire winter season when, in addition to thermodynamic processes, dynamic processes are responsible for, and even dominate, sea-ice evolution on the Labrador and Newfoundland shelves. This was an adequate choice as was demonstrated by the results of the study which showed that the experiments with ocean state adjustments generated more accurate short-term sea-ice forecasts.  相似文献   

12.
This study explores potential impacts of the East Asian winter monsoon (EAWM) on summer climate variability and predictability in the Australia–Asian region through Australia–Asia (A-A) monsoon interactions. Observational analysis is conducted for the period of 1959 to 2001 using ERA-40 wind reanalysis and Climate Research Unit rainfall and surface temperature monthly datasets. Statistically significant correlations are established between the Australian summer monsoon and its rainfall variations with cross-equatorial flows penetrating from South China Sea region and northerly flow in the EAWM. The underlying mechanism for such connections is the response of the position and intensity of Hardley circulation to strong/weak EAWM. A strong EAWM is associated with an enhanced cross-equatorial flow crossing the maritime continent and a strengthened Australia summer monsoon westerlies which affect rainfall and temperature variations in northern and eastern part of the Australian continent. Furthermore, partial correlation analysis, which largely excludes El Niño-Southern Oscillation (ENSO) effects, suggests that these connections are the inherent features in the monsoon system. This is further supported by analyzing a global model experiment using persistent sea surface temperatures (SSTs) which, without any SST interannual variations, shows similar patterns as in the observational analysis. Furthermore, such interaction could potentially affect climate predictability in the region, as shown by some statistically significant lag correlations at monthly time scale. Such results are attributed to the impacts of EAWM on regional SST variations and its linkage to surface conditions in the Eurasian continent. Finally, such impacts under global warmed climate are discussed by analyzing ten IPCC AR4 models and results suggest they still exist in the warmed climate even though the EAWM tends to be weaker.  相似文献   

13.
The veracity of modeled air–sea interactions in the Indian Ocean during the South Asian summer monsoon is examined. Representative simulations of the twentieth century climate, produced by coupled general circulation models as part of the Intergovernmental Panel on Climate Change Fourth Assessment Report, are the analysis targets along with observational data. The analysis shows the presence of large systematic biases in coupled simulations of boreal summer precipitation, evaporation, and sea surface temperature (SST) in the Indian Ocean, often exceeding 50% of the climatological values. Many of the biases are pervasive, being common to most simulations. The representation of air–sea interactions is also compromised. Coupled models tend to emphasize local forcing in the Indian Ocean as reflected by their large precipitation–SST correlations, at odds with the weak links in observations which suggest the importance of non-local controls. The evaporation–SST correlations are also differently represented, indicating atmospheric control on SST in some models and SST control on evaporation in others. The Indian monsoon rainfall–SST links are also misrepresented: the former is essentially uncorrelated with antecedent and contemporaneous Indian Ocean SSTs in nature, but not so in most of the simulations. Overall, coupled models are found deficient in portraying local and non-local air–sea interactions in the Indian Ocean during boreal summer. In our opinion, current models cannot provide durable insights on regional climate feedbacks nor credible projections of regional hydroclimate variability and change, should these involve ocean–atmosphere interactions in the Indian basin.  相似文献   

14.
The relationship between five teleconnection patterns (North Atlantic Oscillation (NAO), Arctic Oscillation (AO), East Atlantic/Western Russian (EAWR) pattern, Scandinavian (SCAND) pattern, and El Niño Southern Oscillation (ENSO)) and the frequency of occurrence of days (per month) with extreme precipitation in the Euro-Mediterranean region is investigated with National Centers for Environmental Prediction–National Center for Atmospheric Research reanalysis data. To quantify the teleconnection–precipitation relationships over the Euro-Mediterranean region, linear correlations are calculated between the monthly teleconnection indices for the five patterns and time series at each grid point of the monthly frequency of days with extreme precipitation, focusing on daily precipitation amounts that exceed a particular threshold value (a 90 % threshold is used). To evaluate dynamical processes, the teleconnection indices are also correlated with the frequencies of days with extreme values of dynamic tropopause pressure and precipitable water. The former quantity is used as a proxy for potential vorticity intrusions and the latter to identify regions of enhanced moisture. The results of this analysis indicates positive, statistically significant correlations between the NAO, AO, and SCAND indices and the frequency of extreme precipitation in the western Mediterranean; positive (negative) correlations between the EAWR index and the extreme precipitation frequency in the eastern (western) Mediterranean; and a positive correlation between the Niño3.4 index and the extreme precipitation frequency over the Iberian Peninsula and the Middle East. For all of the teleconnection patterns other than ENSO, the dynamic tropopause pressure correlation patterns resemble those for the precipitation. In contrast, similar precipitation and precipitable water correlation patterns are observed only for ENSO. These findings suggest that the teleconnections affect the interannual variation of the frequency of days with extreme precipitation over a large part of the Euro-Mediterranean region through their impact on the spatial distribution of regions with enhanced potential vorticity and air moisture.  相似文献   

15.
In this study the behaviour of the North Atlantic Oscillation (NAO) and its impact on the surface air temperature in Europe 1891-1990 is analysed using statistical time series analysis techniques. For this purpose, both the NAO index (NAOI) and the surface air temperature time series from 41 European stations are split up into typical variation components. Various measures of correlation indicate that the NAOI-temperature relationships are approximately linear and most pronounced in winter. The spatial correlation patterns show a correlation decrease from North West to South East (winter) exceeding correlation coefficients of 0.6 in the Scotland-South Norwegian area. In summer, these correlations are very weak, in spring and autumn stronger but smaller than in winter. These correlations change significantly in time indicating increasing correlations in Central and North Europe and decreasing correlations in the North West. Low-frequent episodic components represented by related polynomials of different order are very outstanding in both NAO and temperatures showing up in all seasons, except summer, relative maxima roughly 1900 and in recent times, relative minima in the beginning ( ca . 1870) and roughly 1960-1970. Periodogramm analysis reveals a dominant cycle of 7.5 years (NAOI and a majority of temperature time series) whereas in case of the polynomial component one may speculate about a 80-90 year cycle.  相似文献   

16.
Persistence in surface air temperature anomaly (SATA) time series over 1901–2010 observed at four cities: Nagpur, Pune, Mumbai and Delhi of India is examined using rescaled-range and predictability index. A gap of 40 years is observed in predictability maxima, which is linked with the short-range correlations. Seasonal analysis showed unpredictability of SATA during four seasons at Nagpur, during summers at Pune and Mumbai, and during monsoon and post-monsoon at Mumbai and Delhi. Significant change is observed after 1991 at Delhi, Nagpur and Mumbai with a respective increase of 1.7, 2.2 and 3.3 °C in surface air temperature (SAT) during 1901–2010. The spatial and temporal variations in the SAT in four cities are attributed to their geographic and climatic conditions. The results suggest the utility of the rescaled-range analysis and predictability index in exploring the changes in the climatic variables.  相似文献   

17.
Abstract

The relationship between Arctic sea‐ice concentration anomalies, particularly those associated with the “Great Salinity Anomaly” of 1968–1982, and atmospheric circulation anomalies north of 45°N is investigated. Empirical orthogonal function (EOF) analyses are performed on winter Arctic ice concentration from 1954 to 1990, sea level pressure and 500‐hPa heights from 1947 to 1994, and 850‐hPa temperatures from 1963 to 1994. Variability on both interannual and decadal timescales is apparent in the time series of the leading winter EOFs of all variables. The first EOF of winter sea‐ice concentration was found to characterize the patterns of ice variability associated with the Great Salinity Anomaly in the northern North Atlantic from 1968–82. Spatial maps of temporal correlation coefficients between the time series of the first EOF of winter sea‐ice concentration and the winter atmospheric anomaly fields are calculated at lags of 0 and ±7 year. Maximum correlations were found to exist when the time‐series of this ice EOF 1 leads the atmospheric anomaly fields by one year. A particularly interesting result is the connection between the presence of ice anomalies in the Greenland and Barents Seas and subsequent pressure anomalies of the same sign over the Irminger Basin and the Canadian Arctic. The main emphasis of the paper is to identify connections between Arctic sea‐ice and atmospheric circulation anomalies at interannual time‐scales.  相似文献   

18.
Lei LIU  Fei HU 《大气科学进展》2019,36(10):1121-1128
In this paper, we use fluctuation analysis to study statistical correlations in wind speed time series. Each time series used here was recorded hourly over 40 years. The fluctuation functions of wind speed time series were found to scale with a universal exponent approximating to 0.7, which means that the wind speed time series are long-term correlated. In the classical method of extreme estimations, data are commonly assumed to be independent (without correlations). This assumption will lead to an overestimation if data are long-term correlated. We thus propose a simple method to improve extreme wind speed estimations based on correlation analysis. In our method, extreme wind speeds are obtained by simply scaling the mean return period in the classical method. The scaling ratio is an analytic function of the scaling exponent in the fluctuation analysis.  相似文献   

19.
The spatial and temporal variability of rainfall over Ethiopia during the summer (JJAS) season is studied using observations (both station and satellite based) and model simulation data. The simulation dataset is generated using the fourth version of the International Center for Theoretical Physics Regional Climate Model (RegCM4) for the period 1989–2005. Ethiopia is first divided into 12 homogeneous regions using criteria including rotated empirical orthogonal function (REOF), spatial correlation, seasonal cycles, and topographical features. Spatially averaged observed and simulated rainfall time series are then generated and analyzed for each region. Standardized rainfall anomalies of the observations and the simulated data are highly correlated over the northern, western, northeastern, central, and southwestern regions, while a weak correlation is found over the border regions of the country. The dominant modes of rainfall variability are identified using REOF, while time–frequency variations of different dominant modes are described by wavelet analysis. The first leading patterns of rainfall and upper wind (averaged between 100 and 300 hPa) are highly correlated and exhibit similar features between simulation and observations over the northern, western, southwestern, and eastern regions of Ethiopia. The second loading pattern of rainfall and the first loading pattern of low-level wind (averaged between 850 and 1,000 hPa) exhibit a dipole structure across the southwestern and northeastern regions of the country. The dominant signals in the first rotated principal component (RPC) of rainfall and upper level wind fields show a period of 4–5 and 2–3 years, while the dominant signals in the second RPC show a period of 2–3 years at a 0.05 significance level. The correlations of significant RPCs across gauge, gridded, and model rainfall fields with that of low and upper level winds show the presence of a significant relationship (correlation exceeding ~0.6). Overall, the RegCM4 shows a good performance in simulating the spatial and temporal variability of precipitation over Ethiopia.  相似文献   

20.
In the Andes environment, rainfall and temperature can be extremely variable in space and time. The determination of climate variability and climate change needs a special assessment for water management. This paper examines the anomalies of observed monthly rainfall and temperature data from 25 to 16 stations, respectively, from the early 1960s to the 1990s. The stations are located in the Rio Paute Basin in the Ecuador’s Southern Andes. All stations are within the elevation band 1,800 and 4,200?m?a.s.l. and affected by the Tropical Pacific, Amazon, and Tropical Atlantic climate. Anomalies in quantiles were determined for each station and their significance tested. In addition, their correlations with different external climatic influences were studied for anomalies in annual and 3-month seasonal block periods. The results show similar temperature variations for the entire region, which are highly influenced by the El Ni?o–Southern Oscillation, especially during the December–February season. During June–August, the correlation is weaker showing the influence of other climate factors. Higher temperature anomalies are found at the high elevation sites while at deep valley sites the anomalies are less significant. Rainfall variations depend, in addition to elevation, on additional factors such as the aspect orientation, slope, and hydrological regime. The highest and most significant rainfall anomalies are found in the eastern sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号