首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The satellite total solar irradiance (TSI) database provides a valuable record for investigating models of solar variation used to interpret climate changes. The 35-year ACRIM total solar irradiance (TSI) satellite composite time series has been revised using algorithm updates based on 13 years of accumulated mission experience and corrections to ACRIMSAT/ACRIM3 results for scattering and diffraction derived from recent testing at the Laboratory for Atmospheric and Space Physics/Total solar irradiance Radiometer Facility (LASP/TRF). The net correction lowers the ACRIM3 scale by ~3000 ppm, in closer agreement with the scale of SORCE/TIM results (average total solar irradiance ≈1361.5 W/m2). Differences between the ACRIM and PMOD TSI composites are investigated, particularly the decadal trending during solar cycles 21–22 and the Nimbus7/ERB and ERBS/ERBE results available to bridge the ACRIM Gap (1989–1992), are tested against a set of solar proxy models. Our findings confirm the following ACRIM TSI composite features: (1) The validity of the TSI peak in the originally published ERB results in early 1979 during solar cycle 21; (2) The correctness of originally published ACRIM1 results during the SMM spin mode (1981–1984); (3) The upward trend of originally published ERB results during the ACRIM Gap; (4) The occurrence of a significant upward TSI trend between the minima of solar cycles 21 and 22 and (5) a decreasing trend during solar cycles 22–23. The same analytical approach does not support some important features of the PMOD TSI composite: (1) The downward corrections applied to the originally published ERB and ACRIM1 results during solar cycle 21; (2) The step function sensitivity change in ERB results at the end-of-September 1989; (3) The downward trend of ERBE results during the ACRIM Gap and (4) the use of ERBE results to bridge the ACRIM Gap. Our analysis provides a first order validation of the ACRIM TSI composite approach and its 0.037 %/decade upward trend during solar cycles 21–22. The implications of increasing TSI during the global warming of the last two decades of the 20th century are that solar forcing of climate change may be a significantly larger factor than represented in the CMIP5 general circulation climate models.  相似文献   

2.
The effects of scattering and diffraction on the observations of the ACRIMSAT/ACRIM3 satellite TSI monitoring mission have been characterized by the preflight calibration approach for satellite total solar irradiance (TSI) sensors implemented at the LASP/TRF (Laboratory for Atmospheric and Space Physics/Total Solar Irradiance Radiometer Facility). The TRF also calibrates the SI (International System of units) traceability to the NIST (National Institute of Standards and Technology) cryo-radiometric scale. ACRIM3’s self-calibration agrees with NIST to within the uncertainty of the test procedure (~500 ppm). A correction of ~5000 ppm was found for scattering and diffraction that has significantly reduced the scale difference between the results of the ACRIMSAT/ACRIM3 and SORCE/TIM satellite experiments. Algorithm updates reflecting more than 10 years of mission experience have been made that further improve the ACRIM3 results by eliminating some thermally driven signal and increasing the signal to noise ratio. The result of these changes is a more precise and detailed picture of TSI variability. Comparison of the results from the ACRIM3, SORCE/TIM and SOHO/VIRGO satellite experiments demonstrate the near identical detection of TSI variability on all sub-annual temporal and amplitude scales during the TIM mission. The largest occurs at the rotational period of the primary solar activity longitudes. On the decadal timescale, while ACRIM3 and VIRGO results exhibit close agreement throughout, TIM exhibits a consistent 500 ppm upward trend relative to ACRIM3 and VIRGO. A solar magnetic activity area proxy for TSI has been used to demonstrate that the ACRIM TSI composite and its +0.037 %/decade TSI trend during solar cycles 21–23 is the most likely correct representation of the extant satellite TSI database. The occurrence of this trend during the last decades of the 20th century supports a more robust contribution of TSI variation to detected global temperature increase during this period than predicted by current climate models.  相似文献   

3.
We model total solar irradiance (TSI) using photometric irradiance indices from the San Fernando Observatory (SFO), and compare our model with measurements compiled from different space-based radiometers. Space-based measurements of TSI have been obtained recently from ACRIM-3 on board the ACRIMSAT. These data have been combined with other data sets to create an ACRIM-based composite. From VIRGO on board the Solar and Heliospheric Observatory (SOHO) spacecraft two different TSI composites have been developed. The VIRGO irradiance data have been combined by the Davos group to create a composite often referred to as PMOD (Physikalisch-Meteorologisches Observatorium Davos). Also using data from VIRGO, the Royal Meteorological Institute of Belgium (RMIB) has created a separate composite TSI referred to here as the RMIB composite. We also report on comparisons with TSI data from the Total Irradiance Monitor (TIM) experiment on board the Solar Radiation and Climate Experiment (SORCE) spacecraft. The SFO model correlates well with all four experiments during the seven-year SORCE interval. For this interval, the squared correlation coefficient R 2 was 0.949 for SORCE, 0.887 for ACRIM, 0.922 for PMOD, and 0.924 for RMIB. Long-term differences between the PMOD, ACRIM, and RMIB composites become apparent when we examine a 21.5-year interval. We demonstrate that ground-based photometry, by accurately removing TSI variations caused by solar activity, is useful for understanding the differences that exist between TSI measurements from different spacecraft experiments.  相似文献   

4.
The Total Irradiance Monitor (TIM): Science Results   总被引:2,自引:0,他引:2  
The solar observations from the Total Irradiance Monitor (TIM) are discussed since the SOlar Radiation and Climate Experiment (SORCE) launch in January 2003. The TIM measurements clearly show the background disk-integrated solar oscillations of generally less than 50 parts per million (ppm) amplitude over the ∼2 ppm instrument noise level. The total solar irradiance (TSI) from the TIM is about 1361 W/m2, or 4–5 W/m2 lower than that measured by other current TSI instruments. This difference is not considered an instrument or calibration error. Comparisons with other instruments show excellent agreement of solar variability on a relative scale. The TIM observed the Sun during the extreme activity period extending from late October to early November 2003. During this period, the instrument recorded both the largest short-term decrease in the 25-year TSI record and also the first definitive detection of a solar flare in TSI, from which an integrated energy of roughly (6± 3)×1032 ergs from the 28 October 2003 X17 flare is estimated. The TIM has also recorded two planets transiting the Sun, although only the Venus transit on 8 June 2004 was definitive.  相似文献   

5.
For more than a decade total solar irradiance has been monitored simultaneously from space by different satellites. The detection of total solar irradiance variations by satellite-based experiments during the past decade and a half has stimulated modeling efforts to help identify their causes and to provide estimates of irradiance data, using proxy indicators of solar activity, for time intervals when no satellite observations exist. In this paper total solar irradiance observed by the Nimbus-7/ERB, SMM/ACRIM I, and UARS/ACRIM II radiometers is modeled with the Photometric Sunspot Index and the Mg II core-to-wing ratio. Since the formation of the Mg II line is very similar to that of the Ca II K line, the Mg core-to-wing ratio, derived from the irradiance observations of the Nimbus-7 and NOAA9 satellites, is used as a proxy for the bright magnetic elements. It is shown that the observed changes in total solar irradiance are underestimated by the proxy models at the time of maximum and during the beginning of the declining portion of solar cycle 22 similar to behavior just before the maximum of solar cycle 21. This disagreement between total irradiance observations and their model estimates is indicative of the fact that the underlying physical mechanism of the changes observed in the solar radiative output is not well-understood. Furthermore, the uncertainties in the proxy data used for irradiance modeling and the resulting limitation of the models should be taken into account, especially when the irradiance models are used for climatic studies.  相似文献   

6.
This paper presents and interprets observations obtained by the Spectral Irradiance Monitor (SIM) on the Solar Radiation and Climate Experiment (SORCE) over a time period of several solar rotations during the declining phase of solar cycle 23. The time series of visible and infrared (IR) bands clearly show significant wavelength dependence of these variations. At some wavelengths the SIM measurements are qualitatively similar to the Mg II core-to-wing ratio, but in the visible and IR they show character similar to the Total Solar Irradiance (TSI) variations. Despite this overall similarity, different amplitudes, phases, and temporal features are observed at various wavelengths. The TSI can be explained as a complex sum of the various wavelength components. The SIM observations are interpreted with the aid of solar images that exhibit a mixture of solar activity features. Qualitative analysis shows how the sunspots, faculae, plage, and active network provide distinct contributions to the spectral irradiance at different wavelengths, and ultimately, how these features combine to produce the observed TSI variations. Most of the observed variability appears to be qualitatively explained by solar surface features related directly to the magnetic activity.  相似文献   

7.
The time series of total solar irradiance (TSI) satellite observations since 1978 provided by ACRIM and PMOD TSI composites are studied. We find empirical evidence for planetary-induced forcing and modulation of solar activity. Power spectra and direct data pattern analysis reveal a clear signature of the 1.09-year Earth-Jupiter conjunction cycle, in particular during solar cycle 23 maximum. This appears to suggest that the Jupiter side of the Sun is slightly brighter during solar maxima. The effect is observed when the Earth crosses the Sun-Jupiter conjunction line every 1.09 years. Multiple spectral peaks are observed in the TSI records that are coherent with known planetary harmonics such as the spring, orbital and synodic periods among Mercury, Venus, Earth and Jupiter: the Mercury-Venus spring-tidal cycle (0.20 year); the Mercury orbital cycle (0.24 year); the Venus-Jupiter spring-tidal cycle (0.32 year); the Venus-Mercury synodic cycle (0.40 year); the Venus-Jupiter synodic cycle (0.65 year); and the Venus-Earth spring tidal cycle (0.80 year). Strong evidence is also found for a 0.5-year TSI cycle that could be driven by the Earth’s crossing the solar equatorial plane twice a year and may indicate a latitudinal solar-luminosity asymmetry. Because both spring and synodic planetary cycles appear to be present and the amplitudes of their TSI signatures appear enhanced during sunspot cycle maxima, we conjecture that on annual and sub-annual scales both gravitational and electro-magnetic planet-sun interactions and internal non-linear feedbacks may be modulating solar activity. Gravitational tidal forces should mostly stress spring cycles while electro-magnetic forces could be linked to the solar wobbling dynamics, and would mostly stress the synodic cycles. The observed statistical coherence between the TSI records and the planetary harmonics is confirmed by three alternative tests.  相似文献   

8.
本文给出了太阳23 周开始时间的确定、从开始到现在近两年间太阳活动的状况以及23周上升期间的一些特点。分析表明,1996 年10 月是23 周的第一个月,它的月平滑值是8 .8 ;23 周的太阳活动虽然可能是高活动周,例如,国际推荐值为2000 年3 月的160 ,但它可能不会超过前两周。根据上升期太阳活动的一些特征,还给出了在23 周峰年联测和空间灾害性扰动事件预报和预报方法研究中应注意的几个问题  相似文献   

9.
We present the results using the AutoClass analysis application available at NASA/Ames Intelligent Systems Div. (2002) which is a Bayesian, finite mixture model classification system developed by Cheeseman and Stutz (1996). We apply this system to Mount Wilson Solar Observatory (MWO) intensity and magnetogram images and classify individual pixels on the solar surface to calculate daily indices that are then correlated with total solar irradiance (TSI) to yield a set of regression coefficients. This approach allows us to model the TSI with a correlation of better than 0.96 for the period 1996 to 2007. These regression coefficients applied to classified pixels on the observed solar surface allow the construction of images of the Sun as it would be seen by TSI measuring instruments like the Solar Bolometric Imager recently flown by Foukal et al. (Astrophys. J. 611, L57, 2004). As a consequence of the very high correlation we achieve in reproducing the TSI record, our approach holds out the possibility of creating an on-going, accurate, independent estimate of TSI variations from ground-based observations which could be used to compare, and identify the sources of disagreement among, TSI observations from the various satellite instruments and to fill in gaps in the satellite record. Further, our spatially-resolved images should assist in characterizing the particular solar surface regions associated with TSI variations. Also, since the particular set of MWO data on which this analysis is based is available on a daily basis back to at least 1985, and on an intermittent basis before then, it will be possible to estimate the TSI emission due to identified solar surface features at several solar minima to constrain the role surface magnetic effects have on long-term trends in solar energy output.  相似文献   

10.
The correlation coefficients of the linear regression of six solar indices versus 10.7 cm radio flux F 10.7 were analysed in solar cycles 21, 22 and 23. We also analysed the interconnection between these indices and F 10.7 with help of approximation by polynomials of second order. The indices we have studied in this paper are: the relative sunspot numbers – SSN, 530.3 nm coronal line flux – F 530, the total solar irradiance – TSI, Mg II 280 nm core-to-wing ratio UV-index, the Flare Index – FI and the counts of flares. In most cases the regressions of these solar indices vs. F 10.7 are close to the linear regression except the moments of time near the minimums and maximums of the 11-year activity. For the linear regressions, we found that correlation coefficients K corr(t) for the solar indices vs. F 10.7 and SSN dropped to their minimum values twice during each 11-year cycle.  相似文献   

11.
To investigate the relations between coronal mass ejection (CME) speed and magnetic field properties measured in the photospheric surface of CME source regions, we selected 22 disk CMEs in the rising and early maximum phases of the current Solar Cycle 24. For the CME speed, we used two-dimensional (2D) projected speed observed by the Large Angle and Spectroscopic Coronagraph onboard the Solar and Heliospheric Observatory (SOHO/LASCO), as well as a 3D speed calculated from the triangulation method using multi-point observations. Two magnetic parameters of CME source regions were considered: the average of magnetic helicity injection rate and the total unsigned magnetic flux. We then classified the selected CMEs into two groups, showing: i) a monotonically increasing pattern with one sign of helicity (group A: 16 CMEs) and ii) a pattern of significant helicity injection followed by its sign reversal (group B: 6 CMEs). We found that: 1) 3D speed generally shows better correlations with the magnetic parameters than the 2D speed for 22 CME events in Solar Cycle 24; 2) 2D speed and the magnetic parameters of 22 CME events in this solar cycle have lower values than those of 47 CME events in Solar Cycle 23; 3) all events of group B in Solar Cycle 24 occur only after the beginning of the maximum phase, a trend well consistent with that shown in Solar Cycle 23; 4) the 2D speed and the helicity parameter of group B events continue to increase in the declining phase of Solar Cycle 23, while those of group A events abruptly decrease in the same period. Our results indicate that the two CME groups have a different tendency in the solar cycle variations of CME speed and the helicity parameters. Active regions that show a complex helicity evolution pattern tend to appear in the maximum and declining phases, while active regions with a relatively simple helicity evolution pattern appear throughout the whole solar cycle.  相似文献   

12.
Total solar irradiance (TSI) measurements have been available from the TIM instrument on the SORCE spacecraft since 2003. We compare TSI data, both 24-h and 6-h averages, with photometric indices from red and K-line images obtained on a daily basis at the San Fernando Observatory (SFO). For 1253 days of data from 2 March 2003 to 5 May 2010 we compare the data in linear multiple regression analyses. The best results come from using two photometric indices, the red and K-line photometric sums, and SORCE TSI 6-h averages interpolated to the SFO time of observation. For this case, we obtain a coefficient of multiple determination, R 2, of 0.9495 and a quiet-Sun irradiance S 0?=?1360.810?±?0.004?W?m?2. These results provide further support for the hypothesis that the quiet Sun is constant over time.  相似文献   

13.
Analyses based on irradiance observations from space within the last one and a half decades have discovered variations in the entire solar spectrum and at UV wavelengths on time scales of minutes to decades. In this paper we analyze the distribution of the measuring uncertainties and daily fluctuations in total solar irradiance measured by the Nimbus-7/ERB and SMM/ACRIM I radiometers as a function of solar cycle. Changes in solar total irradiance and its surrogates shorter than the solar rotation have also been considered as noise and have been removed from the data. Our results show that the noise (both instrumental and solar noise) changes as a function of the solar cycle, being higher during high solar activity conditions. The analysis of the scatter plot diagrams between the data and their standard deviation, the so-called dispersion diagrams, provides a useful tool to estimate and predict the time of solar maximum and minimum activity conditions.Deceased on October 13, 1994.  相似文献   

14.
Jun Nishikawa 《Solar physics》1994,152(1):125-130
Spatially-resolved precise photometric observations of the whole Sun at wavelengths of 545nm (FWHM 40nm) were carried out by using the CCD solar surface photometer. Bright parts of photospheric network have contrast of several tenths of percent, and their contribution to the total irradiance is approximately half that of active region faculae. The solar irradiance variations estimated from sunspots, faculae and active network (contrast>0.3%) agreed with the ACRIM data. The quiet Sun irradiance used in the present results was different from the total irradiance at the solar minimum observed by the ACRIM, which indicates unmeasured components (contrast>0.1%) cause the 11-year cycle irradiance variation.  相似文献   

15.
In order to investigate the relationship between magnetic-flux emergence, solar flares, and coronal mass ejections (CMEs), we study the periodicity in the time series of these quantities. It has been known that solar flares, sunspot area, and photospheric magnetic flux have a dominant periodicity of about 155 days, which is confined to a part of the phase of the solar cycle. These periodicities occur at different phases of the solar cycle during successive phases. We present a time-series analysis of sunspot area, flare and CME occurrence during Cycle 23 and the rising phase of Cycle 24 from 1996 to 2011. We find that the flux emergence, represented by sunspot area, has multiple periodicities. Flares and CMEs, however, do not occur with the same period as the flux emergence. Using the results of this study, we discuss the possible activity sources producing emerging flux.  相似文献   

16.
Aparicio  A. J. P.  Lefèvre  L.  Gallego  M. C.  Vaquero  J. M.  Clette  F.  Bravo-Paredes  N.  Galaviz  P.  Bautista  M. L. 《Solar physics》2018,293(12):1-23

The Spectral Irradiance Monitor (SIM) instrument on board the Solar Radiation and Climate Experiment (SORCE) performs daily measurements of the solar spectral irradiance (SSI) from 200 to 2400 nm. Both temporal and spectral corrections for instrument degradation have been built on physical models based on comparison of two independent channels with different solar exposure. The present study derives a novel correction for SIM degradation using the total solar irradiance (TSI) measurements from the Total Irradiance Monitor (TIM) on SORCE. The correction is applied to SIM SSI data from September 2004 to October 2012 over the wavelength range from 205 nm to 2300 nm. The change in corrected, integrated SSI agrees within \(0.1~\mbox{W}\,\mbox{m}^{-2}\) (\(1\sigma\)) with SORCE TIM TSI and independently shows agreement with the SATIRE-S and NRLSSI2 solar models within measurement uncertainties.

  相似文献   

17.
The He 1083 nm line equivalent width and the 10.7 cm radio flux are employed to model the total solar irradiance corrected for sunspot deficit. A new area dependent photometric sunspot index (APSI) based on sunspot photometry by Steinegger et al. (1990) is used to correct the irradiance data for sunspot deficits. Two periods of time are investigated: firstly, the 1980–1989 period between the maxima of solar cycles 21 and 22; this period is covered by ACRIM I irradiance data. Secondly, the 1978–92 period which includes both maxima; here, the revised Nimbus-7 ERB data are used.For both He 1083 nm and 10.7 cm radio flux irradiance models as well as ACRIM I and ERB irradiance data, the APSI yields an improved fit compared to the one obtained with the standard Photometric Sunspot Index (PSI) which uses a constant bolometric spot contrast. With APSI, the standard deviation calculated from daily values is 0.461 Wm–2 for the period 1980–89 modelling ACRIM I vs. He 1083 nm, as compared to 0.478 when PSI is used, and to 0.531 for the uncorrected ACRIM series. A similar improvement is obtained for the same period modelling ERB vs. He 1083 nm, while there is almost no improvement for the long period.As a general result the models provide a good fit with the spot-deficit.-corrected irradiance only during the period between the maxima. If both maxima are included (period 1978–92) the He 1083 nm and 10.7 cm radio flux models show appreciably larger discrepancies to the irradiances corrected for PSI or APSI.  相似文献   

18.
Sunspot numbers are available for the past four centuries. However, solar activity indices with a longer time span are required by geophysicists and solar physicists. The yearly naked-eye sunspot number in the past is reconstructed using observations recorded in historical documents. Some studies from different solar proxies (including radiocarbon and aurora records) show the presence of the so-called Suess cycle (around 200 years) in solar variability. In this work, a modified Lomb–Scargle periodogram analysis is used to investigate the Suess cycle in naked-eye observations of sunspots during 200 BC–1918 AD. The most relevant characteristic of the periodogram is a cycle with a frequency very close to the Suess cycle, though this cycle is not significant statistically.  相似文献   

19.
The history and present status of observations of large-scale velocity fields in the solar atmosphere are reviewed. Observations of the torsional oscillation and of mean meridional circulation suggest a connection of large-scale dynamics with the solar cycle. Significant problems must be solved before Doppler observations can match the precision of tracer measurements, particularly allowing for the effects of changes in line-profile asymmetries and for scattered light. Coordinated observations would establish the reliability of Doppler techniques, but Doppler measurements with precision of order 1 m s–1 made in a proper spatial-temporal window appear necessary for the identification of sub-global velocity fields varying with time-scales less than that of the solar cycle. This survey is presented in the context of the Solar Cycle Workshop held at Big Bear Lake, Calif, August 17–20, 1986.Solar Cycle Workshop Paper.  相似文献   

20.
The study of variations in total solar irradiance (TSI) and spectral irradiance is important for understanding how the Sun affects the Earth’s climate. A data-driven approach is used in this article to analyze and model the temporal variation of the TSI and Mg?ii index back to 1947. In both cases, observed data in the time interval of the satellite era, 1978?–?2013, were used for neural network (NN) model-design and testing. For this particular purpose, the evolution of the solar magnetic field is assumed to be the main driver for the day-to-day irradiance variability. First, we design a model for the Mg?ii index data from F10.7 cm solar radio-flux using the NN approach in the time span of 1978 through 2013. Results of Mg?ii index model were tested using various numbers of hidden nodes. The predicted values of the hidden layer with five nodes correspond well to the composite Mg?ii values. The model reproduces 94% of the variability in the composite Mg?ii index, including the secular decline between the 1996 and 2008 solar cycle minima. Finally, the extrapolation of the Mg?ii index was performed using the developed model from F10.7 cm back to 1947. Similarly, the NN model was designed for TSI variability study over the time span of the satellite era using data from the Physikalisch-Meteorologisches Observatorium Davos (PMOD) as a target, and solar activity indices as model inputs. This model was able to reproduce the daily irradiance variations with a correlation coefficient of 0.937 from sunspot and facular measurements in the time span of 1978?–?2013. Finally, the temporal variation of the TSI was analyzed using the designed NN model back to 1947 from the Photometric Sunspot Index (PSI) and the extrapolated Mg?ii index. The extrapolated TSI result indicates that the amplitudes of Solar Cycles 19 and 21 are closely comparable to each other, and Solar Cycle 20 appears to be of lower irradiance during its maximum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号