首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
本文通过能量法研究了钢筋混凝土筒体结构的抗震性能。文中采用振型分解法按等效单自由度体系求解筒体结构的滞回输入能;用pushover法分析了滞回耗能在结构层间的分布规律及结构自身的耗能能力;根据楼层滞回耗能与弹塑性层间位移的关系求出了薄弱层的弹塑性位移。对一高层钢筋混凝土框架-筒体结构在7度罕遇地震下的抗震性能进行了评估,通过与非线性动力时程分析的对比,证明了方法的可行性。  相似文献   

2.
本文通过能量法研究了钢筋混凝土简体结构的抗震性能。文中采用振型分解法按等效单自由度体系求解简体结构的滞回输入能;用pushover法分析了滞回耗能在结构层间的分布规律及结构自身的耗能能力;根据楼层滞回耗能与弹塑性层间位移的关系求出了薄弱层的弹塑性位移。对一高层钢筋混凝土框架-简体结构在7度罕遇地震下的抗震性能进行了评估,通过与非线性动力时程分析的对比,证明了方法的可行性。  相似文献   

3.
基于能量原理的Park & Ang损伤模型简化计算方法   总被引:2,自引:0,他引:2  
Park&Ang损伤模型综合考虑了结构最大变形和累积滞回耗能的耦合作用,具有一定的先进性,被国内外研究者广泛采用;但由于该模型中参数的计算困难,尤其涉及结构滞回耗能的计算问题时,该模型的应用受到了一定的限制;文中从能量的关系入手,寻找出结构滞回耗能与结构最大位移的关系,利用该关系可方便求解出结构的滞回耗能,从而为该模型的计算提供了一种简便方法;最后,例题分析证明本文的方法简便可行,计算效率高。  相似文献   

4.
模态pushover分析方法的研究和改进   总被引:11,自引:0,他引:11  
鉴于传统pushover方法不能考虑结构高阶振型的贡献,从而难以应用到高层结构中,有学者提出采用考虑多阶振型组合作用的模态pushover分析方法。本文通过考虑结构屈服后地震作用发生变化这一特性,对此方法进行了改进并通过算例进行了验证。结果表明本文改进的方法有很好的精度。  相似文献   

5.
基于能量平衡原理,对多层钢筋混凝土框架结构的地震输入能量的分布及耗散规律进行了研究。选用8条天然地震波和2条人工波,运用Perform-3D软件,对多层钢筋混凝土框架结构模型在7度罕遇地震作用下的弹塑性能量进行数值仿真计算。计算了钢混框架结构在不同地震波下的地震总输入能量、滞回耗能、阻尼耗能以及滞回耗能占总耗能的比例时程,分析了地震能量在各分量中的分布及分配规律;分析了阻尼比和延性比对地震输入能量的影响,确定了滞回耗能随阻尼比和延性比的变化规律;研究了钢筋混凝土框架结构梁柱构造和竖向侧移刚度变化对地震输入能及其分量的影响,确定了多层钢筋混凝土框架结构滞回耗能沿竖向的分布规律及沿横向在框架构件中的分配,研究了框架结构存在薄弱层情况下的滞回耗能的分布规律。揭示了多自由度钢筋混凝土框架结构地震输入能量及其分布规律,可为基于能量平衡原理的抗震设计理论在工程实际中的运用提供有益的参考。  相似文献   

6.
将结构前两阶振型各自等效为单自由度,采用模态pushover分析确定各等效单自由度的屈服强度系数和延性系数,然后由反应谱计算各阶振型耗散能量需求,利用各振型能量分布曲线,求得各层耗散能量需求,叠加得到各层地震总能量需求,据此确定耗能装置的类型及设计参数.运用该方法对9层钢框架进行了设计,并通过非线性动力分析进行了验证,结果表明该方法精确度符合实际工程需求.  相似文献   

7.
基础隔震结构的耗能分析   总被引:5,自引:0,他引:5  
采用Bouc-wen模型,利用状态空间迭代法,对基础隔震结构进行了多质点的弹塑性时程分析,并根据此结果,利用能量方程,求得隔震结构的各项能量,绘制了各能量项时程曲线。以一实际工程为例,求得隔震结构的各项耗能情况,说明了基础隔震结构以减少地震输入和隔震层滞回耗能来减小对上部结构的损坏。  相似文献   

8.
抗震结构的滞回耗能谱   总被引:10,自引:0,他引:10  
本文在分析不同类型地面运动引起抗震结构不同类型破坏的基础上,指出结构滞回耗能总量是累积破坏的重要参数,以1735条实际地震记录作为输入计算了不同动力参数单自由度体系弹性及弹塑性总输入能量及滞回耗能量,得出计算弹塑性体系滞回耗能谱的简化公式。  相似文献   

9.
高层混合结构滞回耗能比的研究   总被引:1,自引:0,他引:1  
基于结构层间弯曲屈服强度的概念,提出了高层混合结构滞回耗能比的简化计算公式,该公式综合体现了结构以及地震动特征参数对结构滞同耗能比的影响。研究表明,结构滞回耗能比随地震动的峰值速度与峰值加速度的比值的增大而增大;随着地震动幅值的增大,滞回耗能比也线性增加;对于短持时地震动,滞回耗能比与强震持时之间没有一定的规律性,但对于长持时地震动,结构滞回耗能比会随强震持时的增大而线性增加。随着结构弯曲屈服强度系数的增大,结构滞回耗能比呈凹函数下降,结构的自振周期越大,同一弯曲屈服强度系数对应的滞回耗能比越小;钢框架与混凝土剪力墙承载力比值的增加能够降低结构的滞回耗能比。  相似文献   

10.
为了探究能够全面评估钢筋混凝土结构抗震性能的量化指标,借助有限元软件ABAQUS对一拟建的10层框架-剪力墙结构进行了大量的非线性动力时程数值计算,对比分析了不同地震作用下最大层间位移角与滞回耗能的分布情况,从结构滞回耗能的角度揭示了破坏机制,得到主要结论如下:结构层间位移角最大的位置不一定是损伤破坏最严重或者薄弱的部位,以层间位移角作为整体结构抗震性能的判别指标离散性较大,计算结果易受所选地震波的方法及数量影响;结构滞回耗能沿楼层的分布受地震波选取方法和数量的随机性影响较小,结构底层耗能对结构整体耗能贡献最大,约占结构总耗能的60%,其余各楼层滞回耗能约占结构总滞回耗能的1%~8%;梁和柱滞回耗能主要集中于结构底部1层,总的框架梁滞回耗能仅占结构总滞回耗能的18%~22%,绝大部分地震输入能由框架柱吸收,总的框架柱滞回耗能占结构总滞回耗能的80%左右,该计算结果与实际震害中结构主要形成"柱铰"破坏机制的现象较为一致。  相似文献   

11.
Hysteretic energy dissipation in a structure during an earthquake is the key factor, besides maximum displacement, related to the amount of damage in it. This energy demand can be accurately computed only through a nonlinear time‐history analysis of the structure subjected to a specific earthquake ground acceleration. However, for multi‐story structures, which are usually modeled as multi‐degree of freedom (MDOF) systems, this analysis becomes computation intensive and time consuming and is not suitable for adopting in seismic design guidelines. An alternative method of estimating hysteretic energy demand on MDOF systems is presented here. The proposed method uses multiple ‘generalized’ or ‘equivalent’ single degree of freedom (ESDOF) systems to estimate hysteretic energy demand on an MDOF system within the context of a ‘modal pushover analysis’. This is a modified version of a previous procedure using a single ESDOF system. Efficiency of the proposed procedure is tested by comparing energy demands based on this method with results from nonlinear dynamic analyses of MDOF systems, as well as estimates based on the previous method, for several ground motion scenarios. Three steel moment frame structures, of 3‐, 9‐, and 20‐story configurations, are selected for this comparison. Bias statistics that show the effectiveness of the proposed method are presented. In addition to being less demanding on the computation time and complexity, the proposed method is also suitable for adopting in design guidelines, as it can use response spectra for hysteretic energy demand estimation. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
This paper investigates the non-linear seismic behavior of structures such as slender unreinforced masonry shear walls or precast post-tensioned reinforced concrete elements, which have little hysteretic energy dissipation capacity. Even if this type of seismic response may be associated with significant deformation capacity, it is usually not considered as an efficient mechanism to withstand strong earthquakes. The objective of the investigations is to propose values of strength reduction factors for seismic analysis of such structures. The first part of the study is focused on non-linear single-degree-of-freedom (SDOF) systems. A parametric study is performed by computing the displacement ductility demand of non-linear SDOF systems for a set of 164 recorded ground motions selected from the European Strong Motion Database. The parameters investigated are the natural frequency, the strength reduction factor, the post-yield stiffness ratio, the hysteretic energy dissipation capacity and the hysteretic behavior model (four different hysteretic models: bilinear self-centring, with limited or without energy dissipation capacity, modified Takeda and Elastoplastic). Results confirm that the natural frequency has little influence on the displacement ductility demand if it is below a frequency limit and vice versa. The frequency limit is found to be around 2 Hz for all hysteretic models. Moreover, they show that the other parameters, especially the hysteretic behavior model, have little influence on the displacement ductility demand. New relationships between the displacement ductility demand and the strength reduction factor for structures having little hysteretic energy dissipation capacity are proposed. These relationships are an improvement of the equal displacement rule for the considered hysteretic models. In the second part of the investigation, the parametric study is extended to multi-degree-of-freedom (MDOF) systems. The investigation shows that the results obtained for SDOF systems are also valid for MDOF systems. However, the SDOF system overestimates the displacement ductility demand in comparison to the corresponding MDOF system by approximately 15%.  相似文献   

13.
This paper presents qualitative investigations on the energy behaviour of structures into which hysteretic dampers are incorporated. Emphasis was given to the ratio of the structural stiffness after the yielding of hysteretic dampers to the initial elastic stiffness, with a premise that this ratio, termed α in this study, tends to be large for structures with hysteretic dampers. Structures concerned were represented by discrete spring–mass systems having bilinear restoring force behaviour, in which the second stiffness relative to the initial stiffness is α. It was found that with the increase of α the total input energy tends to increase, but the increase is confined to a narrow range of natural periods. Both the total input energy and hysteretic energy were found to become less sensitive to the yield strength with the increase of α. A simple formula was also proposed to estimate the maximum deformation given the knowledge of the hysteretic energy. Analysis of MDOF systems revealed that, even when α is large, the total input energy and hysteretic energy for MDOF systems are approximately the same as those of the equivalent SDOF system, and the hysteretic energy can be distributed uniformly over the stories if α is large.  相似文献   

14.
A procedure is proposed whereby input and hysteretic energy spectra developed for single-degree-of-freedom (SDOF) systems are applied to multi-degree-of-freedom (MDOF) steel moment resisting frames. The proposed procedure is verified using four frames, viz., frame with three-, five-, seven- and nine-stories, each of which is subjected to the fault-normal and fault-parallel components of three actual earthquakes. A very good estimate for the three- and five-story frames, and a reasonably acceptable estimate for the seven-, and nine-story frames, have been obtained. A method for distributing the hysteretic energy over the frame height is also proposed. This distribution scheme allows for the determination of the energy demand component of a proposed energy-based seismic design (EBSD) procedure for each story. To address the capacity component of EBSD, a story-wise optimization design procedure is developed by utilizing the energy dissipating capacity from plastic hinge formation/rotation for these moment frames. The proposed EBSD procedure is demonstrated in the design of a three-story one-bay steel moment frame.  相似文献   

15.
The determination of displacement demands for masonry buildings subjected to seismic action is a key issue in the performance-based assessment and design of such structures. A technique for the definition of single-degree-of-freedom (SDOF) nonlinear systems that approximates the global behaviour of multi-degree-of-freedom (MDOF) 3D structural models has been developed in order to provide useful information on the dependency of displacement demand on different seismic intensity measures. The definition of SDOF system properties is based on the dynamic equivalence of the elastic properties (vibration period and viscous damping) and on the comparability with nonlinear hysteretic behaviour obtained by cyclic pushover analysis on MDOF models. The MDOF systems are based on a nonlinear macroelement model that is able to reproduce the in-plane shear and flexural cyclic behaviour of pier and spandrel elements. For the complete MDOF models an equivalent frame modelling technique was used. The equivalent SDOF system was modelled using a suitable nonlinear spring comprised of two macroelements in parallel. This allows for a simple calibration of the hysteretic response of the SDOF by suitably proportioning the contributions of flexure-dominated and shear-dominated responses. The comparison of results in terms of maximum displacements obtained for the SDOF and MDOF systems demonstrates the feasibility and reliability of the proposed approach. The comparisons between MDOF and equivalent SDOF systems, carried out for several building prototypes, were based on the results of time-history analyses performed with a large database of natural records covering a wide range of magnitude, distance and local soil conditions. The use of unscaled natural accelerograms allowed the displacement demand to be expressed as a function of different ground motion parameters allowing for the study of their relative influence on the displacement demand for masonry structures.  相似文献   

16.
Earthquake excitation not only has evident randomness but also has strong fuzziness owing to the uncertainties in the definition of earthquake intensity and site soil classification. In this paper, the seismic ground motion is simulated as a stationary filtered white noise with fuzzy parameters, an analytical procedure is proposed to analyse the fuzzy random vibration of multi-degree-of-freedom (MDOF) hysteretic systems, and the covariance matrix of the fuzzy random responses is derived by the equivalent linearization technique. Finally, some numerical results for a two-storey shear hysteretic frame are presented to demonstrate the validity and effectiveness of the procedure proposed.  相似文献   

17.
Discrete models such as the lumped parameter model and the finite element model are widely used in the solution of soil amplification of earthquakes. However, neither of the models will accurately estimate the natural frequencies of soil deposit, nor simulate a damping of frequency independence. This research develops a new discrete model for one-dimensional viscoelastic response analysis of layered soil deposit based on the mode equivalence method. The new discrete model is a one-dimensional equivalent multi-degree-of-freedom (MDOF) system characterized by a series of concentrated masses, springs and dashpots with a special configuration. The dynamic response of the equivalent MDOF system is analytically derived and the physical parameters are formulated in terms of modal properties. The equivalent MDOF system is verified through a comparison of amplification functions with the available theoretical solutions. The appropriate number of degrees of freedom (DOFs) in the equivalent MDOF system is estimated. A comparative study of the equivalent MDOF system with the existing discrete models is performed. It is shown that the proposed equivalent MDOF system can exactly present the natural frequencies and the hysteretic damping of soil deposits and provide more accurate results with fewer DOFs.  相似文献   

18.
框架结构基于能量地震反应分析及设计方法的理论研究   总被引:3,自引:0,他引:3  
通过对多自由度体系结构在地震作用下的能量分析,考虑地震动因素和结构自身特性,提出基于能量概念的二阶段设计方法,取得了较有意义的研究成果,对于基于能量的抗震设计方法走向实用化,提供一条思路。  相似文献   

19.
A new direct performance‐based design method utilizing design tools called performance‐spectra (P‐Spectra) for low‐rise to medium‐rise frame structures incorporating supplemental damping devices is presented. P‐Spectra are graphic tools that relate the responses of nonlinear SDOF systems with supplemental dampers to various damping parameters and dynamic system properties that structural designers can control. These tools integrate multiple response quantities that are important to the performance of a structure into a single compact graphical format to facilitate direct comparison of different potential solutions that satisfy a set of predetermined performance objectives under various levels of seismic hazard. An SDOF to MDOF transformation procedure that defines the required supplemental damping properties for the MDOF structure to achieve the response defined by the target SDOF system is also presented for hysteretic, linear viscous and viscoelastic damping devices. Using nonlinear time‐history analyses of idealized shear structures, the accuracy of the transformation procedure is verified. A seismic performance upgrade design example is presented to demonstrate the usefulness of the proposed method for achieving design performance goals using supplemental damping devices. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
A modified energy-balance equation accounting for P-delta effects and hysteretic behavior of reinforced concrete members is derived. Reduced hysteretic properties of structural components due to combined stiffness and strength degradation and pinching effects, and hysteretic damping are taken into account in a simple manner by utilizing plastic energy and seismic input energy modification factors. Having a pre-selected yield mechanism, energy balance of structure in inelastic range is considered. P-delta effects are included in derived equation by adding the external work of gravity loads to the work of equivalent inertia forces and equating the total external work to the modified plastic energy. Earthquake energy input to multi degree of freedom (MDOF) system is approximated by using the modal energy-decomposition. Energy-based base shear coefficients are verified by means of both pushover analysis and nonlinear time history (NLTH) analysis of several RC frames having different number of stories. NLTH analyses of frames are performed by using the time histories of ten scaled ground motions compatible with elastic design acceleration spectrum and fulfilling duration/amplitude related requirements of Turkish Seismic Design Code. The observed correlation between energy-based base shear force coefficients and the average base shear force coefficients of NLTH analyses provides a reasonable confidence in estimation of nonlinear base shear force capacity of frames by using the derived equation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号