首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 172 毫秒
1.
Based on previous work, we investigate the propagation of CMEs in a more realistic plasma environment than the isothermal atmosphere, and find that it is a slightly faster reconnection for flux ropes to break free. The average Alfven Mach number MA for the inflow into the reconnection site has to be at least 0.013 in order to give a plausible eruption (compared to MA = 0.005 for the isothermal atmosphere). Taking MA = 0.1, we find that the energy output and the electric field induced inside the current sheet match the temporal behavior inferred from the energetic, long duration, CME-associated X-ray events. The results indicate that catastrophic loss of equilibrium in the coronal magnetic field provides the most promising mechanism for major solar eruptions, and that the more energetic the eruption is, the earlier the associated flare peaks. The variation of the output power with the background field strength revealed by our calculations implies the poor correlation between slow CMEs and solar flares. Th  相似文献   

2.
叙述和介绍了太阳爆发的磁通量绳灾变理论和模型的发展过程,强调了建立这样的模型所需要的观测基础。讨论了由模型所预言的爆发磁结构的几个重要特征以及观测结果对这种预言的证实。在此模型的基础上,讨论了一个典型的爆发过程中所出现的不同现象及它们之间的相互关系。最后,介绍了作者的一项最新尝试:将太阳爆发的灾变理论和模型应用到对黑洞吸积盘间歇性喷流的理论研究当中,以及研究所取得的初步结果。  相似文献   

3.
Lin  Jun 《Solar physics》2004,219(1):169-196
Based on our previous works regarding solar eruptions, we focus on the relationships among different eruptive phenomena, such as solar flares, eruptive prominences and coronal mass ejections (CMEs). The three processes show clear correlations under certain circumstances. The correlation between a CME and solar flare depends the energy that stored in the relevant magnetic structure, which is available to drive the eruption: the more energy that is stored, the better the correlation is; otherwise, the correlation is poor. The correlation between a CME and eruptive prominence, on the other hand, depends on the plasma mass concentration in the configuration prior to the eruption: if the mass concentration is significant, a CME starts with an eruptive prominence, otherwise, a CME develops an without an apparent associated eruptive prominence. These results confirm that solar flares, eruptive prominences and CMEs are different significances of a single physical process that is related to the energy release in a disrupted coronal magnetic field. The impact of gravity on CME propagation and the above correlations is also investigated. Our calculations indicate that the effect of gravity is not significant unless the strength of the background field in the disrupted magnetic configuration becomes weak, say weaker than 30 G.  相似文献   

4.
The Sun is the celestial body in the sky with the closest relationship with the Earth. The violent eruptive activities happening on the Sun can greatly impact the human living environment and lead to disastrous consequences. It is well accepted that solar eruptions including the solar flare, prominence eruption and coronal mass ejection are the different manifestations of a single physical process powered by the magnetic free energy gradually stored in the corona prior to eruptions. Therefore, mapping the three-dimensional structure of coronal magnetic field is a prerequisite to understand the initiation mechanism of solar eruptions. Due to the technological and methodological difficulties, routine observations of the coronal magnetic field are still unavailable. Therefore, a number of methods have been developed to reconstruct the coronal magnetic field. This paper mainly reviews the applications of various reconstruction methods to the studies of the solar eruptions in the recent ten years.  相似文献   

5.
Three Super Active Regions in the Descending Phase of Solar Cycle 23   总被引:2,自引:0,他引:2  
We analyze the magnetic configurations of three super active regions, NOAA 10484, 10486 and 10488, observed by the Huairou Multi-Channel Solar Telescope (MCST) from 2003 October 18 to November 4. Many energetic phenomena, such as flares (including a X-28 flare) and coronal mass ejections (CMEs), occurred during this period. We think that strong shear and fast emergence of magnetic flux are the main causes of these events. The question is also of great interest why these dramatic eruptions occurred so close together in the descending phase of the solar cycle.  相似文献   

6.
Solar coronal mass ejections (CMEs) show a large variety in their kinematic properties. CMEs originating in active regions and accompanied by strong flares are usually faster and accelerated more impulsively than CMEs associated with filament eruptions outside active regions and weak flares. It has been proposed more than two decades ago that there are two separate types of CMEs, fast (impulsive) CMEs and slow (gradual) CMEs. However, this concept may not be valid, since the large data sets acquired in recent years do not show two distinct peaks in the CME velocity distribution and reveal that both fast and slow CMEs can be accompanied by both weak and strong flares. We present numerical simulations which confirm our earlier analytical result that a flux‐rope CME model permits describing fast and slow CMEs in a unified manner. We consider a force‐free coronal magnetic flux rope embedded in the potential field of model bipolar and quadrupolar active regions. The eruption is driven by the torus instability which occurs if the field overlying the flux rope decreases sufficiently rapidly with height. The acceleration profile depends on the steepness of this field decrease, corresponding to fast CMEs for rapid decrease, as is typical of active regions, and to slow CMEs for gentle decrease, as is typical of the quiet Sun. Complex (quadrupolar) active regions lead to the fastest CMEs. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
孙凯 《天文学进展》1997,15(1):44-52
综述日冕物质抛射的观测和持性,简短的前言之后,给出CME的发现经过及统计特性,着重介绍CME与其他种类太阳活动的相关。然后介绍CME的一般特性,包括可能与CME相关的一些物理过程的观测特性。初步结论是:CME是一种演变中的磁结构现象。  相似文献   

8.
Dual-filament initiation of a Coronal Mass Ejection: Observations and Model   总被引:1,自引:0,他引:1  
Uralov  A.M.  Lesovoi  S.V.  Zandanov  V.G.  Grechnev  V.V. 《Solar physics》2002,208(1):69-90
We propose a new model for the initiation of solar coronal mass ejections (CMEs) and CME-associated flares. The model is inferred from observations of a quiescent filament eruption in the north-western quadrant of the solar disk on 4 September 2000. The event was observed with the Siberian Solar Radio Telescope (5.7 GHz), the Nobeyama Radioheliograph (17 GHz) and SOHO/EIT and LASCO. Based on the observations, we suggest that the eruption could be caused by the interaction of two dextral filaments. According to our model, these two filaments merge together to form a dual-filament system tending to form a single long filament. This results in a slow upward motion of the dual-filament system. Its upward expansion is prevented by the attachment of the filaments to the photosphere by filament barbs as well as by overlying coronal arcades. The initial upward motion is caused by the backbone magnetic field (first driving factor) which connects the two merging filaments. Its magnetic flux increases slowly due to magnetic reconnection of the cross-interacting legs of these filaments. If a total length of the dual-filament system is large enough, then the filament barbs detach themselves from the solar surface due to magnetic reconnection between the barbs with oppositely directed magnetic fields. The detachment of the filament barbs completes the formation of the eruptive filaments themselves and determines the helicity sign of their magnetic fields. The appearance of a helical magnetic structure creates an additional upward-directed force (second driving factor). A combined action of these two factors causes acceleration of the dual-filament system. If the lifting force of the two factors is sufficient to substantially extend the overlying coronal magnetic arcade, then magnetic reconnection starts below the eruptive filament in accordance with the classical scheme, and the third driving factor comes into play.  相似文献   

9.
This work investigates a typical coronal mass ejection (CME) observed on 2003 February 18, by various space and ground instruments, in white light, Ha, EUV and X-ray. The Ha and EUV images indicate that the CME started with the eruption of a long filament located near the solar northwest limb. The white light coronal images show that the CME initiated with the rarefaction of a region above the solar limb and followed by the formation of a bright arcade at the boundary of the rarefying region at height 0.46 R(?) above the solar surface. The rarefying process synchronized with the slow rising phase of the eruptive filament, and the CME leading edge was observed to form as the latter started to accelerate. The lower part of the filament brightened in Ha as the filament rose to a certain height and parts of the filament was visible in the GOES X-ray images during the rise. These brightenings imply that the filament may be heated by the magnetic reconnection below the filament in the early stage of the eruption. We suggest that a possible mechanism which leads to the formation of the CME leading edge and cavity is the magnetic reconnection which takes place below the filament after the filament has reached a certain height.  相似文献   

10.
The relationship between the velocity of CMEs and the plasma temperature of the associated X-ray solar flares is investigated.The velocity of CMEs increases with plasma temperature(R=0.82)and photon index below the break energy(R=0.60)of X-ray flares.The heating of the coronal plasma appears to be significant with respect to the kinetics of a CME from the reconnection region where the flare also occurs.We propose that the initiation and velocity of CMEs perhaps depend upon the dominant process of conversion of the magnetic field energy of the active region to heating/accelerating the coronal plasma in the reconnected loops.Results show that a flare and the associated CME are two components of one energy release system,perhaps,magnetic field free energy.  相似文献   

11.
1 INTRODUCTIONCoronal majss ejections (CMEs) are often seen as spectacular eruptions of matter fromthe Sun which propagate outward through the heliosphere and often interact with the Earth'smagnetosphere (Hundhausen, 1997; Gosling, 1997; and references herein). It is well known thatthese interactions can have substalltial consequences on the geomagnetic environment of theEarth, sometimes resulting in damage to satellites (e.g., McAllister et al., 1996; Berdichevskyet al., 1998). CMEs…  相似文献   

12.
目前观测的CME(日冕物质抛射)是其在天空平面的投影,这就导致CME的观测参量与真实参量之间存在一定的差异,比如说观测到的CME速度一般要比CME的真实速度小.运用基于锥状模型对CME的速度进行投影改正的方法,分析1996年9月到2007年9月(将近1个活动周)SOHO/LASCO日冕仪观测到的1 691个仅与耀斑相关的CME(简称FL类CME)和610个仅与暗条爆发相关的CME(简称FE类CME)投影改正前后的速度分布,得到如下结果:(1)投影改正前后,FL类CME和FE类CME的速度分布非常相似.且投影改正前后,两类CME的平均速度几乎相同; (2)投影改正前后,FL类CME和FE类CME速度的自然对数分布也非常相似.  相似文献   

13.
We have found that solar flares in NOAA active region (AR) 10696 were often associated with large-scale trans-equatorial activities. These trans-equatorial activities appeared to be very common and manifest themselves through i) the formation and eruption of trans-equatorial loops (TELs), ii) the formation and eruption of trans-equatorial filaments (TEFs), and iii) the trans-equatorial brightening (TEB) in the chromosphere. It is determined that the TEF was formed following episodic plasma ejecta from flares occurring in the AR. The TEF eruption was associated with a trans-equatorial flare. All flares in the AR that were accompanied by trans-equatorial activities were associated with halo coronal mass ejections (CMEs). It was noticed that one or several major flares in the AR were followed by an increase of brightness and nonpotentiality of a TEL. These coupled events had a lifetime of more than 12 hours. In addition their associated halo CMEs always had a positive acceleration, indicating prolonged magnetic reconnections in the outer corona at high altitudes.  相似文献   

14.
Based on a topological model for the magnetic field of a solar active region (AR), we suggest a criterion for the existence of magnetic null points on the separators in the corona. With the problem of predicting solar flares in mind, we have revealed a model parameter whose decrease means that the AR evolves toward a major eruptive flare. We analyze the magnetic field evolution for AR 9077 within two days before the Bastille Day flare on July 14, 2000. The coronal conditions are shown to have become more favorable for magnetic reconnection, which led to a 3B/X5.7 eruptive flare.  相似文献   

15.
In connection with the RHESSI satellite observations of solar flares, which have revealed new properties of hard X-ray sources during flares, we offer an interpretation of these properties. The observed motions of coronal and chromospheric sources are shown to be the consequences of three-dimensional magnetic reconnection at the separator in the corona. During the first (initial) flare phase, the reconnection process releases an excess of magnetic energy related predominantly to themagnetic tensions produced before the flare by shear plasma flows in the photosphere. The relaxation of a magnetic shear in the corona also explains the downward motion of the coronal source and the decrease in the separation between chromospheric sources. During the second (main) flare phase, ordinary reconnection dominates; it describes the energy release in the terms of the “standard model” of large eruptive flares accompanied by the rise of the coronal source and an increase in the separation between chromospheric sources.  相似文献   

16.
17.
Using Howard et al.'s method, we investigate, before and after the projection correction, the speed and acceleration distributions for 1747 coronal mass ejections (CMEs) associated solely with flares (FL CMEs) and 631 CMEs associated solely with filament eruptions (FE CMEs) observed by the Large Angle and Spectrometric Coronagraph on board the Solar and Heliographic Observatory ( SOHO /LASCO) from 1996 September to 2007 September, corresponding to almost an entire solar cycle. The results show the following. (1) Before the correction, the speed distributions for FL and FE CMEs are statistically different from each other; after the correction, the speed distributions for FL and FE CMEs should also be statistically different from each other. (2) Before the correction, the acceleration distributions for FL and FE CMEs are statistically different from each other. However, after the correction, FL and FE CMEs should have quite similar acceleration distributions.  相似文献   

18.
The plasma from solar filament eruptions sometimes falls down to the lower solar atmosphere. These interesting events can help us to understand the properties of downflows, such as the temperature and the conversion between kinetic energy and thermal energy. We analyze the case of a filament eruption in active region NOAA 11283 and brightening caused by the return of filament material on September 7 and 8, 2011, observed by the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager (HMI) aboard the Solar Dynamics Observatory (SDO). Magnetic flux cancellation was observed as a result of the eruption after the eruptive filament started to ascend. Another filament near the eruptive filament was disturbed by an extreme ultraviolet (EUV) wave that was triggered by the eruptive filament, causing it to oscillate. Based on coronal seismology, the mean magnetic field strength in the oscillatory filament was estimated to be approximately 18 ± 2 G. Some plasma separated from the filament and fell down to the solar northwest surface after the filament eruption. The velocities of the downflows increased at accelerations lower than the gravitational acceleration. The main characteristic temperature of the downflows was about 5 × 104 K. When the plasma blobs fell down to lower atmospheric heights, the high-speed downward-travelling plasma collided with plasma at lower atmospheric heights, causing the plasma to brighten. The brightening was observed in all 8 AIA channels, demonstrating that the temperature of the plasma in the brightening covered a wide range of values, from 105 K to 107 K. This brightening indicates the conversion between kinetic energy and thermal energy.  相似文献   

19.
The magnetic nature of solar flares   总被引:3,自引:0,他引:3  
The main challenge for the theory of solar eruptions has been to understand two basic aspects of large flares. These are the cause of the flare itself and the nature of the morphological features which form during its evolution. Such features include separating ribbons of H emission joined by a rising arcade of soft x-ray loops, with hard x-ray emission at their summits and at their feet. Two major advances in our understanding of the theory of solar flares have recently occurred. The first is the realisation that a magnetohydrodynamic (MHD) catastrophe is probably responsible for the basic eruption and the second is that the eruption is likely to drive a reconnection process in the field lines stretched out by the eruption. The reconnection is responsible for the ribbons and the set of rising soft x-ray loops, and such a process is well supported by numerical experiments and detailed observations from the Japanese satellite Yohkoh. Magnetic energy conversion by reconnection in two dimensions is relatively well understood, but in three dimensions we are only starting to understand the complexity of the magnetic topology and the MHD dynamics which are involved. How the dynamics lead to particle acceleration is even less well understood. Particle acceleration in flares may in principle occur in a variety of ways, such as stochastic acceleration by MHD turbulence, acceleration by direct electric fields at the reconnection site, or diffusive shock acceleration at the different kinds of MHD shock waves that are produced during the flare. However, which of these processes is most important for producing the energetic particles that strike the solar surface remains a mystery. Received 2 January 2001 / Published online 17 July 2001  相似文献   

20.
傅其骏 《天文学进展》1997,15(3):198-217
太阳大气磁场的研究对于太阳大气物理及太阳活动研究是十分重要的。目前探测光球以外的日够以球,过渡区磁场的几乎唯一办法,是在紧密联系其他频说段取得的信息基础上使用射电观测。根据在微波,米波段有关辐射机制和传播过程,介绍了推导磁场讯息的基本射电方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号