首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Summary. It is known that flow in the mantle can produce preferred orientation in olivine crystals with seismic anisotropy as a consequence. Flow in the subcrustal lithosphere is unlikely because of the high viscosity. Lenses of high temperature and low-viscosity ( anomalous mantle ) are located under the crust in many tectonically active regions, and viscous flow can easily arise in such material resulting in seismic anisotropy. After cooling, such anomalous mantle acquires high viscosity and becomes incorporated into the lithospheric layer preserving the anisotropy produced by the flows which existed previously. The interaction of the stresses with cracks in the upper crust can be one of the causes of anisotropy in this layer.  相似文献   

2.
Numerical models of ductile rebound of crustal roots beneath mountain belts   总被引:3,自引:0,他引:3  
Crustal roots formed beneath mountain belts are gravitationally unstable structures, which rebound when the lateral forces that created them cease or decrease significantly relative to gravity. Crustal roots do not rebound as a rigid body, but undergo intensive internal deformation during their rebound and cause intensive deformation within the ductile lower crust. 2-D numerical models are used to investigate the style and intensity of this deformation and the role that the viscosities of the upper crust and mantle lithosphere play in the process of root rebound. Numerical models of root rebound show three main features which may be of general application: first, with a low-viscosity lower crust, the rheology of the mantle lithosphere governs the rate of root rebound; second, the amount of dynamic uplift caused by root rebound depends strongly on the rheologies of both the upper crust and mantle lithosphere; and third, redistribution of the rebounding root mass causes pure and simple shear within the lower crust and produces subhorizontal planar fabrics which may give the lower crust its reflective character on many seismic images.  相似文献   

3.
Nontypical BIRPS on the margin of the northern North Sea: The SHET Survey   总被引:1,自引:0,他引:1  
Summary. Striking similarities in the reflectivity of the crust and upper mantle on BIRPS profiles has led to the development of the "typical BIRP", a model seismic section for the British continental lithosphere. The SHET survey, collected in the region of the Shetland Islands and the northern North Sea, fits the general pattern to a certain extent. Caledonian structures and Devonian or younger basins are imaged in the otherwise acoustically transparent upper crust. An unexpected and exciting feature imaged on SHET is a short wavelength structure on the Moho or abrupt Mono offset beneath the strike-slip Walls Boundary Fault. SHET differs markedly from the SWAT typical BIRP, however, by showing a poorly reflective lower crust. Only a narrow zone (∼1 s) at the base of the crust contains high-amplitude reflections. The SHET survey therefore highlights the wide variation in lower crustal reflectivity within the total BIRPS data set rather than the similarities.  相似文献   

4.
Summary. The analysis of data of seismic crustal studies in the USSR, obtained from waves propagating at different azimuths, reveals considerable horizontal and vertical inhomogeneity of the crust. Against this background it is difficult to predict what kind of velocity anisotropy can be expected in the continental crust. The rare cases of disagreement in velocities on intersecting profiles can be attributed both to anisotropy and to horizontal crustal inhomogeneity. There is a definite disagreement in layer velocities measured by reflected waves: fine layers in the crust and upper mantle have been found to have anomalously high velocities. The role of anisotropy in these events is not clear. The frequently observed splitting of S -wave with different polarization, however, positively implies anisotropy in the Earth's crust.  相似文献   

5.
Summary. Reduced Pn travel times from the Archaean Pilbara Craton of north-west Australia show a strong correlation with azimuth, which could be used as evidence of anisotropy. However, the azimuthal correlation could also be explained by a southerly dip of between 1 and 2° on the crust–mantle boundary, although the models from several reversed seismic profiles across the craton suggest a smaller dip.
A time-term analysis of the Pn date yielded several models. The preferred solution, in which the dip on the crust–mantle boundary is similar to that in the models from the reversed profiles, has approximately 2 per cent anisotropy in the uppermost mantle, with the direction of maximum velocity 30° east of north. One possible cause of the anisotropy is that olivine crystals were aligned by syntectonic recrystallization and/or power law creep in the tensional environment caused at the base of the lithosphere by flexure during loading of the lithosphere by the strata of the Hamersley Basin which overlies the Pilbara Craton.
A seismic discontinuity occurs about 15 km below the crust–mantle boundary under the craton. A qualitative analysis of all available seismic data suggests that the velocity below the boundary is probably also anisotropic, with the direction of maximum velocity between north and 40° west of north. The direction of minimum velocity below the sub-Moho boundary correlates loosely with the direction of basement lineaments in the Proterozoic Capricorn Orogenic Belt to the south of the craton, suggesting that the anisotropy under the boundary may be younger than that immediately under the crust/mantle boundary. This is consistent with the notion that the Archaean lithosphere was thinner than the present lithosphere.  相似文献   

6.
ABSTRACT The intracratonic basins of central Australia are distinguished by their large negative Bouguer gravity anomalies, despite the absence of any significant topography. Over the Neoproterozoic to Palaeozoic Officer Basin, the anomalies attain a peak negative amplitude in excess of 150 mGal, amongst the largest of continental anomalies observed on Earth. Using well data from the Officer and Amadeus basins and a data grid of sedimentary thicknesses from the eastern Officer Basin, we have assessed the evolution of these intracratonic basins. One-dimensional backstripping analysis reveals that Officer and Amadeus basin tectonic subsidence was not entirely synchronous. This implies that the basins evolved as discrete geological features once the Centralian Superbasin was dismembered into its constituent basins. Two- and three-dimensional backstripping and gravity modelling suggest that the eastern Officer Basin evolved from a broad continental sag into a region of intracratonic flexural subsidence from the latest Neoproterozoic, when flexure of the lithosphere deepened the northern basin. The results from gravity modelling improve when the crust is thickened beneath the northern margin of the basin and thinned at the southern margin, as has been suggested by recent deep seismic data. The crustal thickening beneath the basin's northern margin abuts the region of greatest topographic relief and is consistent with the observed structure at the edges of many orogenic belts. If the Officer Basin evolved as a foreland-type basin from the late Proterozoic and has retained those features to the present, then one implication is that in the absence of any significant topography, cratonic lithosphere must be able to support stresses over very long periods of geological time.  相似文献   

7.
Summary. Anisotropy of seismic waves in the uppermost mantle has not only been observed in the oceanic but recently also in the continental lithosphere. Laboratory experiments on the formation of preferred orientation of olivine crystals suggest plastic flow às the most likely mechanism for the genesis of anisotropy in the upper mantle. Since the direction of maximum velocity correlates in the ocean and on the continent with a number of tectonic features, a causal connection between anisotropy and dynamical processes related to plate motions must be suspected.  相似文献   

8.
Ultra‐large rift basins, which may represent palaeo‐propagating rift tips ahead of continental rupture, provide an opportunity to study the processes that cause continental lithosphere thinning and rupture at an intermediate stage. One such rift basin is the Faroe‐Shetland Basin (FSB) on the north‐east Atlantic margin. To determine the mode and timing of thinning of the FSB, we have quantified apparent upper crustal β‐factors (stretching factors) from fault heaves and apparent whole‐lithosphere β‐factors by flexural backstripping and decompaction. These observations are compared with models of rift basin formation to determine the mode and timing of thinning of the FSB. We find that the Late Jurassic to Late Palaeocene (pre‐Atlantic) history of the FSB can be explained by a Jurassic to Cretaceous depth‐uniform lithosphere thinning event with a β‐factor of ~1.3 followed by a Late Palaeocene transient regional uplift of 450–550 m. However, post‐Palaeocene subsidence in the FSB of more than 1.9 km indicates that a Palaeocene rift with a β‐factor of more than 1.4 occurred, but there is only minor Palaeocene or post‐Palaeocene faulting (upper crustal β‐factors of less than 1.1). The subsidence is too localized within the FSB to be caused by a regional mantle anomaly. To resolve the β‐factor discrepancy, we propose that the lithospheric mantle and lower crust experienced a greater degree of thinning than the upper crust. Syn‐breakup volcanism within the FSB suggests that depth‐dependent thinning was synchronous with continental breakup at the adjacent Faroes and Møre margins. We suggest that depth‐dependent continental lithospheric thinning can result from small‐scale convection that thins the lithosphere along multiple offset axes prior to continental rupture, leaving a failed breakup basin once seafloor spreading begins. This study provides insight into the structure and formation of a generic global class of ultra‐large rift basins formed by failed continental breakup.  相似文献   

9.
Summary. Laboratory seismic velocity measurements on rock samples from metamorphic terrains, coupled with geologic cross sections, provide the basis for synthetic seismic reflection profiles for various types of continental crust. Results from greenstone belts, mylonite zones and partial cross sections of continental crust indicate that lithologic heterogeneity and geometrical factors control crustal reflection characteristics.  相似文献   

10.
We study the tectonic setting and lithospheric structure of the greater Barents Sea region by investigating its isostatic state and its gravity field. 3-D forward density modelling utilizing available information from seismic data and boreholes shows an apparent shift between the level of observed and modelled gravity anomalies. This difference cannot be solely explained by changes in crustal density. Furthermore, isostatic calculations show that the present crustal thickness of 35–37 km in the Eastern Barents Sea is greater than required to isostatically balance the deep basins of the area (>19 km). To isostatically compensate the missing masses from the thick crust and deep basins and to adequately explain the gravity field, high-density material (3300–3350 kg m−3) in the lithospheric mantle below the Eastern Barents Sea is needed. The distribution of mantle densities shows a regional division between the Western and Eastern Barents and Kara Seas. In addition, a band of high-densities is observed in the lower crust along the transition zone from the Eastern to Western Barents Sea. The distribution of high-density material in the crust and mantle suggests a connection to the Neoproterozoic Timanide orogen and argues against the presence of a Caledonian suture in the Eastern Barents Sea. Furthermore, the results indicate that the basins of the Western Barents Sea are mainly affected by rifting, while the Eastern Barents Sea basins are located on a stable continental platform.  相似文献   

11.
A series of three‐dimensional models has been constructed for the structure of the crust and upper mantle over a large region spanning the NE Atlantic passive margin. These incorporate isostatic and flexural principles, together with gravity modelling and integration with seismic interpretations. An initial isostatic model was based on known bathymetric/topographic variations, an estimate of the thickness and density of the sedimentary cover, and upper mantle densities based on thermal modelling. The thickness of the crystalline crust in this model was adjusted to equalise the load at a compensation depth lying below the zone of lateral mantle density variations. Flexural backstripping was used to derive alternative models which tested the effect of varying the strength of the lithosphere during sediment loading. The models were analysed by comparing calculated and observed gravity fields and by calibrating the predicted geometries against independent (primarily seismic) evidence. Further models were generated in which the thickness of the sedimentary layer and the crystalline crust were modified in order to improve the fit to observed gravity anomalies. The potential effects of igneous underplating and variable upper mantle depletion were explored by a series of sensitivity trials. The results provide a new regional lithospheric framework for the margin and a means of setting more detailed, local investigations in their regional context. The flexural modelling suggests lateral variations in the strength of the lithosphere, with much of the margin being relatively weak but areas such as the Porcupine Basin and parts of the Rockall Basin having greater strength. Observed differences between the model Moho and seismic Moho along the continental margin can be interpreted in terms of underplating. A Moho discrepancy to the northwest of Scotland is ascribed to uplift caused by a region of upper mantle with anomalously low density, which may be associated with depletion or with a temperature anomaly.  相似文献   

12.
Summary. Available seismic refraction data from three different continental areas, northern Britain and the eastern and western United States, has been studied for possible Pn , velocity anisotropy using the methods described by Bamford. There are various deficiencies in the time—distance data used in each case but, while the uppermost mantle beneath northern Britain and the eastern United States seems to be isotropic within the limits of measurement error, there is a small but significant anisotropy beneath the western United States.
Both the amount (up to 3 per cent) and the direction (70–80° east of north) of this anisotropy are very similar to the results obtained in the Pacific Ocean off California. We tentatively conclude that this anisotropy is present as a consequence of the subduction of oceanic lithosphere beneath the western United States.  相似文献   

13.
We present the first results of a high-resolution teleseismic traveltime tomography and seismic anisotropy study of the lithosphere–asthenosphere system beneath the western Bohemian Massif. The initial high-resolution tomography down to a depth of 250 km did not image any columnar low-velocity anomaly which could be interpreted as a mantle plume anticipated beneath the Eger Rift, similar to recent findings of small plumes beneath the French Massif Central and the Eifel in Germany. Alternatively, we interpret the broad low-velocity anomaly beneath the Eger Rift by an upwelling of the lithosphere–asthenosphere transition. We also map lateral variations of seismic anisotropy of the mantle lithosphere from spatial variations of P -wave delay times and the shear wave splitting. Three major domains characterised by different orientations of seismic anisotropy correspond to the major tectonic units—Saxothuringian, Moldanubian and the Teplá-Barrandian—and their fabrics fit to those found in our previous studies of mantle anisotropy on large European scales.  相似文献   

14.
Classical models of lithosphere thinning predict deep synrift basins covered by wider and thinner post‐rift deposits. However, synextensional uplift and/or erosion of the crust are widely documented in nature (e.g. the Base Cretaceous unconformity of the NE Atlantic), and generally the post‐rift deposits dominate basins fills. Accordingly, several basin models focus on this discrepancy between observations and the classical approach. These models either involve differential thinning, where the mantle thins more than the crust thereby increasing average temperature of the lithosphere, or focus on the effect of metamorphic reactions, showing that such reactions decrease the density of lithospheric rocks. Both approaches result in less synrift subsidence and increased post‐rift subsidence. The synextensional uplift in these two approaches happens only for special cases, that is for a case of initially thin crust, specific mineral assemblage of the lithospheric mantle or extensive differential thinning of the lithosphere. Here, we analyse the effects of shear heating and tectonic underpressure on the evolution of sedimentary basins. In simple 1D models, we test the implications of various mechanisms in regard to uplift, subsidence, density variations and thermal history. Our numerical experiments show that tectonic underpressure during lithospheric thinning combined with pressure‐dependent density is a widely applicable mechanism for synextensional uplift. Mineral phase transitions in the subcrustal lithosphere amplify the effect of underpressure and may result in more than 1 km of synextensional erosion. Additional heat from shear heating, especially combined with mineral phase transitions and differential thinning of the lithosphere, greatly decreases the amount of synrift deposits.  相似文献   

15.
Summary. A series of long-range explosion seismological experiments has been conducted by the use of specially designed ocean bottom seismographs (OBSs) in the Western Pacific. OBS studies of apparent velocity measurements by the use of natural earthquakes have also been made. The experiments have made clear that large-scale P -wave anisotropy exists in the entire thickness of the oceanic lithosphere. The existence of the large-scale anisotropy in the oceanic lithosphere has been demonstrated for the first time by seismic body-wave studies. Previously, anisotropy had been found only in the uppermost oceanic mantle in the Eastern Pacific.
The azimuth of the maximum velocity, 8.6 km s-1, is about 155° clock-wise from north. The direction is perpendicular to the magnetic lineation of the region, however, the direction differs from the direction of the present plate motion by about 30°. So it appears that the anisotropy has been 'frozen' at least since the change of the plate motion that occurred 40 Myr ago. The frozen anisotropy should set important constraints on the mechanical properties of the lithosphere such as the viscosity and temperature of the lower lithosphere.  相似文献   

16.
Summary. New fault plane solutions, Landsat photographs, and seismic refraction records show that rapid extension is now taking place in the northern and eastern parts of the Aegean sea region. The southern part of the Aegean has also been deformed by normal faulting but is now relatively inactive. In northwestern Greece and Albania there is a band of thrusting near the western coasts adjacent to a band of normal faulting further east. The pre-Miocene geology of the islands in the Aegean closely resembles that of Greece and Turkey, yet seismic refraction shows that the crust is now only about 30 km thick beneath the southern part of the sea, compared with nearly 50 km beneath Greece and western Turkey. These observations suggest that the Aegean has been stretched by a factor of two since the Miocene. This stretching can account for the high heat flow. The sinking slab produced by subduction along the Hellenic Arc may maintain the motions, though the geometry and widespread nature of the normal faulting is not easily explained. The motions in northwestern Greece and Albania cannot be driven in the same way because no slab exists in the area. They may be maintained by blobs of cold mantle detaching from the lower half of the lithosphere, produced by a thermal instability when the lithosphere is thickened by thrusting. Hence generation and destruction of the lower part of the lithosphere may occur beneath deforming continental crust without the production of any oceanic crust.  相似文献   

17.
Broad-band data from South American earthquakes recorded by Californian seismic networks are analysed using a newly developed seismic wave migration method—the slowness backazimuth weighted migration (SBWM). Using the SBWM, out-of-plane seismic P -wave reflections have been observed. The reflection locations extend throughout the Earth's lower mantle, down to the core–mantle boundary (CMB) and coincide with the edges of tomographically mapped high seismic velocities. Modelling using synthetic seismograms suggests that a narrow (10–15 km) low- or high-velocity lamella with about 2 per cent velocity contrast can reproduce the observed reflected waveforms, but other explanations may exist. Considering the reflection locations and synthetic modelling, the observed out-of-plane energy is well explained by underside reflections off a sharp reflector at the base of the subducted lithosphere. We also detect weaker reflections corresponding to the tomographically mapped top of the slab, which may arise from the boundary between the Nazca plate and the overlying former basaltic oceanic crust. The joint interpretation of the waveform modelling and geodynamic considerations indicate mass flux of the former oceanic lithosphere and basaltic crust across the 660 km discontinuity, linking processes and structure at the top and bottom of the Earth's mantle, supporting the idea of whole mantle convection.  相似文献   

18.
As a baseline measurement for understanding the Himalayan–Tibetan orogen, a product of continent–continent collision between India and Eurasia, we analyse digital seismic data in order to constrain the seismic anisotropy of the Indian shield. Based on spatially sparse data that are currently available in the public domain, there is little shear-wave birefringence for SKS phases under the Indian shield, even though it is part of a fast-moving plate in the hotspot frame of reference. If most of the northern Indian mantle has little transverse anisotropy, the onset of significant anisotropy under Tibet marks the northern terminus of intact Indian lithosphere that is thrusting under the Himalayan–Tibetan orogen. Beyond this terminus, tectonic fabric such as that associated with the deforming lithospheric mantle of Eurasia must be present in the upper mantle. Along the profile from Yadong to Golmud, the only profile in Tibet where a number of shear-wave birefringence data are available, the amount of birefringence shows two marked increases, near 30° and 33°N, between which a local high in Bouguer gravity anomaly is observed. Such a correlation between patterns of shear-wave birefringence and gravity anomalies is explained by the juxtaposition of Indian lithosphere against the overlying Eurasian lithosphere: while the Eurasian lithospheric mantle appears only to the north of 30°N, the Indian lithospheric mantle extends northwards to near 33°N.  相似文献   

19.
The stratigraphic, subsidence and structural history of Orphan Basin, offshore the island of Newfoundland, Canada, is described from well data and tied to a regional seismic grid. This large (400 by 400 km) rifted basin is part of the non‐volcanic rifted margin in the northwest Atlantic Ocean, which had a long and complex rift history spanning Middle Jurassic to Aptian time. The basin is underlain by variably thinned continental crust, locally <10‐km thick. Our work highlights the complex structure, with major upper crustal faults terminating in the mid‐crust, while lower crustal reflectivity suggests ductile flow, perhaps accommodating depth‐dependent extension. We describe three major stratigraphic horizons connected to breakup and the early post‐rift. An Aptian–Albian unconformity appears to mark the end of crustal rifting in the basin, and a second, more subdued Santonian unconformity was also noted atop basement highs and along the proximal margins of the basin. Only minor thermal subsidence occurred between development of these two horizons. The main phase of post‐rift subsidence was delayed until post‐Santonian time, with rapid subsidence culminating in the development of a major flooding surface in base Tertiary time. Conventional models of rifting events predict significant basin thermal subsidence immediately following continental lithospheric breakup. In the Orphan Basin, however, this subsidence was delayed for about 25–30 Myr and requires more thinning of the mantle lithosphere than the crust. Models of the subsidence history suggest that extreme thinning of the lithospheric mantle continued well into the post‐rift period. This is consistent with edge‐driven, small‐scale convective flow in the mantle, which may thin the lithosphere from below. A hot spot may also have been present below the region in Aptian–Albian time.  相似文献   

20.
Seismic anisotropy — the state of the art: II   总被引:1,自引:0,他引:1  
Summary. The theory, causes, observations, and possible applications of seismic anisotropy in the Earth have developed considerably since the previous state of the art paper was published in 1977. The behaviour of waves in layered anisotropic media is now much better understood and the evidence for seismic anisotropy indicates that anisotropy is likely to be present throughout much of the crust and upper mantle. The top few hundred kilometres of the mantle appears to be anisotropic with the orientations aligned by the present or palaeo stress-field. The upper part of the crust is frequently anisotropic, probably due to cracks differentially aligned by the non-lithostatic stresses. The possibility of being able to monitor crack geometry by seismic techniques opens a wide range of applications in currently important activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号