首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A new modal pushover procedure is proposed for seismic assessment of asymmetric-plan buildings under bi-directional ground motions. Although the proposed procedure is a multi-mode procedure and the effects of the higher and torsional modes are considered, the simplicity of the pushover procedure is kept and the method requires only a single-run pushover analysis for each direction of excitation. The effects of the frequency content of a specific ground motion and the interaction between modes at each direction are all considered in the single-run pushover analysis. For each direction, the load pattern is derived from the combined modal story shear and torque profiles. The pushover analysis is conducted independently for each direction of motion (x and y), and then the responses due to excitation in each direction are combined using SRSS (Square Roots of Sum of Squares) combination rule. Accuracy of the proposed procedure is evaluated through two low- and medium-rise buildings with 10% two-way eccentricity under different pairs of ground motions. The results show promising accuracy for the proposed method in predicting the peak seismic responses of the sample buildings.  相似文献   

2.
An approximation approach of seismic analysis of two‐way asymmetric building systems under bi‐directional seismic ground motions is proposed. The procedures of uncoupled modal response history analysis (UMRHA) are extended to two‐way asymmetric buildings simultaneously excited by two horizontal components of ground motion. Constructing the relationships of two‐way base shears versus two‐way roof translations and base torque versus roof rotation in ADRS format for a two‐way asymmetric building, each modal pushover curve bifurcates into three curves in an inelastic state. A three‐degree‐of‐freedom (3DOF) modal stick is developed to simulate the modal pushover curve with the stated bifurcating characteristic. It requires the calculation of the synthetic earthquake and angle β. It is confirmed that the 3DOF modal stick is consistent with single‐degree‐of‐freedom modal stick in an elastic state. A two‐way asymmetric three‐story building was analyzed by UMRHA procedure incorporating the proposed 3DOF modal sticks. The analytical results are compared with those obtained from nonlinear response history analysis. It is shown that the 3DOF modal sticks are more rational and effective in dealing with the assessment of two‐way asymmetric building systems under two‐directional seismic ground motions. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
Understanding the trends in torsional effects in asymmetric-plan buildings   总被引:1,自引:1,他引:0  
This paper studied the reasons behind the four trends in torsional effects in asymmetric-plan buildings observed in the current literature. It was found that the modal eccentricities and the non-proportionality between the modal translations and the modal rotation are key to understanding these trends in torsional effects in asymmetric-plan buildings. These key points were obtained from the three-degree-of-freedom modal systems, which represent the single vibration mode of a two-way asymmetric-plan building. This paper showed that the modal eccentricities, rather than the overall structural eccentricities, are the critical parameters for deciding the trend of the unequal displacement demand on the floor diaphragm. In addition, the non-proportionality between the modal translations and the modal rotation leads to the trend that the torsional effects generally decrease when plastic deformations increase.  相似文献   

4.
The paper reviews the uncoupled modal response history analysis (UMRHA) and modal pushover analysis (MPA) procedure in the analysis of asymmetric structures. From the pushover curves in ADRS format, showing the relationships of base shear versus roof translation and base torque versus roof rotation, a bifurcating characteristic of the pushover curves of an asymmetric structure is observed. A two‐degree‐of‐freedom (2DOF) modal stick is constructed using lump mass eccentrically placed at the end of beam which is connected with the column by a rotational spring. By converting the equation of motion of a whole structure into 2DOF modal equations, all of the elastic properties in the 2DOF modal sticks can be determined accurately. A mathematical proof is carried out to demonstrate that the 2DOF modal stick is consistent with the single‐degree‐of‐freedom (SDOF) modal stick at elastic state. The bifurcating characteristic of modal pushover curves and the interaction of modal translation and rotation can be considered rationally by this 2DOF modal stick. In order to verify the effectiveness of this proposed 2DOF modal stick, a two‐storey asymmetric building structure was analysed by the UMRHA procedure incorporating this novel 2DOF modal sticks (2DMPA) and conventional SDOF modal sticks (SDMPA), respectively. The analytical results are compared with those obtained by nonlinear response history analysis (RHA). It is illustrated that the accuracy of the rotational response histories obtained by 2DMPA is much better than those obtained by SDMPA. Consequently, the estimations of translational response histories on flexible side (FS) and stiff side (SS) of the building structure are also improved. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
An innovative approximate method is presented to consider the plan asymmetry, nonlinear structural behaviour and soil-structure interaction (SSI) effects simultaneously. The proposed method so-called Flexible base 2DMPA (F2MPA) is an extension of 2 degrees of freedom modal pushover analysis (2DMPA) approach to consider foundation flexibility in seismic response analysis of plan asymmetric structures which itself were developed based on Uncoupled Modal Response History Analysis method for inelastic fixed-base asymmetric structures. In F2MPA for each mode shape using 2DMPA procedure, the elastic and inelastic properties of 2DOF modal systems corresponding to the fixed-base structure are initially derived. Then in each time step, displacements and inelastic restoring forces of the superstructure are computed from modal equations of the flexibly-supported structure. In each time step, the nonlinear secant stiffness matrix corresponding to the n-th MDOF modal equations of soil-structure system is updated using the corresponding modal 2DOF system of fixed-base structure. To update the transformed modal stiffness matrix of the SSI system, this matrix is partitioned and it is assumed that the non-linear variation of the superstructure can be estimated from the variation of modal stiffness matrix of the fixed-base structure. Accuracy of the proposed method was verified on an 8-story asymmetric-plan building under different seismic excitations. The results obtained from F2MPA method were compared with those obtained by nonlinear response history analysis of the asymmetric soil-structure system as a reference response. It was shown that the proposed approach could predict the results of the nonlinear time history analysis with a good accuracy. The main advantage of F2MPA is that this method is much less time-consuming and useful for the practical aims such as massive analysis of a nonlinear structure under different records with multiple intensity levels.  相似文献   

6.
The effects of higher modes and torsion have a significant impact on the seismic responses of asymmetric-plan tall buildings.A consecutive modal pushover(CMP) procedure is one of the pushover methods that have been developed to consider these effects.The aim of this paper is to modify the(CMP) analysis procedure to estimate the seismic demands of one-way asymmetric-plan tall buildings with dual systems.An analysis of 10-,15-and 20-story asymmetric-plan buildings is carried out,and the results from the modified consecutive modal pushover(MCMP) procedure are compared with those obtained from the modal pushover analysis(MPA) procedure and the nonlinear time history analysis(NLTHA).The MCMP estimates of the seismic demands of one-way asymmetric-plan buildings demonstrate a reasonable accuracy,compared to the results obtained from the NLTHA.Furthermore,the accuracy of the MCMP procedure in the prediction of plastic hinge rotations is better than the MPA procedure.The new pushover procedure is also more accurate than the FEMA load distribution and the MPA procedure.  相似文献   

7.
A pushover procedure with a load pattern based on the height-wise distribution of the combined modal story shear and torsional moment is proposed to estimate the seismic response of 3D asymmetric-plan building frames. Contribution of the higher modes and torsional response of asymmetric-plan buildings are incorporated into the proposed load pattern. The proposed pushover method is a single-run procedure, which enables tracing the nonlinear response of the structure during the analysis and averts the elusiveness of conducting multiple pushover analyses. The proposed method has been used to estimate the response of two moment-resisting building frames with 9 and 20 stories. The obtained results indicate the appropriate accuracy and efficiency of the proposed procedure in estimating the trend of the drift profiles of the structures resulted from nonlinear time history analyses.  相似文献   

8.
This paper aims to extend the consecutive modal pushover (CMP) procedure for estimating the seismic demands of two-way unsymmetric-plan tall buildings subjected to bi-directional seismic ground motions taking the effects of higher modes and torsion into account. Multi-stage and single-stage pushover analyses are carried out in both X and Y directions. Inelastic seismic responses obtained by multi-stage and single-stage pushover analyses for X and Y directions are combined using the SRSS combination scheme. The final seismic responses are determined by enveloping the combined results of multi-stage and single-stage pushover analyses. To evaluate the accuracy of the proposed procedure, it is applied to two-way unsymmetric-plan tall buildings which include torsionally stiff and torsionally flexible systems. The results derived from the CMP procedure are compared with those from nonlinear response history analysis (NL-RHA), as a benchmark solution. Moreover, the advantages of the proposed procedure are demonstrated by comparing the results derived from the CMP to those from pushover analysis with uniform and fundamental effective mode distributions. The proposed procedure is able to accurately predict amplification or de-amplification of the seismic displacements at the flexible and stiff edges of the two-way unsymmetric-plan tall buildings by considering the effects of higher modes and torsion. The extended CMP procedure can accurately estimate the peak inelastic responses, such as displacements and storey drifts. The CMP procedure features a higher potential in estimating plastic hinge rotations at both flexible and stiff sides of unsymmetric-plan tall buildings under bi-directional seismic excitation when compared to the uniform and fundamental effective mode force distributions.  相似文献   

9.
A simplified procedure is proposed to predict the largest peak seismic response of an asymmetric building to horizontal bi-directional ground motion, acting at an arbitrary angle of incidence. The main characteristics of the proposed procedure is as follows. (1) The properties of two independent equivalent single-degree-of-freedom models are determined according to the principal direction of the first modal response in each nonlinear stage, rather than according to the fixed axis based on the mode shape in the elastic stage; the principal direction of the first modal response in each nonlinear stage is determined based on pushover analysis results. (2) The bi-directional horizontal seismic input is simulated as identical spectra of the two horizontal components, and the contribution of each modal response is directly estimated based on the unidirectional response in the principal direction of each. (3) The drift demand at each frame is determined based on four pushover analyses considering the combination of bi-directional excitations. In the numerical example, nonlinear time-history analyses of six four-story torsionally stiff (TS) asymmetric buildings are carried out considering various directions of seismic inputs, and these results are compared with the predicted results. The results show that the proposed procedure satisfactorily predicts the largest peak response displacement at the flexible-side frame of a TS asymmetric building.  相似文献   

10.
This study investigates the effectiveness of the modal analysis using two‐degree‐of‐freedom (2DOF) modal stick to deal with the seismic analysis of one‐way asymmetric elastic systems with supplemental damping. The 2DOF modal stick possessing the non‐proportional damping property enables the modal translation and rotation to not be proportional even at elastic state. The analytical results of one‐storey and three‐storey buildings obtained by the proposed method are compared with those obtained by direct integration of the equation of motion and conventional approximate method, which neglects the off‐diagonal elements in the transformed damping matrix. It is found that the proposed simplified method, compared to conventional approximate methods, can significantly improve the accuracy of the analytical results and, at the same time, without obviously increasing computational efforts. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

11.
Analysis and comparison of the dynamic responses of three well instrumented (with accelerographs) high-rise buildings shaken during the 1984 Morgan Hill earthquake are presented. The buildings examined in the present work are (i) the Town Park Towers Apartment building, a 10-storey, concrete shear wall building; (ii) the Great Western Savings and Loan building, a 10-storey building with concrete frames and shear walls; and (iii) the Santa Clara County Office building, a 13-storey, moment-resistant steel frame building. The structures are located within 2 km of each other and, as may be confirmed by visual inspection of the recorded seismograms, experienced similar ground motions. One-dimensional and three-dimensional linear structural models are fitted to the observations using the modal minimization method' for structural identification, in order to determine optimal estimates of the parameters of the dominant modes of the buildings. The time-varying character of these parameters over the duration of the response is also investigated. Comparison of the recorded earthquake response of the structures reveals that the type of lateral-load-resisting system has an important effect on the dynamic behaviour of the structures because it controls the spacing of the characteristic modes on the frequency axis. The Santa Clara County Office building has closely spaced natural frequencies and exhibits strong torsional response and modal coupling. Its dynamic behaviour is contrasted with that of the Great Western Savings and Loan building which has well separated natural frequencies and exhibits small torsional response and no modal coupling. Strong modal coupling causes a beating-type phenomenon and makes earthquake response of structures different from that envisioned by codes.  相似文献   

12.
The work deals with the identification of modal parameters of a structure from earthquake records when the input ground motion is unknown. This may occur, for example, owing to instrumental malfunctions. The procedure is based on the assumption that at least two responses are available and consists of two main steps. In the first one, modal frequencies are estimated by searching relative minima of a function that involves the ratio of the Fourier amplitudes of the two records, while the second phase is devoted to the identification of other modal quantities (i.e. effective participation factors and modal dampings). Once the identification process has been completed, an estimate of the unknown base input may be performed by means of the IFFT algorithm. The proposed approach has been checked against both finite element simulations of simple structures and field measurements on real buildings.  相似文献   

13.
Studied in this paper is the inelastic seismic behaviour of asymmetric-plan buildings using the histories of base shear and torque. The first step in understanding this behaviour is to construct the base shear and torque surface (BST) for the building, which represents all combinations of shear and torque that applied statically lead to collapse of the structure. Several factors controlling the shape of this surface, such as strength eccentricity and bidirectional ground motion, are identified. Also, their effects on the building responses are studied considering several structural configurations. The results obtained show that the BST surface, in conjunction with the base-shear and torque histories, provides a useful conceptual framework for understanding the behaviour of asymmetric systems. Furthermore, using these surfaces, relevant aspects of the behaviour and design of such buildings become apparent even before dynamic analysis of the structure.  相似文献   

14.
朱金平  董良国 《地球物理学报》2011,54(11):2933-2942
根据WRW模型理论,从地震波传播的物理过程给出了双向照明的具体概念,基于该概念提出了计算地震波双向照明强度的基本思路(称为DUC双向照明方法).为了有效提高DUC双向照明方法的计算效率,又提出了DUC-DC双向照明方法,并将提出的上述方法与传统的双向照明计算方法从计算精度和计算效率等方面进行了对比.试验结果表明,本文提...  相似文献   

15.
To reduce floor acceleration of base‐isolated structures under earthquakes, a tuned mass damper (TMD) system installed on the roof is studied. The optimal tuning parameters of the TMD are analyzed for linear base isolation under a generalized ground motion, and the performance of the TMD is validated using a suite of recorded ground motions. The simulation shows that a TMD tuned to the second mode of a base‐isolated structure reduces roof acceleration more effectively than a TMD tuned to the first mode. The reduction ratio, defined as the maximum roof acceleration with the TMD relative to that without the TMD, is approximately 0.9 with the second‐mode TMD. The higher effectiveness of the second‐mode TMD relative to the first‐mode TMD is attributed primarily to the unique characteristics of base isolation, ie, the relatively long first‐mode period and high base damping. The modal acceleration of the second mode is close to or even higher than that of the first mode in base‐isolated structures. The larger TMD mass ratio and lower modal damping ratio of the second‐mode TMD compared to the first‐mode TMD increases its effect on modal acceleration reduction. The reduction ratio with the second‐mode TMD improves to 0.8 for bilinear base isolation. Because of the detuning effect caused by the change in the first‐mode period in bilinear isolation, the first‐mode TMD is ineffective in reducing roof acceleration. Additionally, the displacement experienced by the second‐mode TMD is considerably smaller than that of the first‐mode TMD, thereby reducing the installation space for the TMD.  相似文献   

16.
The modal pushover analysis (MPA) procedure, presently restricted to one horizontal component of ground motion, is extended to three‐dimensional analysis of buildings—symmetric or unsymmetric in plan—subjected to two horizontal components of ground motion, simultaneously. Also presented is a variant of this method, called the practical modal pushover analysis (PMPA) procedure, which estimates seismic demands directly from the earthquake response (or design) spectrum. Its accuracy in estimating seismic demands for very tall buildings is evaluated, demonstrating that for nonlinear systems this procedure is almost as accurate as the response spectrum analysis procedure is for linear systems. Thus, for practical applications, the PMPA procedure offers an attractive alternative whereby seismic demands can be estimated directly from the (elastic) design spectrum, thus avoiding the complications of selecting and scaling ground motions for nonlinear response history analysis. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
组合墙结构房屋抗震性能的振动台试验研究   总被引:1,自引:0,他引:1  
通过三个组合墙模型房屋的振动台试验,分析了组合墙结构体系房屋的动力性能和抗震能力,比较了底一层和底两层框架组合墙房屋和普通组合墙房屋的抗震性能。结果表明,八层组合墙房屋的抗震能力远远超过设计能力,可用于八度地区,底框架组合墙房屋的抗震性能优于普通组合墙房屋,底两层框架组合墙房屋也优于底一层框架组合墙房屋。  相似文献   

18.
带裙房高层建筑地震反应控制振动台试验研究   总被引:1,自引:1,他引:0  
2002年9月在香港理工大学成功地进行了带裙房高层建筑地震反应控制试验研究。设计和制作的结构模型是带3层裙房的12层高楼剪切模型,在裙房顶层与主楼之间安装单MR阻尼器形成MR阻尼器耦联结构模型。MR阻尼器采用美国LORD公司摩擦型MR阻尼器,并且选用其配套产品计算机电流控制器对其进行控制,控制系统采用德国dSPACE公司实时控制系统。对独立主楼、独立裙房和原结构模型的动力特性进行了辨识;对结构模型进行了El Centro地震动作用下的地震反应振动台试验;以作者提出的MR阻尼器半主动逻辑控制算法,对MR阻尼器耦联的结构模型进行了地震反应振动台试验。试验结果表明:用MR阻尼器耦联主楼与裙房,采用半主动逻辑控制方法进行控制,能有效抑制主楼的鞭梢效应并使主楼和裙房的地震反应减小。  相似文献   

19.
One widespread problem in damping estimation of high-rise buildings is the neglect of structural modal directions, which may induce beating in measured dynamic responses along building geometric axes and thereby induce errors in damping estimations to some extent. Based on a proposed two degrees of freedom (2-DOF) simulation model, the effects of neglecting the modal directions on damping estimate are systematically investigated. The results show that the angular differences between the modal directions and the building geometric axes, as well as the frequency difference between the involved modes, both have significant effects on the damping estimate of high-rise buildings. This paper proposes a spectral method to determine the modal directions of high-rise buildings and further validate this method by an analysis of full-scale measurements from four skyscrapers. The damping ratios estimated based on the responses along the identified modal directions are more accurate than those based on those measured along the building geometric axes. Furthermore, an empirical prediction model for damping ratio of high-rise buildings with heights over 200 m is proposed based on the field measured damping results of several buildings with consideration of the modal directions. The objective of this study is to improve the accuracy of damping estimation of high-rise buildings and therefore provide useful information for the structural design of future skyscrapers.  相似文献   

20.
Structural irregularity in new buildings is sometimes desired for aesthetic reasons. Often it is unavoidable due to different uses in adjacent spaces within the building. The seismic behaviour of irregular structures is harder to predict than that of regular buildings. More comprehensive analysis techniques are often required to achieve adequate accuracy. Designing irregular structures poses additional challenges as the structural characteristics are unknown. There is a lack of practical design methods that reliably produce economic and seismically robust design solutions for highly irregular RC structures. This paper presents an extension of the Effective Modal Design (EMD) method from asymmetric-plan RC wall buildings to vertically setback asymmetric-plan RC wall buildings. EMD is a generalization of the Direct Displacement-Based Design method for highly irregular ductile uncoupled RC wall structures. EMD reverse engineers a multi-degree of freedom Equivalent Linear System to produce the most economic design solution that achieves the target performance levels. The utility of EMD is verified for a wide range of setback asymmetric-plan reinforced concrete wall structures using nonlinear time history analysis of reasonably realistic 3D structural models. Advantages of EMD include explicit consideration of nonlinear, torsional and ‘higher mode’ effects. The method produces capacity-designed design actions for all reinforced concrete walls in the seismic structural system. EMD only requires three response spectrum type analyses. It does not require time history analysis or pushover analysis. EMD is a practical seismic design method for generally irregular RC wall buildings that uses analysis techniques that most engineering practitioners are familiar and confident with. It was found that for over 95% of the structures considered, EMD achieved critical mean peak responses between ??20 and +?15% of the target response values, with a median of ??5%. This significant improvement in design accuracy and reliability (compared to traditional force based design) was achieved at the relatively small additional computational effort of two Response Spectrum Analyses. This demonstrates the value that the proposed Effective Modal Design method adds to the current spectrum of seismic design methods for irregular ductile RC wall structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号