首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
In this paper, we study the effects of polynomial f(R) model on the stability of homogeneous energy density in self-gravitating spherical stellar object. For this purpose, we construct couple of evolution equations which relate the Weyl tensor with matter parameters. We explore different factors responsible for density inhomogeneities with non-dissipative dust, isotropic as well as anisotropic fluids and dissipative dust cloud. We find that shear, pressure, dissipative parameters and f(R) terms affect the existence of inhomogeneous energy density.  相似文献   

2.
Phenomena of bifurcation in hydrodynamic stellar models of radial pulsation are reviewed. By changing control parameters of models, we can see qualitatively different pulsation behaviors in hydrodynamic models with transitions due to various types of bifurcation.In weakly dissipative models (classical Cepheids), the bifurcation is induced by modal resonances. Two types of the modal resonances found in models are discussed: The higherharmonic resonances of the second overtone mode in the fundamental mode pulsator and of the fourth overtone mode in the first overtone pulsator are relevant to observations. The subharmonic resonance between the fundamental and first overtone modes is confirmed in classical Cepheid models.In strongly dissipative models (less-massive supergiant stars), the bifurcation of nonlinear pulsation is induced by the hydrodynamics of ionization zones as well as modal resonances. The sequence of the bifurcation sometimes leads to chaotic behaviors in nonlinear pulsation. The transition routes from regular to the chaotic pulsations found in models are discussed with respect to the theory of chaos in simple dynamical systems: The cascade of period-doubling bifurcation is confirmed to cause chaotic pulsation in W Virginis models. For models of higher luminosity, the tangent bifurcation is found to lead intermittent chaos.Finally, hydrodynamic models for chaotic pulsation with small amplitudes observed in the post-AGB stars are briefly discussed.  相似文献   

3.
We investigate the behaviour of dissipative accreting matter close to a black hole, as this provides important observational features of galactic and extragalactic black hole candidates. We find a complete set of global solutions in the presence of viscosity and synchrotron cooling. We show that advective accretion flow can have a standing shock wave and the dynamics of the shock is controlled by the dissipation parameters (both viscosity and cooling). We study the effective region of the parameter space for standing as well as oscillating shock. We find that the shock front always moves towards the black hole as the dissipation parameters are increased. However, viscosity and cooling have opposite effects in deciding the solution topologies. We obtain two critical cooling parameters that separate the nature of the accretion solution.  相似文献   

4.
The theory of dissipative structures, applied to star formation systems, provides a conceptual framework for the study of the behaviour and evolution of these systems. As shown by an analysis of a model star formation process system, prolonged stationary star formation in localized areas and repetitive bursting star formation events can be understood as different behavioural modes of galactic dissipative structures. Young stellar associations with theirHII regions and molecular clouds are manifestations of the ordered distribution of matter participating in the star formation processes. A self-organization with the appearance of ordered structures is, in general, to be expected in nonequilibrium systems in which nonlinear processes occur. However, lacking a thermodynamic theory that can be applied to self-gravitating systems, the behaviour of star-forming regions can only be studied by model calculations simulating the process system within the region.  相似文献   

5.
We show the evolution of the Szekeres's cosmological models of class II with dissipative fluids and we study under which conditions these tend to the homogeneous and isotropic models.  相似文献   

6.
We present a new model of dissipative energy fluid without appearance of horizon. The interior matter fluid is shear-free isotropic spherically symmetric and undergoing radial heat flow. The interior metric is matched with Vaidya exterior metric over the boundary. The model obeyed all the relevant physical and thermodynamic conditions. In this model, the collapse begins at infinite past with both infinite mass and radius and contracts to a point as time tends to zero without forming an event horizon.  相似文献   

7.
The recent discovery of the large honeycomb structure of the Universe has triggered many models of the Universe dominated by dark matter. The neutrino-dominated universe is a favorable model for explaining the size of the large-scale structure and the dark matter of the larger scale than the galactic one. Our calculations on the evolution of density perturbations in a two-component universe composed of neutrinos and dissipative gas on a spherically-symmetric model have shown that the galactic scale does correlate the scale of a void of galaxies: if a neutrino has the mass of some tens eV, galaxies of the typical size form surrounding a typical void.Paper presented at the IAU Third Asian-Pacific Regional Meeting, held in Kyoto, Japan, between 30 September–6 October, 1984.  相似文献   

8.
In this paper we consider dissipative effects by viscous friction of differentially rotating visco-polytropic models that are further distorted by a toroidal magnetic field. In particular, we study numerically rotating visco-magnetopolytropes by implementing the so-called complex-plane iterative technique (CIT), developed by the first author and used in the recent past for computing rotating models of polytropes and white dwarfs. We emphasize on dissipative effects and discuss some interesting scenarios concerning coupling of a magnetic star with its environment.  相似文献   

9.
I present an analytic model for non‐linear clustering of the luminous (baryonic) material in a universe in which the gravitational field is dominated by dark matter. The model is based on a two-component generalization of the adhesion approximation in which the gravitational potential of the dark component is determined by the standard Zel'dovich approximation or one of its variants, or by an N ‐body simulation. The baryonic matter flow is dissipative and is driven by this dark matter gravitational potential. The velocity potential of the matter is described by a generalization of the Burgers equation: the random heat equation ('RH equation') with a spatially correlated Gaussian driving potential.
The properties of the RH equation are well understood: it is closely related to the equation for the Anderson model and to Brownian motion in a random potential: the solution can be expressed in terms of path integrals. Using this it is possible to derive the scaling properties of the solution and, in particular, those of the resultant velocity field. Even though the flow is non‐linear, the velocity field remains Gaussian and inherits its scaling properties from the gravitational potential. This provides an underlying dynamical reason why the density field in the baryonic component is lognormally distributed and manifests multifractal scaling.
By explicitly putting dark and luminous matter on different footings, the model provides an improved framework for considering the growth of large‐scale cosmic structure. It provides a solution for the velocity potential of the baryonic component in closed form (albeit a path integral) from which the statistical properties of the baryonic flow can be derived.  相似文献   

10.
11.
The dynamics of a slowly rotating charged viscous-fluid Universe coupled with a zero-mass scalar field is investigated; and the rotational perturbations of such models are studied in order to substantiate the possibility that the Universe is endowed with slow rotation, in the course of presentation of several new analytic solutions. The effects of charged field and scalar field on the rotational motion are discussed. Except for perfect dragging, the scalar field as well as the charged field is found to have a damping effect on the rotation of matter. Rotating models which are expanding as well are obtained, in which cases the rotational velocities are found to decay with the time, and these models may be taken as good examples of real astrophysical situations. The periods of physical validity of different models are also obtained.  相似文献   

12.
The large-scale matter distribution in three different simulations of CDM models is investigated and compared with corresponding results of the Zel'dovich theory of non-linear gravitational instability. We show that the basic characteristics of wall-like structure elements are well described by this theory, and that they can be expressed by the cosmological parameters and a few spectral moments of the perturbation spectrum. Therefore the characteristics of such elements provide reasonable estimates of these parameters. We show that the compressed matter is relaxed and gravitationally confined and manifests itself in the existence of walls as (quasi-)stationary structure elements with a lifetime restricted by their disruption into high-density clouds.
The matter distribution is investigated in both real and redshift spaces. In both cases almost the same particles form the walls, and we estimate differences in corresponding wall characteristics. The same methods are applied to several mock catalogues of 'galaxies', which allows us to characterize a large-scale bias between the spatial distribution of dark matter and of simulated 'galaxies'.  相似文献   

13.
Patrick Cassen  Ann Moosman 《Icarus》1981,48(3):353-376
An analysis is presented of the hydrodynamic aspects of the growth of protostellar disks from the accretion (or collapse) of a rotating gas cloud. The size, mass, and radiative properties of protostellar disks are determined by the distribution of mass and angular momentum in the clouds from which they are formed, as well as from the dissipative processes within the disks themselves. The angular momentum of the infalling cloud is redistributed by the action of turbulent viscosity on a shear layer near the surface of the disk (downstream of the accretion shock) and on the radial shear across cylindrical surfaces parallel to the rotation axis. The fraction of gas that is fed into a central core (protostar) during accretion depends on the ratio of the rate of viscous diffusion of angular momentum to the accretion rate; rapid viscous diffusion (or a low accretion rate) promotes a large core-to-disk mass ratio. The continuum radiation spectrum of a highly viscous disk is similar to that of a steady-state accretion disk without mass addition. It is possible to construct models of the primitive solar nebula as an accretion disk, formed by the collapse of a slowly rotating protostellar cloud, and containing the minimum mass required to account for the planets. Other models with more massive disks are also possible.  相似文献   

14.
This paper is part of a series based on a modified Jordan tensor-scalar theory of gravitation. Given the current importance of research on vacuum phenomena in cosmic evolution, we examine several standard cosmological models with a scalar field and a physical vacuum, including models that have a dominant scalar field with the vacuum energy taken into account in various conformal representations of the Jordan theory, as well as models in which ordinary matter that obeys the conventional equations of state is present. Some noteworthy results are obtained which are, to a certain extent, consistent with currently available observational data.  相似文献   

15.
Investigations are made on slowly rotating radiating Universes coupled with a scalar field in the spherically symmetric Einstein formalism, and some new interesting solutions are obtained. Their physical and geometrical properties are studied from various angles. The rotational perturbations of such models are examined in order to substantiate the possibility that the universe is endowed with some rotation. The nature and role of the metric rotation as well as that of the rotation of matter are studied, and the effects of radiation and scalar fields on them are discussed. The models here turn out to be rotating as well as expanding ones, which may be taken as good examples of real astrophysical objects in this universe. The periods of the physical validity and the restrictions on the radii of the models for real astrophysical situations are obtained and discussed. The models obtained here are theoretically satisfactory and therefore there is a possibility that there may be less known objects in this universe which may be represented by our model Universes obtained here and many unknown properties of this universe may be explored and unfolded in the study of these models.  相似文献   

16.
In this work a new family of relativistic models of electrically charged compact star has been obtained by solving Einstein–Maxwell field equations with preferred form of one of the metric potentials and a suitable form of electric charge distribution function. The resulting equation of state (EOS) has been calculated. The relativistic stellar structure for matter distribution obtained in this work may reasonably models an electrically charged compact star whose energy density associated with the electric fields is on the same order of magnitude as the energy density of fluid matter itself (e.g. electrically charged bare strange stars). Based on the analytic model developed in the present work, the values of the relevant physical quantities have been calculated by assuming the estimated masses and radii of some well known strange star candidates like X-ray pulsar Her X-1, millisecond X-ray pulsar SAX J 1808.4-3658, and 4U 1820-30.  相似文献   

17.
In this paper, we investigate static cylindrically symmetric solution in metric f(R) gravity by taking matter in the form of dust. The assumption of constant Ricci scalar curvature is taken to find the solution. The energy distribution of this solution is explored by applying Landau-Lifshitz energy-momentum complex. In addition, we explore the stability as well as constant scalar curvature conditions for some viable f(R) models along with their energy distribution. It is interesting to mention here that these models satisfy the above mentioned conditions.  相似文献   

18.
An energy analysis is performed on two explicit models, due to Jackson, of a pulsar with aligned magnetic and rotational axes. The unknown parameters of these models are determined by calculating the minimum total energy states of the models. It is found that the minimum energy analysis favors states with extended, dynamically active magnetospheres with a high degrees of corotation. By calculating total power input to the magnetosphere via collisions in the stellar crust, and the total power radiated due to azimuthal drift motion, it is determined that the minimum energy states are the only states where a power balance can be achieved. Consideration of a local power balance condition and dissipative flows in the magnetosphere shows that neither model is completely self-consistent, but one is considerably better than the other. Properties of both models and implications for other models are discussed.  相似文献   

19.
We model a compact relativistic body with anisotropic pressures in the presence of an electric field. The equation of state is barotropic, with a linear relationship between the radial pressure and the energy density. Simple exact models of the Einstein–Maxwell equations are generated. A graphical analysis indicates that the matter and electromagnetic variables are well behaved. In particular, the proper charge density is regular for certain parameter values at the stellar center unlike earlier anisotropic models in the presence of charge. We show that the electric field affects the mass of stellar objects and the observed mass for a particular binary pulsar is regained. Our models contain previous results of anisotropic charged matter with a linear equation of state for special parameter values.  相似文献   

20.
This paper presents a set of solutions of coupled Einstein-Maxwell equations with matter for the Levi-Civita's metric which can be interpreted as electromagnetic mass models which are extensions of the electromagnetic mass models obtained previously. It may be pointed out that electromagnetic mass models are solutions of coupled Einstein-Maxwell equations with matter where all the characteristics of matter vanish when the charge vanishes. Existence of such solution tends to confirm Lorentz's conjecture that the mass of an electron may be of purely electromagnetic origin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号