首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using γ-ray data (α γ , F γ ) detected by Fermi Large Area Telescope (LAT) and black hole mass which has been compiled from literatures for 116 Fermi blazars, we calculated intrinsic γ-ray luminosity, intrinsic bolometric luminosity, intrinsic Eddington ratio and studied the relationships between all above parameters and redshift, between α γ and L γ . Furthermore, we obtained the histograms of key parameters. Our results are the following: (1) The main reason for the evolutionary sequence of three subclasses (HBLs, LBLs, FSRQs) may be Eddington ratio rather than black hole mass; (2) FSRQs occupy in the earlier, high-luminosity, high Eddington ratio, violent phase of the galactic evolution sequence, while BL Lac objects occur in the low luminosity, low Eddington ratio, late phase of the galactic evolution sequence; (3) These results imply that the evolutionary track of Fermi blazars is FSRQs ? LBLs ? HBLs.  相似文献   

2.
We explore the relationship between black hole mass (MBH) and the motion of the jet components for a sample of blazars. The Very Long Baseline Array (VLBA) 2cm Survey and its continuation: Monitoring of Jets in active galactic nuclei (AGNs) with VLBA Experiments (MOJAVE) have observed 278 radio-loud AGNs, of which 146 blazars have reliable measurements of their apparent velocities of the jet components. We calculate the minimal Lorentz factors for these sources from their measured apparent velocities, and their black hole masses ate estimated with their broad-line widths. A sig-nificant intrinsic correlation is found between black hole masses and the minimal Lorentz factors of the jet components. The Eddington ratio is only weakly correlated with the min-imal Lorentz factor, which may imply that the Blandford-Znajek (BZ) mechanism may dominate over the Blandford-Payne (BP) mechanism for the jet acceleration (at least) in blazars.  相似文献   

3.
耀变体(Blazars)的亮温度与黑洞喷流能量和吸积率有重要关系.搜集了53个耀变体源样本,包括22个蝎虎天体(BL Lacs)和31个平谱射电类星体(Flat Spectrum Radio Quasars,FSRQs),研究了耀变体亮温度与黑洞喷流能量的分布,并对子类中亮温度与黑洞喷流能量的相关性进行了讨论.研究结果...  相似文献   

4.
In this work, we explore a sample of 362 flat-spectrum radio quasars (FSRQs) to investigate the jet formation. We find that the fundamental plane for our FSRQs can be expressed as $L_{\rm 5~GHz}\propto M_{\rm bh}^{-0.19}L_{\rm 2~keV}^{1.08}$ . We also find that the 5?GHz luminosities are tightly related to both black hole mass and Eddington ratio, which is established as $L_{\rm 5~GHz}\propto M_{\rm bh}^{0.67}(L_{\rm bol}/ L_{\rm EDD})^{1.32}$ .  相似文献   

5.
The multi-wavelength quasi-simultaneous data of 55 Fermi blazars are fitted by using the conical jet model, and the physical properties of blazar jets are also investigated. Through the X2-minimization fitting procedure, the best-fit parameters of the conical jet model are obtained. Combined with the other parameters we collected, a statistical analysis is performed. The results of statistical analysis are summarized as follows: (1) The jet power obtained by the spectral energy distribution (SED) fitting is larger than the jet power calculated by using the extended radio luminosity; (2) There is no correlation between the Doppler factor 5 and the magnetic field strength B; (3) There is a correlation between the jet power and the accretion disk luminosity, and the Blandford-Znajek (BZ) mechanism can well explain the energy source of BL Lac jets rather than Flat Spectrum Radio Quasars (FSRQs); (4) The jet power is significantly correlated with the black hole mass.  相似文献   

6.
In this paper, we collect the redshift, bolometric luminosity, the full- width at half maximum of the Hβ emission line, the monochromatic luminosity at 5100 Å and the radio loudness for the sample of 117 quasars, including 20 radio-quiet quasars (RQQs) and 97 radio-loud quasars (RLQs). With the reverberation mapping method we calculate the black hole mass and Eddington ratio for this sample, as well as the radio luminosity from the total 5 GHz ?ux density. By analyzing the correlations among them, we obtain the following conclusions: (1) The black hole mass has weak correlations with the bolometric luminosity, radio loudness and radio luminosity for the RQQs, and has strong correlations with the bolometric luminosity, radio loudness and radio luminosity for the RLQs; (2) For the RQQs, the bolometric luminosity has weak correlations with the radio luminosity and 5 100 Å monochromatic luminosity, and for the RLQs, the bolometric luminosity has strong correlations with the radio luminosity and 5 100 Å monochromatic luminosity; (3) The RQQs and RLQs differ in the distributions of the black hole mass, emission line width and Eddington ratio. Based on these results, we suggest: the difference of emission line width between RQQs and RLQs is probably caused by the difference of black hole mass; the fundamental difference between RQQs and RLQs is caused by the difference of their intrinsic physical nature; the black hole mass, black hole spin, Eddington ratio, and host galaxy morphology are the important parameters to explain the origin of radio loudness and the double-peaked distribution; and the radio jet is closely related with the accretion rate of disk.  相似文献   

7.
8.
We analyse the observed distribution of Eddington ratios  ( L / L Edd)  as a function of supermassive black hole mass for a large sample of nearby galaxies drawn from the Sloan Digital Sky Survey. We demonstrate that there are two distinct regimes of black hole growth in nearby galaxies. The first is associated with galaxies with significant star formation [   M */star formation rate (SFR) ∼  a Hubble time] in their central kiloparsec regions, and is characterized by a broad lognormal distribution of accretion rates peaked at a few per cent of the Eddington limit. In this regime, the Eddington ratio distribution is independent of the mass of the black hole and shows little dependence on the central stellar population of the galaxy. The second regime is associated with galaxies with old central stellar populations (   M */SFR ≫  a Hubble time), and is characterized by a power-law distribution function of Eddington ratios. In this regime, the time-averaged mass accretion rate on to black holes is proportional to the mass of stars in the galaxy bulge, with a constant of proportionality that depends on the mean stellar age of the stars. This result is once again independent of black hole mass. We show that both the slope of the power law and the decrease in the accretion rate on to black holes in old galaxies are consistent with population synthesis model predictions of the decline in stellar mass loss rates as a function of mean stellar age. Our results lead to a very simple picture of black hole growth in the local Universe. If the supply of cold gas in a galaxy bulge is plentiful, the black hole regulates its own growth at a rate that does not further depend on the properties of the interstellar medium. Once the gas runs out, black hole growth is regulated by the rate at which evolved stars lose their mass.  相似文献   

9.
We analyse the scaling of the X-ray power density spectra with the mass of the black hole in the examples of Cyg X-1 and the Seyfert 1 galaxy NGC 5548. We show that the high-frequency tail of the power density spectrum can be successfully used for the determination of the black hole mass. We determine the masses of the black holes in six broad-line Seyfert 1 galaxies, five narrow-line Seyfert 1 galaxies and two quasi-stellar objects (QSOs) using the available power density spectra. The proposed scaling is clearly appropriate for other Seyfert galaxies and QSOs. In all but one of the normal Seyferts, the resulting luminosity to Eddington luminosity ratio is smaller than 0.15, with the source MCG -6-15-30 being an exception. The applicability of the same scaling to a narrow-line Seyfert 1 is less clear and there may be a systematic shift between the power spectra of NLS1 and S1 galaxies of the same mass, leading to underestimation of the black hole mass. However, both the method based on variability and the method based on spectral fitting show that those galaxies have relatively low masses and a high luminosity to Eddington luminosity ratio, supporting the view of those objects as analogues of galactic sources in their high, soft or very high state, based on the overall spectral shape. The bulge masses of their host galaxies are similar to that of normal Seyfert galaxies, so they do not follow the black hole mass–bulge mass relation for Seyfert galaxies, being evolutionarily less advanced, as suggested by Mathur. The bulge mass–black hole mass relation in our sample is consistent with being linear, with the black hole to bulge ratio ∼0.03 per cent, similar to Wandel and Laor for low-mass objects, but significantly shifted from the relation of Magorrian et al. and McLure & Dunlop.  相似文献   

10.
We study core-dominance parameter R and polarization for blazars detected by Fermi LAT. Our results are as follows. (i) The blazars detected by Fermi LAT have higher average R and polarizations than those not detected by Fermi LAT. (ii) Compared with BL Lacs, flat-spectrum radio quasars (FSRQs) have lower average R and the ratio of beamed luminosity to the unbeamed luminosity f. (iii) In the diagram of polarization-Doppler factor relations, FSRQs may have p=α+3 and BL Lacs for p=α+2. These results suggest that the high optical polarization is correlated to the beaming effect. High polarization and core-dominance parameters are significantly more common among the LAT sources. The difference in polarization and core-dominance parameters between FSRQs and BL Lacs are due to the difference in their beaming effects and jet model.  相似文献   

11.
Data from the Fermi Gamma-ray Burst Monitor satellite observatory suggested that the recently discovered gravitational wave source, a pair of two coalescing black holes, was related to a gamma-ray burst. The observed high-energy electromagnetic radiation (above 50 keV) originated from a weak transient source and lasted for about 1 s. Its localization is consistent with the direction to GW150914. We speculate about the possible scenario for the formation of a gamma-ray burst accompanied by the gravitational-wave signal. Our model invokes a tight binary system consisting of a massive star and a black hole which leads to the triggering of a collapse of the star’s nucleus, the formation of a second black hole, and finally to the binary black hole merger. For the most-likely configuration of the binary spin vectors with respect to the orbital angular momentum in the GW150914 event, the recoil speed (kick velocity) acquired by the final black hole through gravitational wave emission is of the order of a few hundred km/s and this might be sufficient to get it closer to the envelope of surrounding material and capture a small fraction of matter from the remnant of the host star. The gamma-ray burst is produced by the accretion of this remnant matter onto the final black hole. The moderate spin of the final black hole suggests that the gamma-ray burst jet is powered by weak neutrino emission rather than the Blandford–Znajek mechanism, and hence explains the low power available for the observed GRB signal.  相似文献   

12.
We study the structure and evolution of 'quasi-stars', accreting black holes embedded within massive hydrostatic gaseous envelopes. These configurations may model the early growth of supermassive black hole seeds. The accretion rate on to the black hole adjusts so that the luminosity carried by the convective envelope equals the Eddington limit for the total mass,   M *+ M BH≈ M *  . This greatly exceeds the Eddington limit for the black hole mass alone, leading to rapid growth of the black hole. We use analytic models and numerical stellar structure calculations to study the structure and evolution of quasi-stars. We show that the photospheric temperature of the envelope scales as   T ph∝ M −2/5BH M 7/20*  , and decreases with time while the black hole mass increases. Once   T ph < 104 K  , the photospheric opacity drops precipitously and T ph hits a limiting value, analogous to the Hayashi track for red giants and protostars, below which no hydrostatic solution for the convective envelope exists. For metal-free (Population III) opacities, this limiting temperature is approximately 4000 K. After a quasi-star reaches this limiting temperature, it is rapidly dispersed by radiation pressure. We find that black hole seeds with masses between 103 and  104 M  could form via this mechanism in less than a few Myr.  相似文献   

13.
The Eddington ratio λ was derived for the entire maser host AGN sample, based on the intrinsic X-ray luminosity, the X-ray bolometric correction C X and the mass of central black hole. Further the [O III] bolometric correction C [O III] was estimated for our sample. Possible relations were also investigated between the maser luminosity and the bolometric luminosity – the Eddington ratio.  相似文献   

14.
We present the first results from a major HST WFPC2 imaging study aimed at providing the first statistically meaningful comparison of the morphologies, luminosities, scalelengths and colours of the host galaxies of radio-quiet quasars, radio-loud quasars and radio galaxies. We describe the design of this study and present the images that have been obtained for the first half of our 33-source sample. We find that the hosts of all three classes of luminous AGN are massive elliptical galaxies, with scalelengths ≃10 kpc, and R − K colours consistent with mature stellar populations. Most importantly, this is first unambiguous evidence that, just like radio-loud quasars, essentially all radio-quiet quasars brighter than M R =−24 reside in massive ellipticals. This result removes the possibility that radio 'loudness' is directly linked to host galaxy morphology, but is however in excellent accord with the black hole/spheroid mass correlation recently highlighted by Magorrian et al. We apply the relations given by Magorrian et al. to infer the expected Eddington luminosity of the putative black hole at the centre of each of the spheroidal host galaxies we have uncovered. Comparison with the actual nuclear R -band luminosities suggests that the black holes in most of these galaxies are radiating at a few per cent of the Eddington luminosity; the brightest host galaxies in our low- z sample are capable of hosting quasars with M R ≃− 28, comparable to the most luminous quasars at z ≃3. Finally, we discuss our host-derived black hole masses in the context of the radio luminosity:black hole mass correlation recently uncovered for nearby galaxies by Franceschini et al., and consider the resulting implications for the physical origin of radio loudness.  相似文献   

15.
In this paper, we have used optical intra-day variability archive data to calculate the central black hole masses and Eddington luminosities for nine blazars: 3C 66A, AO 0235+164, S5 0716+714, PKS 0735+178, OJ 287, 1215+303, 1216−010, 1308+326, PKS 1510−089, Mrk 501 and BL Lac using intra-day variability timescales and periodicity (if present). The calculated central black hole mass of these nine blazars using intra-day variability timescales are found to be in the range of 1.22-25.30 × 107 M and corresponding Eddington luminosity in the range of 1.58-32.88 × 1045 erg s−1. The black hole mass and Eddington luminosity are in the range of 0.32-31.23 × 108 M and 1.23-31.20 × 1046 erg s−1, respectively when optical Doppler factor is taken into account. The comparison show, our estimated values of black hole mass are consistent with earlier reported values. Periodicity were present in two blazars OJ 287 and 1216−010 which give the central black hole mass of these blazars in the range of 1.32-14.6 × 107 M and corresponding Eddington luminosity in the range of 1.60-19.0 × 1045 erg s−1, respectively.  相似文献   

16.
We have collected short-timescale variability data of 47 blazars, estimated the masses of their central black holes and the sizes of their radiation regions at different wavebands, and made a statistical analysis on the calculated results. It is found that the central black hole mass of blazars falls in the range 107M to 1010M, and that the BL Lac objects and the flat-spectrum radio quasars have very different central black hole masses (the latter being generally greater), while they have very similar sizes of radiation regions in the infrared and γ-ray wavebands. Also, using the collected bolometric luminosity data, we have analyzed the relationship between the bolometric luminosity of blazars and their short-timescale variability, and it is concluded that the radiations from the radio-selected BL Lac objects (RBLs) and flat-spectrum radio quasars (FSRQs) are strongly beam-confined, while the effect of relativistic beaming is relatively small for the X-ray-selected BL Lac objects (XBLs).  相似文献   

17.
The X-ray spectral and timing properties of ultraluminous X-ray sources (ULXs) have many similarities with the very high state of stellar-mass black holes (power-law dominated, at accretion rates greater than the Eddington rate). On the other hand, their cool disk components, large characteristic inner-disk radii and low characteristic timescales have been interpreted as evidence of black hole masses ~1000 M (intermediate-mass black holes). Here we re-examine the physical interpretation of the cool disk model, in the context of accretion states of stellar-mass black holes. In particular, XTE J1550–564 can be considered the missing link between ULXs and stellar-mass black holes, because it exhibits a high-accretion-rate, low-disk-temperature state (ultraluminous branch). On the ultraluminous branch, the accretion rate is positively correlated with the disk truncation radius and the bolometric disk luminosity, while it is anti-correlated with the peak temperature and the frequency of quasi-periodic-oscillations. Two prototypical ULXs (NGC?1313 X-1 and X-2) also seem to move along that branch. We use a phenomenological model to show how the different range of spectral and timing parameters found in the two classes of accreting black holes depends on both their masses and accretion rates. We suggest that ULXs are consistent with black hole masses ~50–100 M , moderately inefficiently accreting at ≈20 times Eddington.  相似文献   

18.
We present a numerical simulation of the bulk Lorentz factor of a relativistic electron–positron jet driven by the Compton rocket effect from accretion disc radiation. The plasma is assumed to have a power-law distribution n e(γ) ∝ γ− s with 1 < γ < γmax and is continuously reheated to compensate for radiation losses. We include the full Klein–Nishina (hereafter KN) cross-section, and study the role of the energy upper cut-off γmax, spectral index s and source compactness. We determine the terminal bulk Lorentz factor in the cases of supermassive black holes, relevant to AGN, and stellar black holes, relevant to galactic microquasars. In the latter case, Klein–Nishina cross-section effects are more important and induce a terminal bulk Lorentz factor smaller than in the former case. Our result are in good agreement with bulk Lorentz factors observed in Galactic (GRS 1915+105, GRO J1655−40) and extragalactic sources. Differences in scattered radiation and acceleration mechanism efficiency in the AGN environment can be responsible for the variety of relativistic motion in those objects. We also take into account the influence of the size of the accretion disc; if the external radius is small enough, the bulk Lorentz factor can be as high as 60.  相似文献   

19.
The redshift, central black hole mass and accretion rate are important parameters when studying the AGN evolution. The central black hole masses for 172 quasars and Seyfert galaxies are calculated in this paper using the reverberation mapping method. The distributions of central black hole masses, redshifts and the Eddington accretion rates are analyzed, to verify the transition from the quasar to the Seyfert galaxy in the course of evolution.  相似文献   

20.
On the basis of Kang et al.’s semi-analytical model of galaxy formation and evolution, the joint formation and evolution of galaxies and their central massive black holes are studied. It is assumed that the activity of quasars is caused by merging of galaxies. Via the introduction of the mass accretion rate of black holes, the bolometric luminosity function of quasars with the redshifts in the region of 0 < z < 4.5 is ascertained. With the respective limitations of the three factors, i.e., the Eddington ratio, black-hole mass function and two-point correlation function, the luminosity function predicted by the model may coincide with observations in the entire range of luminosity. This result reveals that the constant Eddington ratio cannot well describe the accretion of black holes, so the Eddington ratio has to be increased with the redshift in a certain range of redshift. The major merging of galaxies is the effective mechanism of triggering the quasar activity, while the minor merging can merely affect the quasars with low and intermediate luminosities. Its effect on the high-luminosity quasars is very small. At the place of z=1, the quasars with extremely high luminosities possess more intense properties of clustering than other quasars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号