首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
China is highly susceptible to flood disasters and subjected to great damage every year. Furthermore, the flood frequency has exhibited an increasing trend in recent years. Most flood events, including flash floods and river flood, are induced by rainfall. This study investigates annual variations of rainfall occurrence over China during the period from 2000 to 2015 at the national and regional scale using daily rainfall data from the Tropical Rainfall Measuring Mission. The Mann-Kendall test is performed for trend detection, and statistical data of flood damage published by China’s government, including destroyed crop area, damaged buildings, direct economic loss, percentage of GDP (gross domestic product), and death toll are correlatively analysed with rainfall occurrences. The results show that storm rain events show the greatest variation among three rainfall types (moderate rain, heavy rain and storm rain). The variation coefficients of rainfall over Northeast China, North China, and Northwest China are the highest, whereas that for Southwest China is the smallest. Moderate rain, heavy rain over Central China, and moderate rain over Southwest China exhibits decreasing trends, whereas the remaining exhibit increasing trends. The correlation between the rainfall occurrences and these flood damage indices at the national scale shows that only direct economic loss has a strong positive correlation with rainfall occurrences, and the other indices have weaker correlations. The correlation is strong in three north regions, except for death toll in Northwest China. In contrast, the correlation between flood damage and rainfall is weak in East China, Central China, Southwest China, and South China. Overall, death toll is strongly correlated with the number of damaged buildings, implying that flood fatalities in China are likely associated with building collapse, and are dominated by specific extreme events. This study can provide a scientific reference for flood management in China.  相似文献   

2.
In recent years, flash flood disasters have occurred frequently in southwest China due to the increased frequency of extreme climate events. To solve this problem, great efforts have been made in studying the process of flash flood. However, little attention was paid on bearing body of hazard, the clusters of buildings. Thus the real disaster mechanism of flash flood remains unclear.Accordingly, based on the experiments of artificial flash floods in a conceptual solid model, this paper focuses on the flood-impacted inundation characteristics of the building clusters at different locations of the gully model, in order to obtain a better understanding of the disaster process and the interaction between the flash floods and building clusters. The results showed that, in a typical smallscale flash flood gully with hot and dry climate, 1)clusters of buildings on an alluvial fan could reduce about 35% of the flooding area by blocking the diffusion of the flood to the depression areas, and could also promote the deposition in lower reaches of the river channel by blocking the overbank flow from going back into the channel, making the width-depth ratio of the channel larger. 2) The flash flood rates of disaster and hazard on the alluvial fan are generally higher than that of the inner gully. For the inner gully,buildings located on the beaches along the lower river and the transitional areas of the straight channel and channel bends can easily be affected because of their lower elevations. For the alluvial fan, buildings nearby the meanders suffer the greatest impacts because of bank collapsing and flooding. 3) The safe vertical distance from a building to the river channel is 13 m for the buildings in the inner gully under extreme floods. Below this threshold, the smaller the vertical distance is, the greater the risk exposure is. For the buildings on the alluvial fan, especially for the buildings near the concave bank of the top rush point,the horizontal distance is more important, and the safe value is 80 m under extreme floods.  相似文献   

3.
One of the most vulnerable parts to natural hazards in Serbia is Kolubara river basin. In the past, during the period from 1929 to 2013, 121 torrential flood events in the Kolubara river basin were recorded which show that this territory is extremely vulnerable to the torrential floods. The extreme event which occurred in May 2014 causing the catastrophic material damages and casualties was the latest and historical flood. The analysis of natural conditions in the Kolubara basin uniformly showed that this area is predisposed to a greater number of torrential floods due to its geomorphological, hydrological and land use properties. Torrential floods are closely related to the intensity and spatial distribution of erosive processes in the upper part of the Kolubara basin. The estimation of soil erosion potential is generally achieved by Erosion Potential Model (EPM). For the purposes of determining the degree of torrential properties in various water streams in the Kolubara basin, the calculation of susceptibility to torrential floods was assessed by Flash Flood Potential Index (FFPI). More than half of the basin area (57.2%) is located within the category of very weak and weak erosion (Zsr = 0.35), but the category of medium erosion is geospatially very common. Such a distribution of medium erosion category provides conditions for generating, i.e. production of sediment which would boost torrential properties of water streams. After the classification of the obtained FFPI values it was determined that 25% of the Kolubara basin is very susceptible to torrents and this data should be seriously taken into consideration. Based on the analyses, the best and most successful manner of defence is prevention which consists of the integrated river basin management system (integrated torrent control system) so that technical works in hydrographic networks of torrents and biological and biotechnical works on the slope of the basin would be the best solution. Permanent control of erosive and torrential processes in the river basin will be not only important for flood control but it can also protect the existing and future water reservoirs and retentions from siltation with erosion sediment which is of great significance to the water management, agriculture, energy sector, and the entire society.  相似文献   

4.
Natural dams are formed when landslides are triggered by heavy rainfall during extreme weather events in the mountainous areas of Taiwan.During landslide debris movement, two processes occur simultaneously: the movement of landslide debris from a slope onto the riverbed and the erosion of the debris under the action of high-velocity river flow. When the rate of landslide deposition in a river channel is higher than the rate of landslide debris erosion by the river flow, the landslide forms a natural dam by blocking the river channel. In this study, the effects of the rates of river flow erosion and landslide deposition(termed the erosive capacity and depositional capacity, respectively) on the formation of natural dams are quantified using a physics-based approach and are tested using a scaled physical model.We define a dimensionless velocity index vde as the ratio between the depositional capacity of landslide debris(vd) and the erosive capacity of water flow(ve).The experimental test results show that a landslidedam forms when landslide debris moves at high velocity into a river channel where the river-flow velocity is low, that is, the dimensionless velocity index vde 54. Landslide debris will not have sufficient depositional capacity to block stream flow when the dimensionless velocity index vde 47. The depositional capacity of a landslide can be determined from the slope angle and the friction of the sliding surface, while the erosive capacity of a dam can be determined using river flow velocity and rainfall conditions. The methodology described in this paper was applied to seven landslide dams that formed in Taiwan on 8 August 2009 during Typhoon Morakot,the Tangjiashan landslide dam case, and the YingxiuWolong highway K24 landslide case. The dimensionless velocity index presented in this paper can be used before a rainstorm event occurs to determine if the formation of a landslide dam is possible.  相似文献   

5.
山洪灾害是中国高频发、高死亡率的自然灾害之一。水雨情站网的合理布设及优化,有利于捕获区域暴雨、洪水情势变化的时空异质性,可显著提高中小流域山洪预警的精度,增强山洪灾害防御能力。本文以山洪灾害高发的福建省顺昌县为例,提出了面向山洪预警的水雨情站网布设方法。县内现状雨量和水位站网监测密度分别为37 km2/站和76 km2/站,主要分布在平原主干河流地区,山洪灾害重点防治区内站网布设不足,小流域暴雨山洪监测和预警能力较弱。针对上述问题,综合分析流域降雨时空特征、历史山洪灾害与山洪灾害预警预报需求,对研究区水雨情站网进行了合理性分析和布设研究,建议增设雨量站3座、水位站3座,其中一座水位站同时监测降雨过程,调整后县内雨量站和水位站的监测密度达到34 km2/站和68 km2/站。本文研究对山洪灾害高发区的水雨情站网布设具有参考和指导意义。  相似文献   

6.
基于2004~2021年GRACE/GRACE-FO重力卫星数据反演黄河流域陆地水储量时空变化,并构建干旱指数模型和洪水因子模型,对黄河流域的极端气候现象进行分析研究。结果表明,2004~2021年黄河流域的陆地水储量以0.56 cm/a的速度减少,具有明显的季节周期性特征,在夏季和秋季呈盈余状态,春季和冬季呈亏损状态;干旱指数模型监测到期间黄河流域发生极度干旱事件22次、重度干旱事件37次,干旱事件范围涵盖整个黄河流域;洪水因子模型探测到黄河流域共发生洪水事件118次,多出现在夏季和秋季雨水较为丰沛的时候,期间黄河流域陆地水储量能力较弱,降雨量增大。利用GRACE/GRACE-FO重力卫星数据构建的干旱指数模型和洪水因子模型探测的气象结果与实际观测结果较为符合,能真实反映黄河流域发生的极端气候,可为极端气候研究提供有利工具。  相似文献   

7.
Mountain catchments are prone to flash flooding due to heavy rainfall. Enhanced understanding of the generation and evolution processes of flash floods is essential for effective flood risk management. However, traditional distributed hydrological models based on kinematic and diffusion wave approximations ignore certain physical mechanisms of flash floods and thus bear excessive uncertainty. Here a hydrodynamic model is presented for flash floods based on the full two-dimensional shallow water equations incorporating rainfall and infiltration. Laboratory experiments of overland flows were modelled to illustrate the capability of the model. Then the model was applied to resolve two observed flash floods of distinct magnitudes in the Lengkou catchment in Shanxi Province, China. The present model is shown to be able to reproduce the flood flows fairly well compared to the observed data. The spatial distribution of rainfall is shown to be crucial for the modelling of flash floods. Sensitivity analyses of the model parameters reveal that the stage and discharge hydrographs are more sensitive to the Manning roughness and initial water content in the catchment than to the Green-Ampt head. Most notably, as the flash flood augments due to heavier rainfall, the modelling results agree with observed data better, which clearly characterizes the paramount role of rainfall in dictating the floods. From practical perspectives, the proposed model is more appropriate for modelling large flash floods.  相似文献   

8.
滑坡是形成堰塞坝的最主要原因,在地震、降雨、冰雪融水等作用下均可形成滑坡堰塞坝,而滑坡堰塞坝的堆积形态、范围等对评价堰塞坝的稳定性有着重要的影响。通过离散元方法(DEM),系统分析了三维条件下滑动距离、滑面出口宽度、滑面倾角、河床倾角、河谷形状对堰塞坝堆积形态的影响。研究结果表明:滑动距离和出口宽度对坝体高度影响最大;随出口宽度和坡面倾角的增加,坝长和坝宽分别呈线性增大和减小趋势;滑动距离可以有效控制滑体速度,进而影响堆积角大小;河床倾角主要影响坝长;对坝高、坝长、上下游绝对倾角正切值和堆积角正切值进行回归分析表明,数学模型契合程度高,说明其形态可以预测;引入2个参数λ和χ,对堰塞坝堆积特征进行了描述;河谷形状的影响主要体现在随着河谷底部宽度的增大,滑体爬高爬坡能力增强。研究成果对根据实际地形预测滑坡堰塞坝堆积形态进而评估坝体的安全性具有重要意义,可以为进一步开展堰塞湖溃决研究提供一定的参考。   相似文献   

9.
Alternation of high and low resistance sedimentary beds,active tectonics,large rivers,and slope erosion in valleys consequently resulted in landslide in dammed lakes within the Zagros range.This study presents the results in the analysis of geological and topographic data,satellite imageries,morphotectonics and hydrodynamics of drainage networks about the landslide dammed lakes.There are four landslides in central Zagros(Zagros FoldThrust Belt,ZFTB)which have formed five dammed lakes named,Seymareh,Jaidar,Shur,Shimbar,and Godar.According to the results,damming landslides occurred in the active-tectonic regions on the slopes of anticlines and in valleys with undercutting effects of rivers on their slopes consisting of alternations of loose and resistant beds.The studied landslide dams in narrow valleys are formed as a result of blocking river by sliding debris slopes and rock slides.This study also indicates the formation of Jaidar and Godar in one stage and the presence of Lake Terrace sequence in Seymareh,Shur and Shimbar lakes.The observed sequences of terrace formation in these lakes are caused by four Seymareh Landslides followed by the three-stage excavation of Shur andShimbar lakes.  相似文献   

10.
滑坡堰塞坝是由斜坡失稳堵塞河道而形成的天然坝体,且易溃坝诱发洪水,对沿岸群众生命财产构成巨大的威胁。为提升主动减灾防灾能力,急需构建了一种快速预测与判断滑坡堵江成坝能力的方法。通过文献资料查阅,结合遥感技术,提取了70处典型滑坡的地貌特征参数,其中50处为堵江成坝滑坡。运用K-S检验和M-W U检验方法分析了滑坡地貌特征因子的敏感性,利用Boruta算法确定了因子重要度,筛选了滑坡体积、面积、高差、长度及河宽共5个地貌特征参数。基于此,利用Bayes判别法与逻辑回归方法,分别建立了滑坡堰塞坝形成的预测模型,准确率超过90%。选取高重要度且差异显著的因子,利用比值法建立了滑坡堵江成坝阈值判据,实现了滑坡堰塞坝形成的快速判定。统计不同诱因下滑坡地貌特征,对比V-Wr经验公式,确定了滑坡堰塞坝形成与诱因间的关系,为进一步构建不同诱因下滑坡堰塞坝形成预测模型提供了技术支撑。   相似文献   

11.
黄冈市是湖北省汛期地质灾害频发区之一, 地质灾害类型以滑坡为主, 其中75%为降雨型滑坡。通过统计分析黄冈市近10年滑坡与降雨的相关关系, 在考虑黄冈市地质灾害易发性分区基础上, 研究黄冈市降雨型滑坡的降雨阈值, 利用逻辑回归模型建立滑坡发生的概率预测模型, 再针对不同等级易发区提出对应的气象预警判据。最后以历史降雨及其滑坡事件检验预警判据的合理性与可信度。结果表明, 所建立的气象预警判据在时间尺度上由以往依托气象部门的中长期预警精细到了24 h的短临预警, 在空间尺度上确定了不同等级易发区的降雨型滑坡气象预警判据。预警准确率大幅提升, 显著提高了黄冈市降雨型滑坡气象预警精度, 可为临灾转移提供精细化的技术指导, 有效降低降雨型滑坡灾害带来的生命财产损失。   相似文献   

12.
Flashfloodsaretheimportanteventsofthehydrologicalregimeofriversinaridareas.IntheTarilncaver(Fig.1),northwesternChina,flashfledarebeingmonitored.TheobSerVeddataandinvestigationdemonstratethedifferenceintime,place,frequencyandintensityoftheiroccurrences.Therearethreet~offlagescommontotheThermcaverbasin.AlmOSteveryyea-rhighwateroccursinmonthesofJuly,AugUstandseptembercausedbyablationrunoff.However,themostdamagingflowSarefromoccasionalflashfindsbyinstenserainstormandglacierlakeoutburstflags(…  相似文献   

13.
This paper presents a paleoflood study to determine the flood frequency of the Changjiang River, based on core cj0702, taken from the Changjiang River subaqueous delta. We identified flood deposits by means of high-resolution grain-size variation, sensitive population, geochemical indexes and magnetic susceptibility. The core covers a time span of 120 years by 210 Pb dating and was sampled at 1–2 cm intervals. Grain size, geochemical elements, and physical parameters were analyzed. The results indicate that the sediment of the core is mainly composed of silt and clay, as well as groups of interbedded silt, clay silt, and clay. Vertically, the grain size pattern was controlled by seasonal variations in water discharge and by the sediment input in winter from the abandoned Huanghe River delta. River flooding caused extreme values in all our measured parameters. We identified more than 20 flood events that occurred since 1887 using the physical parameter analysis method. The environmentally sensitive component of sediment grain size(14.32–96.39 μm) contribution30%, Zr/Rb ratio1.5, and magnetic susceptibility16 were selected as the criteria for flood identification generally. We also found that floods that had taken place in the upstream, midstream, or downstream parts of the river were clearly identified by these indexes while the large-scale floods that covered the whole drainage area did not leave clear indications in the sediment record. This study for identification of flood events is of great significance for understanding hyperpycnal current sedimentation as well as for forecasting of floods.  相似文献   

14.
针对现有暴雨型洪涝灾害预警方法时效性差的问题,提出了一种接入实时降雨数据的暴雨型洪涝灾害临灾预警方法。根据时序分析模型由历史降雨数据和实时降雨数据分析识别异常降雨,并将异常降雨、地形起伏、高程和河网因素作为影响因子,构建暴雨型洪涝灾害风险指数,以"日"为时间尺度进行短时暴雨型洪涝灾害风险分析。从异常降雨致灾角度出发,根据降雨的异常程度将暴雨型洪涝灾害风险等级划分为无风险、低风险、中风险、中高风险和高风险5个等级,进而实现临灾预警,为防灾减灾提供一定的参考信息。以广东省清远市2014年5月的洪涝灾害为例,接入5月21日至5月26日期间逐日降雨量数据,实现了临灾风险分析。实验结果表明,六日内清远市阳山县中下区域发生暴雨洪涝灾害的风险较大,与实际灾情相吻合,达到了较好的预警效果。  相似文献   

15.
Wudu County in northwestern China frequently experiences large-scale landslide events.High-magnitude earthquakes and heavy rainfall events are the major triggering factors in the region.The aim of this research is to compare and combine landslide susceptibility assessments of rainfalltriggered and earthquake-triggered landslide events in the study area using Geographical Information System(GIS) and a logistic regression model.Two separate susceptibility maps were produced using inventories reflecting single landslide-triggering events,i.e.,earthquakes and heavy rain storms.Two groups of landslides were utilized: one group containing all landslides triggered by extreme rainfall events between 1995 and 2003 and the other group containing slope failures caused by the 2008 Wenchuan earthquake.Subsequently,the individual maps were combined to illustrate the locations of maximum landslide probability.The use of the resulting three landslide susceptibility maps for landslide forecasting,spatial planning and for developing emergency response actions are discussed.The combined susceptibility map illustrates the total landslide susceptibility in the study area.  相似文献   

16.
基于洪峰模数的山洪灾害雨量预警指标研究   总被引:1,自引:0,他引:1  
山洪灾害预警是防御山洪的重要非工程措施,雨量预警指标是山洪灾害预警的关键。目前的雨量预警指标计算方法对水文气象资料条件以及模型建模率定都有很高的要求,并不适用于基层防汛人员。因此,本文基于全国山洪灾害调查评价成果数据,提出了一种运用洪峰模数计算雨量预警指标的简便、易用的方法。该方法以小流域洪水计算推理公式为基础,将公式中流量与流域面积的比值用洪峰模数表示,得到基于洪峰模数的临界雨量估算公式,并考虑流域土壤含水量等因素,分析临界雨量变化阈值,最终得到雨量预警指标。本文以云南省绥江县双河小流域为例,计算结果显示不同时段(1 h、3 h、6 h)净雨量和预警时段呈线性关系。降雨损失计算中洼地蓄水和植被截留在不同时段相同,土壤下渗在不同的时段不相同。在此基础上,计算不同土壤含水量条件下,不同时段的雨量预警指标。最后,对临界流量、降雨损失和预警指标进行了合理性分析,结果显示预警指标和调查评价结果及实测降雨都比较接近,计算的预警指标合理。本研究为基层山洪灾害预警提供了一种快速、便捷的预警指标计算方法,为预警指标计算提供技术支持。  相似文献   

17.
极端降水极易引发山洪和城市内涝等水灾害,给生态环境安全、社会经济发展、人民生命财产安全等带来极大损失,认识其(尤其是短历时)空间分布差异对洪涝灾害防治等具有重要意义。本文利用60 min、6 h和24 h共3种历时的年最大降雨量的统计特征参数,生成服从皮尔逊-Ⅲ型分布的长序列样本,并选用信息熵指标研究其随机性及空间分布差异。结果显示:各历时年最大降雨量的随机性均呈现由东南向西北逐渐减小的空间格局,但不同历时降水随机性的空间分布存在差异,主要体现在青藏高原东部、海河流域和淮河流域3个区域。此外,所求年最大降雨量信息熵值主要考虑了其取值的相对离散情况,故该信息熵值与整个序列绝对离散程度(即标准差)的关系不明显,而主要由序列均值处峰值高低的峰度系数决定,二者呈现明显的负相关关系;且由于峰度系数和变差系数的良好相关性也导致了变差系数与信息熵值之间呈现出良好关系。季风、台风、局地天气系统和人类活动等因素综合影响,决定了不同历时极端降水的空间分布格局及其差异。信息熵指标可以很好地反映中国各历时年最大降雨量随机性的空间分布格局,因而结果可为洪涝灾害防治、农业规划布局、生态环境规划保护等提供科学依据。  相似文献   

18.
本文通过钱塘江深切谷的论述对末次冰期深切谷的恢复主要依据下列证据进行:(1)谷底为侵蚀不整合面,为末次冰期海平面下降,河流侵蚀切割所致;(2)谷内为异常厚的河流沉积物所充填,是冰后期海平面上升时形成,其中河漫滩沉积年代约14000~7500a以前;(3)深切谷之上被海相地层覆盖。超浅层生物气田分布在深切谷内,当今河流及全新世晚期河口湾与末次冰期深切谷既有区别又有继承性,其流域是浅层生物气藏分布的有利地段。  相似文献   

19.
基于遥感(RS)和地理信息系统(GIS)技术,采用多层次分析(AHP)法,以北京密云水库上游部分库区为研究对象,根据库区实际情况,选取植被覆盖率、土壤类型、坡度、高程、降雨量、土地利用六种影响滑坡灾害发生的因素作为评价因子,对区域滑坡风险进行分析。同时,在ArcGIS的空间分析环境中运行权重叠加,将研究区域划分成无危险区、低危险区、中危险区、高危险区和极危险区。结果表明,研究区域内大部分地区比较稳定,最易发生滑坡的区域主要集中在密云水库东北部的河谷、山谷地带,呈零星状分布。  相似文献   

20.
Climate change has altered locally single-type disasters to large-scale compound disasters because of increasing intensity and frequency of extreme rainfall events. The compound disasters can combine small-scale floods, debris flows, shallow landslides, deep-seated landslides, and landslide lakes into a large-scale single disaster event. Although simulation models and evaluation tools are available for single-type disasters, no single model is well developed for compound disasters due to the difficulty of handling the interrelationship between two successive single-type disasters. This study proposes a structure for linking available single-type simulation models to evaluate compound disasters and provides a useful tool of decision making for warning and planning of disaster reduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号