首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Methane is key to sustaining Titan's thick nitrogen atmosphere. However, methane is destroyed and converted to heavier hydrocarbons irreversibly on a relatively short timescale of approximately 10-100 million years. Without the warming provided by CH4-generated hydrocarbon hazes in the stratosphere and the pressure induced opacity in the infrared, particularly by CH4-N2 and H2-N2 collisions in the troposphere, the atmosphere could be gradually reduced to as low as tens of millibar pressure. An understanding of the source-sink cycle of methane is thus crucial to the evolutionary history of Titan and its atmosphere. In this paper we propose that a complex photochemical-meteorological-hydrogeochemical cycle of methane operates on Titan. We further suggest that although photochemistry leads to the loss of methane from the atmosphere, conversion to a global ocean of ethane is unlikely. The behavior of methane in the troposphere and the surface, as measured by the Cassini-Huygens gas chromatograph mass spectrometer, together with evidence of cryovolcanism reported by the Cassini visual and infrared mapping spectrometer, represents a “methalogical” cycle on Titan, somewhat akin to the hydrological cycle on Earth. In the absence of net loss to the interior, it would represent a closed cycle. However, a source is still needed to replenish the methane lost to photolysis. A hydrogeochemical source deep in the interior of Titan holds promise. It is well known that in serpentinization, hydration of ultramafic silicates in terrestrial oceans produces H2(aq), whose reaction with carbon grains or carbon dioxide in the crustal pores produces methane gas. Appropriate geological, thermal, and pressure conditions could have existed in and below Titan's purported water-ammonia ocean for “low-temperature” serpentinization to occur in Titan's accretionary heating phase. On the other hand, impacts could trigger the process at high temperatures. In either instance, storage of methane as a stable clathrate-hydrate in Titan's interior for later release to the atmosphere is quite plausible. There is also some likelihood that the production of methane on Titan by serpentinization is a gradual and continuous on-going process.  相似文献   

2.
Our understanding of Titan, Saturn's largest satellite, has recently been consid-erably enhanced, thanks to the Cassini-Huygens mission. Since the Saturn Orbit Injection in July 2004, the probe has been harvesting new insights of the Kronian system. In par-ticular, this mission orchestrated a climax on January 14, 2005 with the descent of the Huygens probe into Titan's thick atmosphere. The orbiter and the lander have provided us with picturesque views of extraterrestrial landscapes, new in composition but reassuringly Earth-like in shape. Thus, Saturn's largest satellite displays chains of mountains, fields of dark and damp dunes, lakes and possibly geologic activity. As on Earth, landscapes on Titan are eroded and modeled by some alien hydrology: dendritic systems, hydrocarbon lakes, and methane clouds imply periods of heavy rainfalls, even though rain was never observed directly. Titan's surface also proved to be geologically active - today or in the recent past - given the small number of impact craters listed to date, as well as a few possible cryovolcanic features. We attempt hereafter a synthesis of the most significant results of the Cassini-Huygens endeavor, with emphasis on the surface.  相似文献   

3.
The processes of dissociation and dissociative ionization of molecular nitrogen by solar UV radiation and by the accompanying flux of photoelectrons, as well as sputtering of the atmosphere by fluxes of magnetospheric ions and pick-up ions, are the main sources of translationally excited (hot, or suprathermal) nitrogen atoms and molecules in Titan's upper atmosphere. Since Titan does not possess an intrinsic magnetic field, ions from Saturn's magnetosphere can penetrate into the outer layers of Titan's atmosphere and sputter atoms and molecules from the atmosphere in momentum-transfer and charge exchange collisions. Atmospheric sputtering by corotating nitrogen ions and carbon-containing pick-up ions, as well as photodissociation-related losses, was considered previously by Lammer and Bauer (1993) and Shematovich et al. (2001, 2003). In this paper we investigate the processes of the formation and evolution of the fraction of suprathermal nitrogen atoms and molecules in the transition region of Titan's upper atmosphere using the previously developed Monte Carlo model for hot satellite and planetary coronas (Shematovich, 1999, 2004). It is established that the suprathermal nitrogen fraction in the transition region of Titan's upper atmosphere includes nitrogen atoms and molecules but the suprathermal nitrogen concentration is relatively small owing to high rates of escape from the atmosphere and to the efficient thermalization of suprathermal nitrogen at the altitudes of the relatively dense lower thermosphere. However, the scale height for suprathermal nitrogen in the transition region is much higher than that for the ambient atmospheric gas. Therefore, suprathermal nitrogen becomes one of the dominant components in the outer exosphere.  相似文献   

4.
We have acquired resolved images of Titan with the adaptive optics systems PUEO/KIR at the CFHT (Hawaii) and NAOS/CONICA at the VLT (Chile). We report here on images and maps (when data at several orbital phases are available) of Titan's surface from observations taken during the last 4 years (2001-2004) in all the methane windows between 1 and 2.5 μm (namely, at 1.08, 1.28, 1.6, and 2 μm). We present the only complete maps of Titan currently available at 1.3 μm, a spectral window where Titan appears particularly bright in spectroscopy, with a resolution of about 200 km at best on the ground. Our surface maps show the bright and dark regions sharing Titan's landscape with as much detail as possible from the ground and with high contrast in most cases. From the information gathered by comparing the maps at different wavelengths we derive constraints on the ground's composition. Our results could complete/optimize the return of the Cassini-Huygens mission.  相似文献   

5.
The deposition of energy, escape of atomic and molecular nitrogen and heating of the upper atmosphere of Titan are studied using a Direct Simulation Monte Carlo method. It is found that the globally averaged flux of deflected magnetospheric atomic nitrogen ions and molecular pickup ions deposit more energy in Titan's upper atmosphere than solar radiation. The energy deposition in this region determines the atmospheric loss and the production of the nitrogen neutral torus. The temperature structure near the exobase is also calculated. It is found that, due to the inclusion of the molecular pickup ions more energy is deposited closer to the exobase than assumed in earlier plasma ion heating calculations. Although the temperature at the exobase is only a few degrees larger than it is at depth, the density above the exobase is enhanced by the incident plasma.  相似文献   

6.
We use Titan's geometric albedo to constrain the vertical distribution of the haze. Microphysical models incorporating fractal aggregates do not readily fit the methane features at 0.62 μm band and the dark 0.88 μm of the albedo spectrum simultaneously. We take advantage of this apparent discrepancy to constrain the haze vertical profile.We used the geometric albedo and several results and constraints from other works to better constrain the vertical haze extinction profile, especially in the low stratosphere. The objective of this model is to give a solution that simultaneously fits the main constraints known to apply to the haze.We find that the haze extinction increases with decreasing altitude with a scale height about equal to the atmospheric scale height down to 100 km. Below this altitude, extinction must decrease down to 30 km. This is necessary in order to have enough haze to sustain a relatively high albedo (0.076) in the dark 0.88 μm methane band and to show the 0.62 μm band in the haze continuum. We set the haze production rate around 7×10−14 kgm−2 s−1, and the aerosols production altitude around 400 km (or at pressure 1.5 Pa).The physical processes which generate such a profile are not clear. However, purely one-dimensional effects such as condensation, sedimentation, and rainout can be ruled out, and we believe that this relative clearing in Titan's troposphere and lower stratosphere is due to particle horizontal transport by the mean circulation.  相似文献   

7.
Titan, Saturn's largest moon, has a thick nitrogen/methane atmosphere. The temperature and pressure conditions in Titan's atmosphere are such that the methane vapor should condense near the tropopause to form clouds. Several ground-based measurements have observed sparse cloud-like features in Titan's atmosphere, while the Cassini mission to Saturn has provided large scale images of the clouds. However, Titan's cloud formation conditions remain poorly constrained. Heterogeneous nucleation (from the vapor phase onto a solid or liquid aerosol surface) greatly enhances cloud formation relative to homogeneous nucleation. In order to elucidate the cloud formation mechanism near the tropopause, we have performed laboratory measurements of the adsorption of methane and ethane onto solid organic particles (tholins) representative of Titan's photochemical haze. We find that monolayers of methane adsorb onto tholin particles at saturation ratios less than unity. We also find that solid methane nucleates onto the adsorbed methane at a saturation ratio of S=1.07±0.008. This implies that Titan's methane clouds should form easily. This is consistent with recent measurements of the column of methane ruling out excessive methane supersaturation. In addition, we find ethane adsorbs onto tholin particles in a metastable phase prior to nucleation. However, ethane nucleation onto the adsorbed ethane occurs at a relatively high saturation ratio of S=1.36±0.08. These findings are consistent with the recent report of polar ethane clouds in Titan's lower stratosphere.  相似文献   

8.
Although methane is the dominant absorber in Titan's reflection spectrum, the amount of methane in the atmosphere has only been determined to an order of magnitude. We analyzed spectra from the Space Telescope Imaging Spectrograph, looking at both a bright surface region (700-km radius) and a dark surface region. The difference between the spectra of the two regions is attributed to light that has scattered off the surface, and therefore made a round-trip through all of Titan's methane. Considering only absorption, the shape of the difference spectrum provides an upper limit on methane abundance of 3.5 km-am. Modeling the multiple scattering in the atmosphere further constrains the methane abundance to 2.63±0.17 km-am. In the absence of supersaturation and with a simplified methane vertical profile, this corresponds to a surface methane-mole fraction near 3.8% and a relative humidity of 0.32. With supersaturation near the tropopause, the surface methane mole fraction could be as low as 3%.  相似文献   

9.
Titan's bulk density along with Solar System formation models indicates considerable water as well as silicates as its major constituents. This satellite's dense atmosphere of nitrogen with methane is unique. Deposits or even oceans of organic compounds have been suggested to exist on Titan's solid surface due to UV-induced photochemistry in the atmosphere. Thus, the composition of the surface is a major piece of evidence needed to determine Titan's history. However, studies of the surface are hindered by the thick, absorbing, hazy and in some places cloudy atmosphere. Ground-based telescope investigations of the integral disk of Titan attempted to observe the surface albedo in spectral windows between methane absorptions by calculating and removing the haze effects. Their results were reported to be consistent with water ice on the surface that is contaminated with a small amount of dark material, perhaps organic material like tholin. We analyze here the recent Cassini Mission's visual and infrared mapping spectrometer (VIMS) observations that resolve regions on Titan. VIMS is able to see surface features and shows that there are spectral and therefore likely compositional units. By several methods, spectral albedo estimates within methane absorption windows between 0.75 and 5 μm were obtained for different surface units using VIMS image cubes from the Cassini-Huygens Titan Ta encounter. Of the spots studied, there appears to be two compositional classes present that are associated with the lower albedo and the higher albedo materials, with some variety among the brighter regions. These were compared with spectra of several different candidate materials. Our results show that the spectrum of water ice contaminated with a darker material matches the reflectance of the lower albedo Titan regions if the spectral slope from 2.71 to 2.79 μm in the poorly understood 2.8-μm methane window is ignored. The spectra for brighter regions are not matched by the spectrum of water ice or unoxidized tholin, in pure form or in mixtures with sufficient ice or tholin present to allow the water ice or tholin spectral features to be discerned. We find that the 2.8-μm methane absorption window is complex and seems to consist of two weak subwindows at 2.7 and 2.8 μm that have unknown opacities. A ratio image at these two wavelengths reveals an anomalous region on Titan that has a reflectance unlike any material so far identified, but it is unclear how much the reflectances in these two subwindows pertain to the surface.  相似文献   

10.
The early evolution of Titan's atmosphere is expected to produce enrichment in the heavy isotopomers of CO, 13CO and C18O, relative to 12C16O. However, the original isotopic signatures may be altered by photochemical reactions. This paper explains why there is no isotopic enrichment in C in Titan's atmosphere, despite significant enrichment of heavy H, N, and O isotopes. We show that there is a rapid exchange of C atoms between the CH4 and CO reservoirs, mediated by the reaction 1CH2+*CO→1*CH2+CO, where *C is 13C. Based on recent laboratory measurements, we estimate the rate coefficient for this reaction to be 3.2×10−12 cm3 s−1 at the temperature appropriate for the upper atmosphere of Titan. We investigate the isotopic dilution of CO using the Caltech/JPL one-dimensional photochemical model of Titan. Our model suggests that the time constant for isotopic exchange through the above reaction is about 800 Myr, which is significantly shorter than the age of Titan, and therefore any original isotopic enhancement of 13C in CO may have been diluted by the exchange process. In addition, a plausible model for the evolution history of CO on Titan after the initial escape is proposed.  相似文献   

11.
Erika L. Barth  Owen B. Toon 《Icarus》2006,182(1):230-250
Theoretical arguments point to and recent observations confirm the existence of clouds in Titan's atmosphere, yet we possess very little data on their particle size, composition and formation mechanism. A time-dependent microphysical model is used to study the evolution of ice clouds in Titan's atmosphere. The model simulates nucleation, condensational growth, evaporation, coagulation, and transport of particles in a column of atmosphere. A variety of cloud compositions are studied, including pure ethane clouds, pure methane clouds, and mixed methane-ethane clouds (all with tholin cores). The abundance of methane cloud particles may be limited by the number of ethane coated tholin nuclei rather than the number of tholins with hydrocarbon coatings. However, even the condensation of methane onto these relatively sparse ethane/tholin cloud particles is sufficient to keep the methane close to saturation. Typical methane supersaturations are of order 0.06 on the average. For simulations which take into account recent lab measurements indicating it is relatively easy for methane to nucleate onto tholin particles without an ethane-layer present, the three types of clouds (methane, ethane, and mixed) exist simultaneously. Pure methane clouds are the most abundant cloud type and serve to lower the supersaturation to about 0.04. Cloud production does not require a continuous surface source of methane. However, clouds produced by mean motions are not the visible methane clouds seen in recent Cassini and ground-based observations. Ethane clouds in the troposphere almost instantaneously nucleate methane to form mixed clouds. However, a thin ethane ‘haze’ remains just above the tropopause for some scenarios and the mixed clouds at the tropopause remain ?50% ethane by mass. Also, evaporation of methane from the mixed cloud particles near the surface leaves a thicker layer of ethane cloud particles at ∼10 km. Nevertheless, the precipitation rate of methane to Titan's surface is between 0.001 and 0.5 cm/terrestrial-year, depending on various initial conditions such as critical saturation, size and abundance of cloud condensation nuclei, surface sources and eddy diffusion.  相似文献   

12.
The Huygens descent through Titan's atmosphere in January 2005 will provide invaluable information about Titan's atmospheric composition and aerosol properties. The Descent Imager/Spectral Radiometer (DISR) will perform upward and downward looking radiation observations at various spectral ranges and spatial resolutions. To prepare the DISR data interpretation we have developed a new model for radiation transfer in Titan's atmosphere. The model solves for the full three-dimensional polarized radiation field in spherical geometry. However, the atmosphere itself is assumed to be spherically symmetric. The model is initialized with a fast-to-compute plane–parallel solution based on the doubling and adding algorithm that incorporates a spherical correction for the incoming direct solar beam. The full three-dimensional problem is then solved using the characteristics method combined with the Picard iterative approximation as described in Rozanov et al. (J. Quant. Spectrosc. Radiat. Transfer 69 (2001) 491). Aerosol scattering properties are calculated with a new microphysical model. In this formulation, aerosols are assumed to be fractal aggregates and include methane gas absorption embedded into the extinction coefficient. The resulting radiance of the model atmosphere's internal field is presented for two prescribed DISR wavelengths.  相似文献   

13.
14.
Discovery by Cassini's plasma instrument of heavy positive and negative ions within Titan's upper atmosphere and ionosphere has advanced our understanding of ion neutral chemistry within Titan's upper atmosphere, primarily composed of molecular nitrogen, with ~2.5% methane. The external energy flux transforms Titan's upper atmosphere and ionosphere into a medium rich in complex hydrocarbons, nitriles and haze particles extending from the surface to 1200 km altitudes. The energy sources are solar UV, solar X-rays, Saturn's magnetospheric ions and electrons, solar wind and shocked magnetosheath ions and electrons, galactic cosmic rays (GCR) and the ablation of incident meteoritic dust from Enceladus’ E-ring and interplanetary medium. Here it is proposed that the heavy atmospheric ions detected in situ by Cassini for heights >950 km, are the likely seed particles for aerosols detected by the Huygens probe for altitudes <100 km. These seed particles may be in the form of polycyclic aromatic hydrocarbons (PAH) containing both carbon and hydrogen atoms CnHx. There could also be hollow shells of carbon atoms, such as C60, called fullerenes which contain no hydrogen. The fullerenes may compose a significant fraction of the seed particles with PAHs contributing the rest. As shown by Cassini, the upper atmosphere is bombarded by magnetospheric plasma composed of protons, H2+ and water group ions. The latter provide keV oxygen, hydroxyl and water ions to Titan's upper atmosphere and can become trapped within the fullerene molecules and ions. Pickup keV N2+, N+ and CH4+ can also be implanted inside of fullerenes. Attachment of oxygen ions to PAH molecules is uncertain, but following thermalization O+ can interact with abundant CH4 contributing to the CO and CO2 observed in Titan's atmosphere. If an exogenic keV O+ ion is implanted into the haze particles, it could become free oxygen within those aerosols that eventually fall onto Titan's surface. The process of freeing oxygen within aerosols could be driven by cosmic ray interactions with aerosols at all heights. This process could drive pre-biotic chemistry within the descending aerosols. Cosmic ray interactions with grains at the surface, including water frost depositing on grains from cryovolcanism, would further add to abundance of trapped free oxygen. Pre-biotic chemistry could arise within surface microcosms of the composite organic-ice grains, in part driven by free oxygen in the presence of organics and any heat sources, thereby raising the astrobiological potential for microscopic equivalents of Darwin's “warm ponds” on Titan.  相似文献   

15.
Nair H  Allen M  Anbar AD  Yung YL  Clancy RT 《Icarus》1994,111(1):124-150
The factors governing the amounts of CO, O2, and O3 in the martian atmosphere are investigated using a minimally constrained, one-dimensional photochemical model. We find that the incorporation of temperature-dependent CO2 absorption cross sections leads to an enhancement in the water photolysis rate, increasing the abundance of OH radicals to the point where the model CO abundance is smaller than observed. Good agreement between models and observations of CO, O2, O3, and the escape flux of atomic hydrogen can be achieved, using only gas-phase chemistry, by varying the recommended rate constants for the reactions CO + OH and OH + HO2 within their specified uncertainties. Similar revisions have been suggested to resolve discrepancies between models and observations of the terrestrial mesosphere. The oxygen escape flux plays a key role in the oxygen budget on Mars; as inferred from the observed atomic hydrogen escape, it is much larger than recent calculations of the exospheric escape rate for oxygen. Weathering of the surface may account for the imbalance. Quantification of the escape rates of oxygen and hydrogen from Mars is a worthwhile objective for an upcoming martian upper atmospheric mission. We also consider the possibility that HOx radicals may be catalytically destroyed on dust grains suspended in the atmosphere. Good agreement with the observed CO mixing ratio can be achieved via this mechanism, but the resulting ozone column is much higher than the observed quantity. We feel that there is no need at this time to invoke heterogeneous processes to reconcile models and observations.  相似文献   

16.
17.
We describe optical spectroscopic observations of the icy dwarf planet Eris with the 6.5-m MMT telescope and the Red Channel Spectrograph. We report a correlation, that is at the edge of statistical significance, between blue shift and albedo at maximum absorption for five methane ice bands. We interpret the correlation as an increasing dilution of methane ice with another ice component, probably nitrogen, with increasing depth into the surface. We suggest a mechanism to explain the apparent increase in nitrogen with depth. Specifically, if we are seeing Eris 50 degrees from pole-on [Brown, M.E., Schaller, L., 2008. Science 316, 1585], the pole we are seeing now at aphelion was in winter darkness at perihelion. Near perihelion, sublimation could have built up atmospheric pressure on the sunlit (summer) hemisphere sufficient to drive winds toward the dark (winter) hemisphere, where the winds would condense. Because nitrogen is more volatile and scarcer than methane, it sublimated from the sunlit hemisphere relatively early in the season, so the early summer atmosphere was nitrogen rich, and so was the ice deposited on the winter pole. Later in the season, much of the nitrogen was exhausted from the summer pole, but there was plenty of methane, which continued to sublimate. At this point, the atmosphere was more depleted in nitrogen, as was the ice freezing out on top of the earlier deposited nitrogen rich ice. Our increasing nitrogen abundance with depth apparently contradicts the Licandro et al. [Licandro, J., Grundy, W.M., Pinilla-Alonso, N., Leisy, P., 2006. Astron. Astrophys. 458, L5-L8] result of a decreasing nitrogen abundance with depth. A comparison of observational, data reduction, and analysis techniques between the two works, suggests the difference between the two works is real. If so, we may be witnessing the signature of weather on Eris. The work reported here is intended to trigger further observational effort by the community.  相似文献   

18.
The formation of organic compounds in the atmosphere of Titan is an ongoing process of the generation of complex organics from the simplest hydrocarbon, methane. Solar radiation and magnetosphere electrons are the main energy sources that drive the reactions in Titan's atmosphere. Since energy from solar radiation is 200 times greater than that from magnetosphere electrons, we have investigated the products formed by the action of UV radiation (185 and 254 nm) on a mixture of gases containing nitrogen, methane, hydrogen, acetylene, ethylene, and cyanoacetylene, the basic gas mixture (BGM) that simulates aspects of Titan's atmosphere using a flow reactor [Tran, B.N., Ferris, J.P., Chera, J.J., 2003a. Icarus 162, 114-124; Tran, B.N., Joseph, J.C., Force, M., Briggs, R.G., Vuitton, V., Ferris, J.P., 2005. Icarus 177, 106-115]. The present research extends these studies by the addition of carbon monoxide and hydrogen cyanide to the BGM. Quantum yields for the loss of reactants and the formation of volatile products were determined and compared with those measured in the absence of the hydrogen cyanide and carbon monoxide. The GCMS analyses of the volatile photolysis products from the BGM, with added hydrogen cyanide, had a composition similar to that of the BGM while the photolysis products of the BGM with added carbon monoxide contained many oxygenated compounds. The infrared spectrum of the corresponding solid product revealed the absorption band of a ketone group, which was probably formed from the reaction of carbon monoxide with the free radicals generated by photolysis of acetylene and ethylene. Of particular interest was the observation that the addition of HCN to the gas mixture only resulted in a very small change in the C/N ratio and in the intensity of the CN frequency at 2210 cm−1 in the infrared spectrum suggesting that little HCN is incorporated into the haze analog. The C/N ratio of the haze analogs was found to be in the 10-12 range. The UV spectra of the solid products formed when HCN or CO added to the BGM is similar to the UV absorption formed from the BGM alone. This result is consistent with absence of additional UV chromophores to the solid product when these mixtures are photolyzed. The following photoproducts, which were not starting materials in our photochemical studies, have been observed on Titan: acetonitrile, benzene, diacetylene, ethane, propene, propane, and propyne.  相似文献   

19.
20.
Photochemical reaction pathways in Titan's atmosphere were investigated by irradiation of the individual components and the mixture containing nitrogen, methane, hydrogen, acetylene, ethylene, and cyanoacetylene. The quantum yields for the loss of the reactants and the formation of products were determined. Photolysis of ethylene yields mainly saturated compounds (ethane, propane, and butane) while photolysis of acetylene yields the same saturated compounds as well as ethylene and diacetylene. Irradiation of cyanoacetylene yields mainly hydrogen cyanide and small amounts of acetonitrile. When an amount of methane corresponding to its mixing ratio on Titan was added to these mixtures the quantum yields for the loss of reactants decreased and the quantum yields for hydrocarbon formation increased indicative of a hydrogen atom abstraction from methane by the photochemically generated radicals. GC/MS analysis of the products formed by irradiation of mixtures of all these gases generated over 120 compounds which were mainly aliphatic hydrocarbons containing double and triple bonds along with much smaller amounts of aromatic compounds like benzene, toluene and phenylacetylene. The reaction pathways were investigated by the use of 13C acetylene in these gas mixtures. No polycyclic aromatic compounds were detected. Vapor pressures of these compounds under conditions present in Titan's atmosphere were calculated. The low molecular weight compounds likely to be present in the atmosphere and aerosols of Titan as a result of photochemical processes are proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号