首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
东北新开岭地区晚中生代花岗岩类时代、成因及地质意义   总被引:7,自引:0,他引:7  
小兴安岭西北部新开岭地区4个花岗岩岩体锆石U-Pb年龄为:大头山石英闪长岩体(187.7±1.4) Ma,大平山二云母二长花岗岩体(170.7±1.3) Ma,大平北山黑云母二长花岗斑岩(128.0±1.1) Ma以及黑云母花岗斑岩岩脉(120.6±0.6) Ma。结合前人年龄资料,该区中生代花岗质岩浆活动可分为早中侏罗世(188~164 Ma)和早白垩世(128~106 Ma)两个阶段,这与中国东北地区和俄罗斯远东地区早中侏罗世和早白垩世花岗岩可以对比。从早中侏罗世到早白垩世,花岗岩质岩石显示明显的演化趋势,由准铝质-弱过铝质高钾钙碱性(或者与钙碱性过渡类型)的I型花岗岩,演变到弱过铝质高钾钙碱性-钾质高分异I型花岗岩;Sr/Y值也较低,锆石的εHf(t)值略有升高。这显示由挤压增厚地壳的下部熔融形成的早期以壳源为主的花岗岩,演变为由相对伸展减薄环境下有年轻幔源加入形成的晚期高分异I型花岗岩。从花岗岩浆的演变特点分析,结合区域上构造演化,表明该时期研究区发生了由相对挤压增厚到伸展减薄的转换,这种转换的时间大致在160 Ma。  相似文献   

2.
Many geochronological studies on silicic magmatic rocks associated with the Bushveld Complex (rhyolitic lavas of the Rooiberg Group and granites of the Lebowa Granite Suite) have shown evidence of open-system behaviour of the Rb-Sr and Pb-Pb isotopic systems until 1600–1000 Ma, many hundreds of million years after crystallisation of these rocks. This pervasive open-system behaviour has been attributed to sustained hydrothermal circulation driven by the high heat productivity of the Bushveld granites. New Sr and Pb isotopic data are presented for basaltic to rhyolitic volcanics from the Rooiberg Group of the Transvaal Sequence in the Dullstroom-Loskop Dam area of the eastern Transvaal. These data show little evidence of open-system behaviour after about 1950 Ma and many sample suites retain ages which could reflect the formation of the Rooiberg Group i.e. older than 2070 Ma. It is argued that this preservation is due to the absence of fractionated, fluid/vapour-rich Bushveld granites in the immediate vicinity of the volcanic occurrences. Rooiberg Group volcanics with extensively perturbed Rb-Sr and particularly Pb-Pb isotopic systems reflect the action of granite-derived hydrothermal fluids. As a consequence, the isotope systematics in these volcanics could prove a useful exploration tool for sites of granite-derived metal deposits.  相似文献   

3.
The Bafoussam area in western Cameroon is part of the Central African Orogenic Belt. It is dominated by granitoids which belong to the Pan-African syn- to post-collisional post-650 Ma group. Syenogranites are predominant, but alkali-feldspar granite, monzogranite, quartz-monzonite and quartz-monzodiorite occur as well. Four granitoid suites, biotite granitoids and deformed biotite granitoids with amphibole, megafeldspar granitoids with megacrysts and two-mica granitoids with primary muscovite and igneous garnet are distinguished. The granites can be assigned to high-K calc-alkalic to shoshonitic series. The partly shoshonitic biotite granitoids are metaluminous to weakly peraluminous and can be labelled as a highly fractionated I-type suite. The megafeldspar granitoids are weakly peraluminous with I-type character whereas the two-mica granitoids are weakly to strongly peraluminous and belong to an S-type suite. Emplacement ages at 558–564 Ma for the two-mica granitoids have been dated from monazite by the EMP Th–U–Pb method.The REE in the biotite granitoids are moderately fractionated with (La/Lu)N = 23–38. Enrichment of Nb and Ta varies by one order of magnitude. The megafeldspar granitoids show homogeneous and strongly fractionated REE patterns with (La/Lu)N = 27–42. The primitive mantle-normalized element patterns are homogeneous with marked negative Ba, Nb, Ta, Sr, Eu and Ti anomalies. The two-mica granitoids are characterized by low to moderate total REE contents with strongly fractionated REE expressed by (La/Lu)N ranging from 7 to 59. The negative Nb and Ta anomalies are less significant. Nd and Sr whole-rock isotope data confirm different sources for the granitoid suites. The source of the I-type biotite granitoids was probably a juvenile mantle which has been variably metasomatized. The source of the I-type megafeldspar granitoids is characterized by juvenile mantle and lower crust components. Anatectic melts of the upper continental crust with variable contribution of lower continental crust or mantle melts can explain the heterogeneous isotopic signatures of the S-type two-mica granitoids. It is suggested that the melting of these sources was successively initiated by the rising isotherms during a syn- to post-collisional setting which followed a subduction.  相似文献   

4.
ABSTRACT

We report geochemical data and zircon SHRIMP U-Pb ages for Late Mesozoic granitoids from the western Zhejiang province and southern Anhui province (the WZSA region) from southeast China. In combination with published geochronological and geochemical data, the granitoids in the region can be divided into three stages: 171–141 Ma, 140–121 Ma, and 120–95 Ma. The first stage of these granitoids is mainly composed of granite porphyry and granodiorite which are similar to I-type granitoids, including having weakly negative Eu anomalies with enrichment in light rare earth elements (LREE), Rb, Th, and U. The second stage of granitoids consists of monzogranite, syenogranite, and granite with the characteristics of both A-type and I-type granitoids including strongly negative Eu anomalies; depletion of Ba, Sr, and Ti; and enrichment of K, Rb, and high field strength elements (HFSEs) (such as Th and U). The third stage of granitoids is mainly composed of granite, quartz monzonite, quartz diorite, and mafic rocks with weakly negative Eu anomalies and also enrichment in LREE, Rb, Th, U, and K. From our work, we propose a transition from compressional to extensional magmatism at ~141 Ma. Based on the geochemical characteristics of these granites and coeval mafic rocks, we propose that the formation of the A-type magmatism in the WZSA region formed as the result of lithospheric extension and asthenospheric upwelling during the Early Cretaceous.  相似文献   

5.
The Bundelkhand massif of Archean-Palaeoproterozoic age is primarily a granite-gneiss complex. Three distinct granitoid suites have been identified within the massif hornblende granitoids, biotite granitoids and leucogranitoids, in order of decreasing age. These granitoids were emplaced in previously deformed basement consisting of gneisses, banded iron formations and other metasediments, mafic to felsic volcanics.
The granitoids exhibit a large compositional range from quartz diorite to syenogranite and show a calc-alkaline trend. They are metaluminous to peraluminous and have I-type characteristics. The SiO2 content ranges from 49 to 77 wt%. Low K2O/Na2O characterizes the granitoids. The oldest hornblende granitoids have low Rb and Yb contents compared to the younger biotite granitoids and leucogranitoids. Rb/Sr values for most of the granitoids are low (< 1). K/Rb ratios range from 95 to 373 which is, in general, comparable with other calc-alkaline suites. Y/Nb ratios of the granitoids are > 1.2 which is a characteristic feature of magmas derived from sources chemically similar to island arc or continental margin basalts.
The features mentioned above coupled with concentrations of Rb, Y, Nb, Yb, Ta and Th indicate a volcanic-arc tectonic setting for the granitoids. It is proposed that the massif represents subduction-related magmatism of an ocean in the southern part of the massif (an Andean plate margin).  相似文献   

6.
The K‐rich granitoids of the southern Mt Angelay igneous complex belong to the younger phases of the Williams and Naraku Batholiths (<1540 Ma) in the Cloncurry district. Granitoids of the complex form a series of I‐type, K‐rich, metaluminous monzodiorite to subaluminous syenogranite. These intrusions have geochemical affinities akin to ‘A‐type’ granites and contain plagioclase, alkali feldspar, quartz, biotite, hornblende and typically accessory magnetite, titanite, apatite and zircon. With increasing SiO2 the granitoids vary from alkaline to subalkaline, and exhibit a decrease in TiO2, Al2O3, Fe2O3*, MnO, MgO, CaO, P2O5, Cu, Sr, Zr, LREE and Eu, with an increase in Na2O, K2O, Rb, Pb, Th, U, Y and HREE. This suite of relatively oxidised granitoids (<1.0 log units above NNO) were emplaced after the peak of metamorphism and pre‐ to post‐D3, a major east‐west horizontal‐shortening event. The synchronous emplacement of high‐temperature mafic (>960°C) and foliated felsic (>900°C) granitoids formed zones of mingled and mixed monzonite and quartz monzonite to monzogranite containing abundant rapakivi K‐feldspar. These intrusions are interpreted to have been derived from source rocks of different compositions, and probably by different degrees of partial melting. The unfoliated felsic granitoids are considered to represent the fractionated equivalents of older foliated felsic granitoids. All granitoids possess a Sr‐depleted and Y‐undepleted signature, which suggests that the source material probably contained plagioclase and no garnet, restricting magma production to <800–1000 MPa (~24–30 km). Underplating of mantle‐derived mafic material into mid‐crustal levels is considered the most viable mechanism to produce these high‐temperature K‐rich granitoids at these pressures. The composition of the felsic granitoids is consistent with derivation from a crustal source with a tonalitic to granodioritic composition. However, the mafic granitoids require a more mafic, possibly gabbroic source, which may have been supplemented with minor mantle‐derived material. These granitoids are also enriched in Th, U, LREE and depleted in Ba, Ti, Nb and Sr and compare closely to the Mesoproterozoic granitoids of the Gawler Craton. The economic significance of these styles of granitoids may also be highlighted by the close spatial relationship of hematitic K‐feldspar, magnetite, fluorite and pyrite‐rich veins, alteration and filled miarolitic cavities with the least‐evolved felsic intrusions. This style of veining has a probable magmatic origin and is similar to the gangue assemblage associated with Ernest Henry‐style Fe‐oxide‐(Cu–Au) mineralisation, which suggests that these granitoids represent prospective sources of fluids associated with Cu–Au mineralisation in the district.  相似文献   

7.
Walegen Au deposit is closely correlated with granitic intrusions of Triassic age, which are composed of granite and quartz porphyries. Both granite porphyry and quartz porphyry consist of quartz, feldspar and muscovite as primary minerals. Weakly peraluminous granite porphyry(A/CNK=1.10–1.15) is enriched in LREE, depleted in HREE with Nb-Ta-Ti anomalies, and displays subduction-related geochemistry. Quartz porphyry is strongly peraluminous(A/CNK=1.64–2.81) with highly evolved components, characterized by lower TiO_2, REE contents, Mg~#, K/Rb, Nb/Ta, Zr/Hf ratios and higher Rb/Sr ratios than the granite porphyry. REE patterns of quartz porphyry exhibit lanthanide tetrad effect, resulting from mineral fractionation or participation of fluids with enriched F and Cl. LAICP-MS zircon U-Pb dating indicates quartz porphyry formed at 233±3 Ma. The ages of relict zircons from Triassic magmatic rocks match well with the detrital zircons from regional area. In addition, ε_(Hf)(t) values of Triassic magmatic zircons from the granite and quartz porphyries are -14.2 to -9.1(with an exception of +4.1) and -10.8 to -8.6 respectively, indicating a crustal-dominant source. Regionally, numerous Middle Triassic granitoids were previously reported to be formed under the consumption of Paleotethyan Ocean. These facts indicate that the granitic porphyries from Walegen Au deposit may have been formed in the processes of the closing of Paleotethyan Ocean, which could correlate with the arc-related magmatism in the Kunlun orogen to the west and the Qinling orogen to the east.  相似文献   

8.
In the Avnik area of the Bingöl massif the Lower Unit consists of basic to felsic metavolcanics (ca. 450 Ma), intruded by granitoids (ca. 350 Ma). These are unconformably overlain by an Upper Unit of micaschists and Permian marbles; both units have been deformed and metamorphosed in Alpine time. The metavolcanics and granitoids are extensively feldspathized and silicified. The granitoids, and basic-intermediate volcanics, are albitized, while felsic volcanics are K-feldspathized. Metasomatism has severely modified K/Rb and Rb/Sr ratios, but not REE patterns, and is inferred to have occurred at relatively low T. Nametasomatism of the Upper Unit micaschists has produced albite porphyroblasts. Metasomatism postdates formation of the Upper Unit sediments, and is probably related to reaction with sea water that infiltrated the basement of volcanics and granitoids during deposition of these sediments. Rb-Sr whole-rock dating of extensively feldspathized intermediate-felsic metavolcanics gives an age of ca. 90 Ma, which suggests that the most extensive reaction coincided with expulsion of the trapped sea water during the early stages of the Alpine orogeny. The distribution of albitization vs. K-felds-pathization suggests that the type of metasomatism was controlled on a local scale by permeability and grain size, rather than by T variations.  相似文献   

9.
A detailed Rb‐Sr total‐rock and mineral and U‐Pb zircon study has been made on suites of Proterozoic silicic volcanic rocks and granitic intrusions, from near Mt Isa, northwest Queensland. Stratigraphically consistent U‐Pb zircon ages within the basement igneous succession show that the oldest recognized crustal development was the outpouring of acid volcanics (Leichhardt Metamorphics) 1865 ± 3 m.y. ago, which are intruded by coeval, epizonal granites and granodiorites (Kalkadoon Granite) whose pooled U‐Pb age is 1862 +27 ‐21 m.y. A younger rhyolitic suite (Argylla Formation) within the basement succession has an age of 1777 ± 7 m.y., and a third acid volcanic unit (Carters Bore Rhyolite), much higher again in the sequence, crystallized 1678 ± 1 m.y. ago.

All of these rocks are altered in various degrees by low‐grade metamorphic events, and in at least one area, these events were accompanied by, and can be partly related to, emplacement of a syntectonic, foliated granitic batholith (Wonga Granite) between 1670 and 1625 m.y. ago. Rocks that significantly predate this earliest recognized metamorphism, have had their primary Rb‐Sr total‐rock systematics profoundly disturbed, as evidenced by 10 to 15% lowering of most Rb‐Sr isochron ages, and a general grouping of many of the lowered ages (some of which are in conflict with unequivocal geological relationships) within the 1600–1700 m.y. interval. Such isochrons possess anomalously high initial 87Sr/86Sr ratios, and some have a slightly curved array of isotopic data points. Disturbance of the Rb‐Sr total‐rock ages is attributed primarily to mild hydrothermal leaching, which resulted in the loss of Sr (relatively enriched in 87Sr in the Sr‐poor (high Rb/Sr) rocks as compared with the Sr‐rich rocks).  相似文献   

10.
The Altai orogen forms the southern part of the Central Asian Orogenic Belt (CAOB), the world’s largest accretionary orogen. However, its tectonic evolution, particularly during the late Paleozoic, is still not well understood. U–Pb zircon analyses for the Bulgen alkaline granite yield crystallization ages of 358?±?4?Ma (SHRIMP) and 354?±?4?Ma (LA-ICP-MS). These ages are significantly younger than published emplacement ages for subduction/collision-related syn-orogenic granitoids (460–375?Ma) in this region. The Bulgen granite has high SiO2, total alkalis, rare earth elements, HFSE (Th, Zr, Hf, Nb, and Ce), and low Ba, Sr with pronounced negative anomalies in Eu, Ba, Sr, P, and Ti, showing a clear A-type geochemical signature. The granite records high εNd(t) values of +6.3 to +6.4 and young model ages (T DM) of ca. 600?Ma. The Bulgen alkaline granite is largely undeformed as opposed to the early-middle Paleozoic counterparts, which form elongated deformed bodies parallel to the prevailing tectonic fabric (NW direction). Available data suggest that magmatism in the southern Altai region evolved from early-middle Paleozoic I-type tholeiitic and calc-alkaline granitoids to late Paleozoic A-type alkaline granitoids. The high εNd(t) values of the Bulgen alkaline granite indicate a homogeneous juvenile mantle source, whereas the early-middle Paleozoic granitoids are characterized by lower and more variable εNd(t) values (?2.6 to +4.2). These differences provide an important insight into the late Paleozoic orogenic processes of the Chinese Altai and indicate a significant change of the tectonic regime from a syn-orogenic regional compression setting to a post-orogenic extensional one. Major tectonic movements in this region ceased after the early Carboniferous.  相似文献   

11.
In the Archaean Murchison Province of Western Australia, granitoid batholiths and plutons that intruded into the ca. 2.7–2.8 Ga and ca. 3.0 Ga greenstone belts can be divided into three major suites. Suite I is a ca. 2.69 Ga monzogranite-granodiorite suite, which was derived from anatexis of old continental crust and occurs as syn-tectonic composite batholiths over the entire province. Suite II is a trondhjemite-tonalite suite (termed I-type) derived from partial melting of subducted basaltic crust, which intruded as syn- to late-tectonic plutons into the greenstone belts in the northeastern part of the province where most of the major gold deposits are situated. One of the Suite II trondhjemite plutons has a Pb−Pb isochron age of 2641±36 Ma, and one of the structurally youngest tonalite plutons has a minimum Pb−Pb isochron age of 2630.1±4.3 Ma. Suite III is a ca. 2.65–2.62 Ga A-type monzogranite-syenogranite suite which is most abundant in the largely unmineralised southwestern part of the province. Gold deposits in the province are mostly hosted in brittle-ductile shear zones, and were formed at a late stage in the history of metamorphism, deformation and granitoid emplacement. At one locality, mineralisation has been dated at 2636.8±4.2 Ma through a pyritetitanite Pb−Pb isochron. Lead and Sr isotope studies of granitoids and gold deposits indicate that, although most gold deposits have initial Pb isotope compositions most closely similar to those of Suite II intrusions, both Suite I and Suite II intrusions or their source regions could have contributed solutes to the ore fluids. These preliminary data suggest that gold mineralisation in the Murchison Province was temporally and spatially associated with Suite II I-type granitoids in the northeastern part of the province. This association is consistent with the concept that Archaean gold mineralisation was related to convergent-style tectonic settings, as generation of both Suite II I-type granitoids and hydrothermal ore fluids could have been linked to the dehydration and partial fusion of subducted oceanic crust, and old sialic crust or its anatectic products may also contribute solutes to the ore fluids. Integration of data from this study with other geological and radiogenic isotope constraints in the Yilgarn Block argue against direct derivation of gold ore fluids from specific I-type granitoid plutons, but favour a broad association with convergent tectonics and granitoid magmatism in the late Archaean.  相似文献   

12.
The Plutonic Well Greenstone Belt (PWGB) is located in the Marymia Inlier between the Yilgarn and Pilbara cratons in Western Australia, and hosts a series of major Au deposits. The main episode of Au mineralisation in the PWGB was previously interpreted to have either accompanied, or shortly followed, peak metamorphism in the late Archean at ca 2650 Ma with a later, minor, event associated with the Capricorn Orogeny. Here we present new Pb isotope model ages for sulfides and Rb–Sr ages for mica, as well as a new 207Pb–206Pb age for titanite for samples from the Plutonic Gold Mine (Plutonic) at the southern end of the PWGB. The majority of the sulfides record Proterozoic Pb isotope model ages (2300–2100 Ma), constraining a significant Au mineralising event at Plutonic that occurred >300 Myr later than previously thought. A Rb–Sr age of 2296 ± 99 Ma from muscovite in an Au-bearing sample records resetting or closure of the Rb–Sr system in muscovite at about the same time. A younger Rb–Sr age of 1779 ± 46 Ma from biotite from the same sample may record further cooling, or resetting during a late-stage episode of metasomatism in the PWGB. This could have been associated with the 1820–1770 Ma Capricorn Orogeny, or a late-stage hydrothermal event potentially constrained by a new 207Pb–206Pb age of 1725 ± 26 Ma for titanite in a chlorite–carbonate vein. This titanite age correlates with a pre-existing age for a metasomatic event dated at 1719 ± 14 Ma by U–Pb ages of zircon overgrowths in a sample from the Marymia Deposit. Based on the Pb-isotope data presented here, Au mineralising events in the PWGB are inferred to have occurred at ca 2630, 2300–2100 Ma, during the Glenburgh and Capricorn orogenies, and 1730–1660 Ma. The 2300–2100 Ma event, which appears to have been significant based on the amount of sulfide of this age, correlates with the inferred age for rifting of the Marymia Inlier from the northern margin of the Yilgarn Craton. The texturally-later visible Au may have been deposited during the Glenburgh and Capricorn orogenies.  相似文献   

13.
西藏中部拉萨地块大规模早白垩世花岗岩类的岩浆源区和岩石成因迄今尚未得到很好约束,对这些问题的深入理解将有助于揭示拉萨地块白垩纪时期的岩浆作用过程及成矿背景。本文报道了中部拉萨地块代表性花岗岩基——措勤麦嘎岩基的锆石U-Pb年代学、全岩元素地球化学、Sr-Nd同位素和锆石Hf同位素数据。本文锆石U-Pb定年结果表明,麦嘎岩基花岗质岩主要侵位于122±1Ma和113±2Ma,闪长质包体与后者同期(113±2Ma)。122±1Ma花岗质岩属I型弱过铝质高钾钙碱性系列,(87Sr/86Sr)i值高(0.7147),全岩εNd(t)(-12.0)和锆石εHf(t)(-15.7~-11.1)为较大的负值,表明其很可能来源于古老下地壳物质的重熔。113±2Ma寄主花岗质岩为I型偏铝质-弱过铝质高钾钙碱性系列,相对于122±1Ma花岗质岩石,其(87Sr/86Sr)i比值偏低(0.7094~0.7156)、全岩εNd(t)值(-12.1~-7.3)和锆石εHf(t)值(-11.1~0.1)较高,很可能来源于古老下地壳物质的部分熔融,并含有更多幔源物质。闪长质包体(113±2Ma)为偏铝质中-高钾钙碱性系列,以变化范围大的(87Sr/86Sr)i(0.7058~0.7105)、负的全岩εNd(t)值(-10.7~-9.8)及负的锆石εHf(t)值(-14.0~-5.6)为特征,可能是古老富集岩石圈地幔物质部分熔融的产物或亏损地幔物质经历强烈地壳混染作用的结果。在目前已有资料条件下(缺乏同期基性岩石的相关数据),本文暂将麦嘎岩基113±2Ma寄主花岗质岩及同期闪长质包体解释为镁铁质岩浆与长英质岩浆发生不同程度岩浆混合作用的产物,这一解释可能对中部拉萨地块同期花岗类的岩石成因具普遍意义。麦嘎岩基及中部拉萨地块同期岩浆岩约113Ma幔源物质增加现象,可能是南向俯冲的班公湖-怒江洋壳岩石圈板片断离的结果。  相似文献   

14.
《Applied Geochemistry》1988,3(3):243-254
Lead isotope analyses have been undertaken as part of a program to evaluate the potential of geochemical methods for use in exploration in the Tennant Creek goldfield. Earlier exploration in this area was based on magnetic geophysical methods. Economic Au, Cu and Bi mineralization usually occurs in magnetic magnetite-chlorite lenses or pods (“ironstones”) which may be only 30 m across. Several hundred ironstones are found in the Tennant Creek field, of which only nine have been significant producers. Despite complications arising from the low Pb and relatively elevated U contents of the ore, determination of Pb isotope ratios in drill core material allows discrimination between economic magnetic ironstones and “barren” ironstones of similar mineralogy. A target signature for the Th-derived Pb isotope ratio, 208Pb/204Pb, is specific for lode mineralization, although it does not discriminate between Au-rich and Cu-rich lodes. The target signature is commonly found not only in the central Au-rich magnetite-chlorite zone, but also in the outer “barren” talc-magnetite and carbonate zones, offering up to a two-fold increase in the size of the target. The Pb isotope signature is retained in hematite-rich surface ironstones (termed “gossans” here) and it appears possible, at this stage of the project, to discriminate between gossans derived from mineralized magnetite lodes and “barren” magnetite lodes. A discrimination between weakly-mineralized (either Cu or Au) and economic deposits is equivocal at this stage. The difference between target and sample 208Pb/204Pb ratios (Δ208/204) ranges from −3 to +2% for the economic lodes, through weakly mineralized and “barren” magnetic ironstones (commonly in the range −20 to −40%) to the country rock magnetite shales (about −40 to −70%). These data are consistent with a significant Pb component in the “barren” ironstones being derived locally from the magnetite shales. Hematite shales commonly associated with economic lodes may have acted as limited channelways for the ore fluids as the target signature is discernible for up to 50 m along the hematite shale bands from the outer chlorite zones of the economic lodes. Further trace element and isotopic work is necessary to elucidate the genesis of the mineralization.  相似文献   

15.
松潘造山带马尔康强过铝质花岗岩的成因及其构造意义   总被引:2,自引:0,他引:2  
松潘造山带广泛出露印支期后碰撞型花岗岩类, 其中包括埃达克质花岗岩类、A型花岗岩和I型花岗岩, 但目前人们对该区印支期强过铝质花岗岩尚未有深入的研究.松潘造山带马尔康花岗岩属于强过铝质花岗岩(A/CNK=1.10~1.20), 其岩石类型主要为中粒二云母花岗岩和中细粒二云母花岗岩.利用LA-ICP-MS锆石U-Pb定年方法, 获得中粒二云母花岗岩的岩浆结晶年龄为208±2Ma, 中细粒二云母花岗岩的岩浆结晶年龄为200±2Ma.马尔康强过铝质花岗岩K2O/Na2O=1.13~1.75, 富Rb、Th和U, 贫Sr、Ba、Co和Ni等元素; 稀土元素组成上显示存在强到中等的负Eu异常(Eu/Eu*=0.15~0.65);全岩初始87Sr/86Sr比值(ISr) 为0.70712~0.71137, εNd (t) =-10.36~-8.43, 锆石εHf (t) =-11.8~-1.1.地球化学和Sr-Nd-Hf同位素组成一致表明, 它们的岩浆来自于地壳物质的部分熔融, 其中中粒二云母花岗岩的源岩类型主要为地壳中的泥质岩类, 而中细粒二云母花岗岩的源岩主要为地壳中的杂砂岩类.结合松潘带的地质背景、区域构造-岩浆事件及其岩浆岩的组合分析, 印支期岩石圈拆沉作用可以用来解释马尔康强过铝质花岗岩的形成机制.在松潘带, 印支期岩石圈拆沉作用导致软流圈物质上涌, 这不仅促使了加厚下地壳物质发生部分熔融, 如松潘带印支期埃达克质和I型花岗岩浆的形成, 而且还诱发了中地壳物质的部分熔融, 如马尔康强过铝质花岗岩的形成.这表明松潘带印支期岩石圈拆沉作用已使地壳不同层次发生部分熔融作用.   相似文献   

16.

The Hohonu Dyke Swarm and French Creek Granite represent contemporaneous and cogenetic alkaline magmatism generated during crustal extension in the Western Province of New Zealand. The age of 82 Ma for French Creek Granite coincides with the oldest oceanic crust in the Tasman Sea and suggests emplacement during the separation of New Zealand and Australia. The French Creek Granite is a composite A‐type granitoid, dominated by a subsolvus biotite syenogranite with high silica, low CaO, MgO, Cr, Ni, V and Sr and elevated high‐field‐strength elements (Zr, Nb, Ga, Y). Subordinate varieties of French Creek Granite include a hypersolvus alkali amphibole monzogranite and a quartz‐alkali feldspar syenite. Spatially associated rhyolitic dykes are considered to represent hypabyssal equivalents of French Creek Granite. The Hohonu Dyke Swarm represents mafic magmatism which preceded, overlapped with, and followed emplacement of French Creek Granite. Lamprophyric and doleritic varieties dominate the swarm, with rare phonolite dykes also present. Geochemical compositions of French Creek Granite indicate it is an A1‐subtype granitoid and suggest derivation by fractionation of a mantle‐derived melt with oceanic island basalt ‐ like characteristics. The hypothesis that the French Creek Granite represents fractionation of a Hohonu Dyke Swarm composition, or a mantle melt derived from the same source, is tested. Major‐ and trace‐element data are compatible with derivation of the French Creek Granite by fractionation of amphibole, clinopyroxene and plagioclase from mafic magmas, followed by fractionation of alkali and plagioclase feldspar at more felsic compositions. Although some variants of the French Creek Granite have Sr and Nd isotopic compositions overlapping those of the Hohonu Dyke Swarm, most of the French Creek Granite is more radiogenic than the Hohonu Dyke Swarm, indicating the involvement of a radiogenic crustal component. Assimilation‐fractional crystallisation modelling suggests isotopic compositions of French Creek Granite are consistent with extreme fractionation of Hohonu Dyke Swarm magmas with minor assimilation of the Greenland Group metasediments.  相似文献   

17.
The Jurassic granitoids (200–164 Ma) are distributed in the Korean Peninsula due to the Paleo-Pacific plate subduction. Early Jurassic (200–182 Ma) granitoids are mainly distributed in the southern Korean Peninsula. By contrast, Early to Middle Jurassic (182–164 Ma) granitoids are distributed in the central Korean Peninsula. In this study, we report detailed petrology, zircon U–Pb ages, and whole-rock geochemistry from the Seoul–Uijeongbu and Pocheon–Gimhwa pluton units in the central Korean Peninsula. The Seoul–Uijeongbu unit is dominated by biotite granite, with minor porphyritic biotite and garnet-biotite granite while the Pocheon–Gimhwa unit consists of biotite granite and porphyritic biotite granite, garnet-biotite granite, and two-mica granite. Zircon U–Pb age from those granites gives 180–167 Ma. The granitoids in the Pocheon-Gimhwa unit formed through fractional crystallization from biotite granite and porphyritic biotite granite to garnet-biotite granite, and two-mica granite based on gradually decreasing their Nb/Ta, Zr/Hf, and Eu/Eu* ratios. The strongly fractionated granitoids are garnet-biotite granite and two-mica granite. The LILE enrichment, Ta–Nb, Sr–P, and Eu–Ti troughs, and Ba depletion in most granitoids are similar to those of granitoids due to the subduction in the arc environment. Thus, these Jurassic granitoids (180–167 Ma) are mainly peraluminous granites with moderate crystal fractionation corresponding to I-type granite. Alkali feldspar granite associated with ore mineralization occurs in the Gwanaksan pluton from the southwestern Seoul–Uijeongbu unit. The alkali feldspar granite displays distinct negative Eu anomaly with high contents of Rb, Hf, Cs, and Nb compared with other granites. These characteristics imply that alkali feldspar granite experienced strong hydrothermal activity leading to feldspar ore mineralization compared to the other granites. The formation of a wide range of moderately evolved peraluminous granitoids is presumed to be related to rapid flat-subduction during 182–164 Ma, and the mineralization-related alkali feldspar granite indicates the termination of Jurassic granitoid magmatism in the central Korean Peninsula.  相似文献   

18.
老牛山杂岩体位于华北地块南缘。野外侵入关系和锆石LA-ICP-MS U-Pb定年显示,其由晚三叠世(印支期)和晚侏罗(燕山期)花岗质岩石组成。印支期岩石类型为石英二长岩、石英闪长岩和粗粒黑云母二长花岗岩,年龄分别为223±1Ma、222±1Ma和214±1Ma; 燕山期为中粒-中粗粒黑云母二长花岗岩和细粒-中细粒黑云母二长花岗岩,年龄分别为152±1Ma和146±1Ma。印支期石英闪长岩、石英二长岩的SiO2相对含量低、富碱、高铝,为钾玄系列,准铝质Ⅰ型花岗岩;印支期粗粒黑云母二长花岗岩具富硅、碱、高铝、低镁的特点,属于高钾钙碱性系列,为准铝质-过铝质Ⅰ型花岗岩;燕山期黑云母二长花岗岩具高硅和铝、富碱,低镁的特点,为高钾钙碱性系列,准铝质Ⅰ型花岗岩。组成老牛山杂岩体的花岗岩从早到晚SiO2含量由低变高,MgO、CaO和Na2O由高变低。各期次岩石均表现出稀土元素总量较高,轻稀土元素明显富集,轻、重稀土元素分馏明显,具有较弱的铕异常。两期花岗质岩石均富集大离子亲石元素(K、Rb、Ba、Sr),而相对亏损高场强元素(Nb、Ta、P)。印支期花岗质岩石的全岩εNd(t)为-11.3~-14.87,tDM为1.7~1.9Ga,锆石的εHf(t)为-9.57~-25.11,tDM2为1863~2841Ma;燕山期花岗岩的全岩εNd(t)为-13.32~-16.83,tDM为 1.7~1.9Ga,锆石的εHf(t)为-18.28~-24.79,tDM2 为2360~2767Ma,表明该杂岩体的源区物质以壳源物质为主,可能与太古宙太华群相似,印支期有年轻地幔物质贡献。  相似文献   

19.
The intraplate Cameroon Volcanic Line (CVL) straddles the African-South Atlantic continent-ocean boundary and is composed mainly of alkaline basic volcanic rocks. Voluminous silicic volcanics characterize the continental sector of the CVL. We present here new geochemical, isotopic (Sr-Nd-O) and 40Ar/39Ar geochronological data on the main silicic volcanic centres of the Western (Mt. Oku, Sabga and Mt. Bambouto) and Eastern (Ngaoundere plateau) Cameroon Highlands. The silicic volcanism of Mt. Oku, Sabga and Mt. Bambouto occurred between 25 and 15 Ma and is represented by voluminous quartz-normative trachytes and minor rhyolitic ignimbrites. At Mt. Bambouto central volcano about 700 m of silicic volcanics erupted in less than 2.7 million years. These silicic volcanics are associated with slightly to moderately alkaline basalts and minor basanites. In general, onset of the silicic volcanism migrated from NE (Oku: 25 Ma) to SW (Sabga: 23 Ma; Bambouto: 18 Ma; and Mt. Manengouba: 12 Ma). The silicic volcanism of the Ngaoundere plateau (eastern branch of the CVL) is instead dominated by nepheline-normative trachytes which are associated with strongly alkaline basalts and basanitic rocks. These Ne-trachytes are younger (11-9 Ma) than the Q-trachytes of the Western Highlands. The least differentiated silicic volcanics are isotopically similar (87Sr/86Sr < 0.70380; 143Nd/144Nd > 0.51278) to the associated alkaline basalts suggesting differentiation processes without appreciable interaction with crustal materials. Such interactions may, however, have played some role in the genesis of the most evolved silicic volcanics which have 87Sr/86Sr as high as 0.705–0.714. Fractional crystallization is the preferred mechanism for genesis of the silicic melts of both Western and Eastern Highlands, as shown by modeling major and trace element variations. The genesis of the least evolved Q-trachytes from the Western Highlands, starting from slightly to moderately alkaline basalts, is compatible with fractionation of dominantly plagioclase, clinopyroxene and magnetite. Crystal fractionation may have occurred at low pressure and at QFM buffer f O2conditions. Parental magmas of the Ngaoundere Ne-trachytes are likely instead to have been strongly alkaline basalts which evolved through crystal fractionation at higher P (6-2 kbar) and f O2 (QFM + 2). The migration (25 to 12 Ma) of the silicic volcanism from NE to SW in the continental sector of the CVL is reminiscent of that (31-5 Ma) of the onset of the basic volcanism in the oceanic sector (Principe to Pagalu islands) of the CVL. These ages, and that (11-9 Ma) of the silicic volcanism of the Ngaoundere plateau, indicate that the Cameroon Volcanic Line as a whole may not be easily interpreted as the surface expression of hot-spot magmatism. Received: 24 February 1998 / Accepted: 22 September 1998  相似文献   

20.
On the basis of U-Pb, Rb-Sr and K-Ar isotope analyses of Proterozoic rocks and minerals, a chronology has been established for the tectonic, intrusive and metamorphic evolution of the Svecokarelian orogeny 1750–1950 Ma ago in the Uppsala Region, Eastern Sweden. It is suggested that when synkinematic granitoids intruded the orogenic belt, at a stage of general subsidence and at medium metamorphic conditions (600°C and 3.5–4 kbar), the U-Pb isotope system in zircons closed earlier than the Rb-Sr whole-rock system. The zircon age (1886 Ma) reflects the intrusion and crystallization of the rock melt and the Rb-Sr whole-rock age (1830 Ma) the time when the temperature had decreased below the threshold for 87Sr migration. The Rb-Sr whole rock age (1898 Ma) determined for metaandesites and metadacites reflects a recrystallization related to the intrusion of the granitoids. On the contrary, the more silicic metarhyodacitic volcanic rocks have a Rb-Sr whole rock age (1830 Ma) reflecting the cessation of the synkinematic metamorphism. The difference in the way the Rb-Sr isotope system responds in subsilicic or silicic metavolcanics is probably dependent on the amount of radiogenic 87Sr and on the fixation of 87Sr in Ca-rich minerals. Subsequent, late-kinematic, low amphibolite facies metamorphism has not altered the Rb-Sr ages of the granitoids and the recrystallized metavolcanics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号