首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Tungsten mineralization in Chhendapathar area is hosted by quartz veins that traverse mostly the metasediments in and around Jikhu Nala. Fluid inclusion microthermometric experiments reveal the presence of four distinct types of inclusions. These are: aqueous biphase, monophase carbonic, aqueouscarbonic and halite-bearing polyphase inclusions. Salinity-temperature variation points towards the presence of two fluids of contrasting salinities and both independently followed simple cooling paths without any indication of fluid mixing. The P-T of mineralization was calculated from the intersection of coexisting and coeval aqueous biphase, carbonic and halite-bearing inclusions. The deduced values range from 1.63kb/361°C to 2.30kb/385°C. However, the initial temperature must have been much higher as indicated from the high dissolution temperature (> 450°C) of halite. Transportation of tungsten in the high saline fluid was facilitated by cation-tungstate ion pairing, i.e., with the help of Na2WO4 and/or NaHWO4 complexes. A rapid fall in solubility in such fluid with falling temperature (in the range of 300–400°C), and by occasional fluid-rock interaction triggered precipitation of wolframite.  相似文献   

2.
Gold mineralization in the Kolar schist belt of the Dharwar craton occurs dominantly in the form of a sulfide-poor Au-quartz lode (the Champion lode exposed in the Mysore and other mines) and sulfide-rich auriferous lodes (from the Nundydroog mine). Fluid inclusion microthermometric experiments were conducted on primary inclusions in quartz intimately associated with Au-mineralization. Homogenization studies on aqueous-biphase (L + V), aqueous polyphase (L + V+ halite) and aqueous-carbonic (LCO2± VCO2 + Laq) inclusions from the Champion lode furnish a temperature range of 120 to 420 °C. Freezing of aqueous biphase inclusions and dissolution of halite in the aqueous polyphase inclusions provide salinity of 5 to 50 wt.% NaCl equivalent. Fluid inclusion thermobarometry from the total homogenization of aqueous-carbonic inclusions and from intersecting isochores of coeval pure-carbonic (LCO2± VCO2) and pure-aqueous inclusions constrain the P-T path of evolution of the fluid in the Champion lode. Gold precipitation was likely to have been brought about in response to a sharp fall in pressure with attendant unmixing of liquid-CO2 from the parent H2O-CO2 fluid of possible metamorphic origin. This would imply transportation of gold by some pressure-sensitive complex such as the Au-carbonyl. Fluid characteristics are different in the sulfide-rich auriferous lodes, as indicated by the virtual absence of the CO2-bearing and the halite-bearing inclusions. The fluid evolution path, as evident from the crude positive colinearity of temperature and salinity, is due to mixing of a low (≤200 °C) temperature-low saline (≤7 wt.% NaCl equivalent) fluid with a high temperature (≥400 °C)-high saline (≥50 wt.% NaCl equivalent) fluid. The lack of CO2 and association of Au with sulfides indicate a different mode of gold transport, as chloride or bisulfide complexing, deposition of which was possibly brought about by fluid mixing. Received: 17 April 1997 / Accepted: 30 June 1998  相似文献   

3.
Synorogenic veins from the Proterozoic Eastern Mount Isa Fold Belt contain three different types of fluid inclusions: CO2-rich, aqueous two-phase and rare multiphase. Inclusions of CO2 without a visible H2O phase are particularly common. The close association of CO2-rich inclusions with aqueous two-phase, and possibly multiphase inclusions suggests that phase separation of low- to -moderate salinity CO2-rich hydrothermal fluids led to the selective entrapment of the CO2. Microthermometric results indicate that CO2-rich inclusions homogenize between –15.5 and +29.9 °C which corresponds to densities of 0.99 to 0.60 g.cm−3. The homogenization temperatures of the associated aqueous two-phase inclusions are 127–397 °C, with salinities of 0.5 to 18.1 wt.% NaCl equivalent. The rarely observed multiphase inclusions homogenize between 250 and 350 °C, and have salinities ranging from 34.6 to 41.5 wt.% NaCl equivalent. Evidence used to support the presence of fluid immiscibility in this study is mainly derived from observations of coexisting H2O-rich and CO2-rich inclusions in groups and along the same trail. In addition, these two presumably unmixed fluids are also found on adjacent fractures where monophase CO2-rich inclusions are closely related to H2O-rich inclusions. Similar CO2-rich inclusions are widespread in mineral deposits in this region, which are simply metal-enriched synorogenic veins. Therefore, we argue that fluid immiscibility caused volatile species such as CO2 and H2S to be lost from liquid, thus triggering ore deposition by increasing the fluid pH and decreasing the availability of complexing ligands. Received: 28 April 1997 / Accepted: 4 January 1999  相似文献   

4.
Textural and geochemical studies of inclusions in topaz from greisens in the Hensbarrow topaz granite stock (St. Austell, Cornwall) are used to constrain the composition of fluids responsible for late stage greisening and mineralisation. The topaz contains an abundant and varied suite of inclusions including aqueous liquid + vapour (L + V), quartz, zinnwaldite, albite, K-feldspar, muscovite, ilmenorutile, apatite, columbite, zircon, varlamoffite [(Sn, Fe)(O, OH)2] and qitianlingite [(Fe+2,Mn+2)2(Nb,Ta)2W+6O10]. Primary L + V inclusions in topaz show relatively high T h (mainly 300 to >500 °C) and a narrow range of salinities (23–30 wt % NaCl equivalent) compared with those in greisen quartz (150–450 °C, 0–50 wt % NaCl equivalent). Textures indicate that topaz formed earlier than quartz and the fluid inclusion data are interpreted as indicating a cooling of the hydrothermal fluids during greisenisation, mixing with meteoric waters and a decrease in pressure causing intermittent boiling. The presence of early-formed albite and K-feldspar as inclusions in the topaz is likely to indicate that the greisen-forming fluid became progressively more acid during greisenisation. The most distinctive inclusions in the topaz are wisp- and bleb-shaped quartz, < 50 μm in size, which show textural characteristics indicating former high degrees of plasticity. They often have multiple shrinkage bubbles at their margins rich in Sn, Fe, Mn, S and Cl and, more rarely, contain euhedral albite, K-feldspar, stannite or pyrrhotite crystals up to 40 μm in size. The quartz inclusions show similar morphologies to inclusions in topaz from quartz-topaz rocks elsewhere which have been interpreted as trapped “silicate melt”. Their compositions are, however, very different to those expected for late stage topaz-normative granitic melts. From their textural and chemical characteristics they are interpreted as representing crystallised silica colloid, probably trapped as a hydro gel during greisenisation. There is also evidence for the colloidal origin of inclusions of varlamoffite in the topaz. These occurrences offer the first reported evidence in natural systems for the formation of colloids in high temperature hydrothermal fluids. Their high ore carrying potential is suggested by the presence of varlamoffite and the occurrence of stannite, pyrrhotite and SnCl within the quartz inclusions. Received: 9 April 1996 / Accepted: 12 November 1996  相似文献   

5.
Scheelite-mineralized microtonalite sheets occur on the SE margin of the end-Caledonian Leinster Granite in SE Ireland. Scheelite, polymetallic sulphides and minor cassiterite occur in veins in the microtonalites, disseminated throughout the greisened microtonalite sheets and in the adjacent wallrocks. Two major mineralized vein types occur in the microtonalite sheets: (1) Scheelite ± arsenopyrite ± pyrrhotite occur in quartz-fluorite veins, generally without a muscovite selvage; (2) Sphalerite ± chalcopyrite ± pyrite ± galena ± cassiterite ± stannite occur in quartz + fluorite veins with a coarse muscovite selvage and are often intergrown with the muscovite. Quartz-hosted fluid inclusions were examined from representative samples of both vein types using petrographic, microthermometric and laser Raman spectroscopic techniques. Three distinct types of fluid inclusions have been recognized. Primary, vapour rich Type 1 inclusions in quartz from the scheelite-mineralized veins are of H2O-CO2-CH4-N2 ± H2S ± NaCl composition and formed between 360–530 °C. Primary and secondary, liquid-rich Type 2 fluid inclusions in the base metal sulphide-mineralized veins are of H2O-CH4-N2 ± H2S-NaCl composition and formed between 340–480 °C. They also occur as pseudosecondary and secondary inclusions in scheelite-mineralized veins. Late dilute, low temperature H2O-NaCl + KCl fluid inclusions may be related to late-Caledonian convection of meteoric waters around the cooling Leinster Granite batholith. Received: 4 September 1996 / Accepted: 23 May 1997  相似文献   

6.
Summary Carbonate aggregates in Late Cretaceous lamprophyre dikes of the northeastern Transdanubian Central Range (TCR) in Northwest Hungary have been classified into three genetic groups. Type-I dolomite + calcite ± magnesite aggregates have petrographic and geochemical features similar to ocelli described by other workers. Fluid inclusions in Type-I aggregates homogenize between 77 and 204 °C and are of hydrothermal origin. Type-II aggregates are characterized by a polygonal shape and are mostly dolomite. Based on their shape and primary fluid inclusions which homogenize between 95 and 172 °C, these carbonate aggregates are interpreted to fill vugs produced by the dissolution of olivine phenocrysts. Type-III carbonate aggregates show an irregular to polygonal shape and distinct compositional zonation and contain secondary aqueous fluid inclusions. Homogenization temperatures of fluid inclusions are below 104 °C, and zonation patterns suggest partial recrystallization. These carbonate aggregates are most likely xenoliths and xenocrysts from the wall rocks of the lamprophyre melt conduits.  相似文献   

7.
  Copper and subordinate molybdenum mineralization at Malanjkhand occurs within a fracture-controlled quartz-reef enclosed in a pink granitoid body surrounded by grey-granitoids constituting the regional matrix. Sulfide-bearing stringers, pegmatites with only quartz + microcline and sulfide disseminations, all within the pink-granitoid, represent other minor modes of occurrences. Despite this diversity in mode of occurrence, the mineralogy of ores is quite consistent and conform to a common paragenetic sequence comprising an early `ferrous' stage of precipitation of magnetite (I) and pyrite (I) and, the main-stage chalcopyrite mineralization with minor sphalerite, pyrite (II), magnetite (II), molybdenite and hematite. Both stages witnessed continuous precipitation of quartz ± microcline ± (chlorite, biotite and epidote). The enclosing pink-granitoid and the regional grey-granitoids display alteration features such as saussuritization of plagioclase, breakdown of hornblende and chloritization of biotite on a regional scale, indicating interaction with a pervasive fluid. Quartz and microcline precipitation mostly restricted within the pink granitoid, postdates this alteration. Four types of primary inclusions were encountered in quartz from ore samples: (1) type-I – aqueous-biphase(L + V) inclusions, the commonest variety in all ore types; (2) type-II – aqueous-carbonic(Laq + Lcarb ± Vcarb); (3) type-III – pure-carbonic(Lcarb ± Vcarb) – type-II and III being restricted to stringer and pegmatitic ores, and (4) rare polyphase (Laq + Vaq + calcite/gypsum) inclusions. Quartz in granitoids contain primary type-I inclusions only. Type-I inclusions from ore samples furnish a temperature range (after a rough pressure correction to the T H  -maxima of 140–180 °C) of 150–275 °C and a moderately low salinity of 4–12 wt.% NaCl equivalent. This is inferred to represent the signature of the major component (F2) of the ore fluid. A few type-I inclusions of higher T M (up to 380 °C) and low salinity and density represent the other (F1) identifiable component of the ore fluid present in low proportion. The T H  -maxima and the total range in salinity of type-I inclusions in quartz from granitoids are strikingly similar to those from the ore samples. Composition of syn-ore chlorites furnished a temperature range of 185–327 °C, which conforms to the fluid inclusion microthermometric data. Pressure estimates using standard fluid inclusion geobarometric methods, vary from 550 to 1790 bar in the stringer ores. Observed temperature-salinity/density relationships are best explained by a two-stage evolution model of the ore fluid: the first stage witnessed mixing of the two components, F1 and F2 in unequal proportion, bringing about mineralization. The second stage of evolution was marked by the separation of a carbonic component on continued sulfide precipitation and attendant increase in salinity of the fluid. The F1 component emerged as a distinct, heated and (CO2 + S)-charged entity due to steam-heating and contamination of the early-ingressed F2 fluid at the fracture zone. The pervasive fluid phase in the surrounding granitoids contributed the F2 component. Received: (10 August 1994), 15 August 1995 / Accepted: 12 January 1996  相似文献   

8.
Fluid inclusions have been studied in three pegmatite fields in Galicia, NW Iberian Peninsula. Based on microthermometry and Raman spectroscopy, eight fluid systems have been recognized. The first fluid may be considered to be a pegmatitic fluid which is represented by daughter mineral (silicates)-rich aqueous inclusions. These inclusions are primary and formed above 500 °C (dissolution of daughter minerals). During pegmatite crystallization, this fluid evolved to a low-density, volatile-rich aqueous fluid with low salinity (93% H2O; 5% CO2; 0.5% CH4; 0.2% N2; 1.3% NaCl) at minimum P–T conditions around 3 ± 0.5 kbar and 420 °C. This fluid is related to rare-metal mineralization. The volatile enrichment may be due to mixing of magmatic fluids and fluids equilibrated with the host rock. A drop in pressure from 3 ± 0.5 to 1 kbar at a temperature above 420 °C, which may be due to the transition from predominantly lithostatic to hydrostatic pressure, is recorded by two-phase, water-rich inclusions with a low-density vapour phase (CO2, CH4 and N2). Another inclusion type is represented by two-phase, vapour-rich inclusions with a low-density vapour phase (CO2, CH4 and N2), indicating a last stage of decreasing temperature (360 °C) and pressure (around 0.5 kbar), probably due to progressive exhumation. Finally, volatile (CO2)-rich aqueous inclusions, aqueous inclusions (H2O-NaCl) and mixed-salt aqueous inclusions with low Th, are secondary in charac- ter and represent independent episodes of hydrothermal fluid circulation below 310 °C and 0.5 kbar. Received: 14 October 1999 / Accepted: 5 October 1999  相似文献   

9.
Scheelite mineralization accompanied by muscovite and albite, and traces of Mo-stolzite and stolzite occurs in epigenetic quartz vein systems hosted by two-mica gneissic schists, and locally amphibolites, of the Paleozoic or older Vertiskos Formation, in the Metaggitsi area, central Chalkidiki, N Greece. Three types of primary fluid inclusions coexist in quartz and scheelite: type 1, the most abundant, consists of mixed H2O-CO2 inclusions with highly variable (20–90 vol.%) CO2 contents and salinities between 0.2 and 8.3 equivalent weight % NaCl. Densities range from 0.79 to 0.99 g/cc; type 1 inclusions contain also traces (<2 mol%) of CH4. Type 2 inclusions are nearly 100 vol.% liquid CO2, with traces of CH4, and densities between 0.75 and 0.88 g/cc. Type 3 inclusions, the least abundant, contain an aqueous liquid of low salinity (0.5 to 8.5 equivalent weight% NaCl) with 10–30 vol.% H2O gas infrequently containing also small amounts of CO2 (<2 mol%); densities range from 0.72 to 0.99 g/cc. The wide range of coexisting fluid inclusion compositions is interpreted as a result of fluid immiscibility during entrapment. Immiscibility is documented by the partitioning of CH4 and CO2, into gas-rich (CO2-rich) type 1 inclusions, and the conformity of end-member compositions trapped in type 1 inclusions to chemical equilibrium fractionation at the minimum measured homogenization temperatures, and calculated homogenization pressures. Minimum measured homogenization temperatures of aqueous and gas-rich type 1 inclusions of 220°–250 °C, either to the H2O, or to the CO2 phase, is considered the best estimate of temperature of formation of the veins, and temperature of scheelite deposition. Corresponding fluid pressures were between 1.2 and 2.6 kbar. Oxygen fugacities during mineralization varied from 10−35 to 10−31 bar and were slightly above the synthetic Ni-NiO buffer values. The fluid inclusion data combined with δ18O water values of 3 to 6 per mil (SMOW) and δ13C CO2− fluid of −1.2 to +4.3 per mil (PDB), together with geologic data, indicate generation of mineralizing fluids primarily by late- to post-metamorphic devolatilization reactions. Received: 8 April 1997 / Accepted: 8 July 1997  相似文献   

10.
Summary ?Fluid inclusions from two Mesoproterozoic, metamorphosed layered intrusive complexes, Niquelandia and Barro Alto, Goiás State, Brazil record multiple fluid influx events from the magmatic to granulitic and retrograde metamorphic stages. 1. The oldest inclusions contain high density CO2 ± N2 ± CH4 and are found as primaries in plagioclase and orthopyroxene in mafic granulite with homogenization temperatures between − 48 and − 28 °C. These inclusions may correspond to the early, magmatic stage. This type was found in samples from both the Niquelandia and the Barro Alto complexes. 2. Intragranular, relatively high density CO2 + N2 inclusions (Th between − 33 and − 26 °C) together with decrepitated and reequilibrated N2 inclusions (Th between − 160 and − 151 °C) in the rock-forming minerals can be associated with the granulite facies metamorphism. Such inclusions were found only in the Barro Alto complex. 3. Transgranular, high density, CO2–N2 inclusions (93% CO2 and 7% N2, according to Raman analysis, with Th between − 66.6 and − 50.4 °C) as well as the low density, secondary CO2 ± N2 ± CH4 inclusions (Th between − 13.0 and + 18.7 °C) and the H2O–NaCl–CaCl2 hypersaline inclusions (with halite dissolution temperature between 132 and 354 °C, and Th between 212 and 490 °C) are attributed to different fluid influx events during the retrograde metamorphism. This inclusion type can be found both in the Niquelandia and in the Barro Alto complexes. The fluid inclusion textures and compositions show several stages of fluid evolution. The fluid inclusion measurements and the geothermobarometric data indicate an anticlockwise P-T path for both the Barro Alto and the Niquelandia complexes. Received October 16, 2000; revised version accepted November 20, 2001  相似文献   

11.
Reaction textures, fluid inclusions, and metasomatic zoning coupled with thermodynamic calculations have allowed us to estimate the conditions under which a biotite–hornblende gneiss from the Kurunegala district, Sri Lanka [hornblende (NMg=38–42) + biotite (NMg=42–44) + plagioclase + quartz + K-feldspar + ilmenite + magnetite] was transformed into patches of charnockite along shear zones and foliation planes. Primary fluid inclusion data suggest that two immiscible fluids, an alkalic supercritical brine and almost pure CO2, coexisted during the charnockitisation event and subsequent post-peak metamorphic evolution of the charnockite. These metasomatic fluids migrated through the amphibolite gneiss along shear zones and into the wallrock under peak metamorphic conditions of 700–750 °C, 5–6 kbar, and afl H2O=0.52–0.59. This resulted in the formation of charnockite patches containing the assemblage orthopyroxene (NMg=45–48) + K-feldspar (Or70–80) + quartz + plagioclase (An28) in addition to K-feldspar microveins along quartz and plagioclase grain boundaries. Remnants of the CO2-rich fluid were trapped as separate fluid inclusions. The charnockite patches show the following metasomatic zonation patterns: – a transition zone with the assemblage biotite (NMg= 49–51) + hornblende (NMg = 47–50) + plagioclase + quartz + K-feldspar + ilmenite + magnetite; – a KPQ (K-feldspar–plagioclase–quartz) zone with the assemblage K-feldspar + plagioclase + orthopyroxene (NMg=45–48) + quartz + ilmenite + magnetite; – a charnockite core with the assemblage K-feldspar + plagioclase + orthopyroxene (NMg = 39–41) + biotite (NMg=48–52) + quartz + ilmenite + magnetite. Systematic changes in the bulk chemistry and mineralogy across the four zones suggest that along with metasomatic transformation, this process may have been complicated by partial melting in the charnockite core. This melting would have been coeval with metasomatic processes on the periphery of the charnockite patch. There is also good evidence in the charnockitic core that a second mineral assemblage, consisting of orthopyroxene (NMg= 36–42) + biotite (NMg=50–51) + K-feldspar (Or70–80) + quartz + plagioclase (An28–26), could have crystallised from a partial melt during cooling from 720 to 660 °C at decreasing afl H2O from 0.67 to 0.5. Post-magmatic evolution of charnockite at T < 700 °C resulted in fluids being released during the crystallisation of the charnockitic core. These gave rise to the formation of late stage rim myrmekites along K-feldspar grain boundaries as well as late stage biotite, cummingtonite, and carbonates. Received: 15 September 1999 / Accepted: 8 June 2000  相似文献   

12.
Fluid inclusions were studied in quartz samples from early (stage I) gold-poor quartz veins and later (stage II) gold- and sulphide-rich quartz veins from the Wenyu, Dongchuang, Qiangma, and Guijiayu mesothermal gold deposits in the Xiaoqinling district, China. Fluid inclusion petrography, microthermometry, and bulk gas analyses show remarkably consistent fluid composition in all studied deposits. Primary inclusions in quartz samples are dominated by mixed CO2-H2O inclusions, which have a wide range in CO2 content and coexist with lesser primary CO2-rich and aqueous inclusions. In addition, a few secondary aqueous inclusions are found along late-healed fractures. Microthermometry and bulk gas analyses suggest hydrothermal fluids with typically 15–30 mol% CO2 in stage I inclusions and 10–20 mol% CO2 in stage II inclusions. Estimates of fluid salinity decrease from 7.4–9.2 equivalent wt.% NaCl to 5.7–7.4 equivalent wt.% NaCl between stage I and II. Primary aqueous inclusions in both stages show consistent salinity with, but slightly lower Th total than, their coexistent CO2-H2O inclusions. The coexisting CO2-rich, CO2-H2O, and primary aqueous inclusions in both stage I and II quartz are interpreted to have been trapped during unmixing of a homogeneous CO2-H2O parent fluid. The homogenisation temperatures of the primary aqueous inclusions give an estimate of trapping temperature of the fluids. Trapping conditions are typically 300–370 °C and 2.2 kbar for stage I fluids and 250–320 °C and 1.6 kbar for stage II fluids. The CO2-H2O stage I and II fluids are probably from a magmatic source, most likely devolatilizing Cretaceous Yanshanian granitoids. The study demonstrates that gold is largely deposited as pressures and temperatures fall accompanying fluid immiscibility in stage II veins. Received: 15 May 1997 / Accepted: 10 June 1998  相似文献   

13.
Sediment-hosted disseminated gold mineralisation at Zarshuran, NW Iran   总被引:1,自引:0,他引:1  
Mineralisation at the Zarshuran, NW Iran, occurs on the flank of an inlier of Precambrian rocks hosted in black silty calcareous and carbonaceous shale with interbedded dolomite and limestone varying in thickness from 5 to 60 m and extending along strike for approximately 5–6 km. Two major, steeply dipping sets of faults with distinct trends occur in the Zarshuran: (1) northwest (310–325) and (2) southwest (255–265). The main arsenic mineralisation occurs at the intersection of these faults. The mineral assemblage includes micron to angstrom-size gold, orpiment, realgar, stibnite, getchellite, cinnabar, thallium minerals, barite, Au-As-bearing pyrite, base metal sulphides and sulphosalts. Hydrothermal alteration features are developed in black shale and limestone around the mineralisation Types of alteration include: (1) decalcification, (2) silicification, (3) argillisation, (4) dolomitisation, (5) oxidation and acid leaching and (6) supergene alteration. The early stage of mineralisation involved removal of carbonates from the host rocks, followed by quartz precipitation. The main stage includes massive silicification associated with argillic alteration. In the late stage veining became more dominant and the main arsenic ore was deposited along fault cross cuts and gouge. These characteristics are typical of Carlin-type sediment-hosted disseminated gold deposits. The early stage of mineralisation contains only two-phase aqueous fluid inclusions. The main stage has two groups of three-phase CO2-bearing inclusions with minor CH4 ± N2, associated with high temperature, two-phase aqueous inclusions. During the late stage, fluids exhibit a wide range in composition, salinity and temperature, and CH4 becomes the dominant carbonic fluid with minor CO2 associated with a variety of two-phase aqueous fluid inclusions. The characteristics of fluids at the Zarshuran imply the presence of at least two separate fluids during mineralisation. The intersections of coexisting carbonic and aqueous inclusion isochores, together with stratigraphic and mineral stability evidence, indicate that mineralisation occurred at 945 ± 445 bar and 243 ± 59 °C, implying a depth for mineralisation of at least 3.8 ± 1.8 km (assuming a lithostatic pressure gradient). Fluid density fluctuations and the inferred depth of formation suggest that the mineralisation occurred at the transition between overpressured and normally pressured regimes. Geochronologic studies utilising K/Ar and Ar/Ar techniques on hydrothermal argillic alteration (whole rock and separated clay size fractions) and on volcanic rocks, indicates that mineralisation at Zarshuran formed at 14.2 ± 0.4 Ma, and was contemporaneous with nearby Miocene volcanic activity, 13.7 ± 2.9 Ma. It is proposed that mineralisation was the result of the infiltration of hydrothermal fluids containing a magmatic gas component, and that it was localised in the Zarshuran Unit because of the redox boundary that it provided and/or because it lay between an overpressured region at depth and a zone of circulating, hydrostatically pressured fluids above. Received: 10 December 1997 / Accepted: 5 March 1999  相似文献   

14.
Isotope geochemistry and fluid inclusion study of skarns from Vesuvius   总被引:3,自引:0,他引:3  
Summary We present new mineral chemistry, fluid inclusion, stable carbon and oxygen, as well as Pb, Sr, and Nd isotope data of Ca-Mg-silicate-rich ejecta (skarns) and associated cognate and xenolithic nodules from the Mt. Somma-Vesuvius volcanic complex, Italy. The typically zoned skarn ejecta consist mainly of diopsidic and hedenbergitic, sometimes “fassaitic” clinopyroxene, Mg-rich and Ti-poor phlogopite, F-bearing vesuvianite, wollastonite, gehlenite, meionite, forsterite, clinohumite, anorthite and Mg-poor calcite with accessory apatite, spinell, magnetite, perovskite, baddeleyite, and various REE-, U-, Th-, Zr- and Ti-rich minerals. Four major types of fluid inclusions were observed in wollastonite, vesuvianite, gehlenite, clinopyroxene and calcite: a) primary silicate melt inclusions (THOM = 1000–1050 °C), b) CO2 ± H2S-rich fluid inclusions (THOM = 20–31.3 °C into the vapor phase), c) multiphase aqueous brine inclusions (THOM = 720–820 °C) with mainly sylvite and halite daughter minerals, and d) complex chloride-carbonate-sulfate-fluoride-silicate-bearing saline-melt inclusions (THOM = 870–890 °C). The last inclusion type shows evidence for immiscibility between several fluids (silicate melt – aqueous chloride-rich liquid – carbonate/sulfate melt?) during heating and cooling below 870 °C. There is no evidence for fluid circulation below 700 °C and participation of externally derived meteoric fluids in skarn formation. Skarns have considerably variable 206Pb/204Pb (19.047–19.202), 207Pb/204Pb (15.655–15.670), and 208Pb/204Pb (38.915–39.069) and relatively low 143Nd/144Nd (0.51211–0.51244) ratios. The carbon and oxygen isotope compositions of skarn calcites (δ13CV-PDB = −5.4 to −1.1‰; δ18OV-SMOW = 11.7 to 16.4‰) indicate formation from a 18O- and 13C-enriched fluid. The isotope composition of skarns and the presence of silicate melt inclusion-bearing wollastonite nodules suggests assimilation of carbonate wall rocks by the alkaline magma at moderate depths (< 5 km) and consequent exsolution of CO2-rich vapor and complex saline melts from the contaminated magma that reacted with the carbonate rocks to form skarns. Received March 1, 2000; revised version accepted November 2, 2000  相似文献   

15.
The Jinman Cu deposit is hosted in sandstones and slates of the Jurassic Huakaizuo Formation in the Mesozoic to Cenozoic Lanping basin in western Yunnan, China. Despite the fact that Cu mineralization occurs mainly in quartz–carbonate veins controlled by faults and fractures, the Jinman deposit was classified as a sediment-hosted stratiform Cu deposit, mainly because it is hosted in a sedimentary basin characterized by abundant red beds with many stratiform Cu deposits. A detailed petrographic and microthermometric study of fluid inclusions from the Jinman deposit reveals the presence of abundant CO2-rich fluid inclusions, together with aqueous inclusions. The CO2-rich inclusions have CO2 melting temperatures mainly from −58.0°C to −56.6°C, homogenization temperatures of the carbonic phase (mostly into the liquid phase) mainly between 22°C and 30°C, clathrate melting temperatures from 1.8°C to 9.2°C, with corresponding salinities from 1.6 to 13.4 wt.% NaCl equivalent, and total homogenization temperatures from 226°C to 330°C. The aqueous inclusions have first melting temperatures from −60°C to −52°C, ice melting temperatures from −41.4°C to −2.3°C, with salinities from 3.9 to 29.0 wt.% NaCl equivalent, and total homogenization temperatures mainly from 140°C to 250°C. These fluid inclusion characteristics are comparable to those of orogenic or magmatic mineralization systems and are uncharacteristic of basinal mineralization systems, suggesting that it is inappropriate to classify the Jinman deposit as a sediment-hosted stratiform Cu deposit. The results of this study, together with geochemical data reported previously, suggest that the Jinman deposit formed in a hydrothermal system that involved both extra-basinal, deeply sourced CO2-rich fluid and basinal, aqueous fluid.  相似文献   

16.
Three major mineralization events are recorded at the Rožná uranium deposit (total mine production of 23,000 t U, average grade of 0.24% U): (1) pre-uranium quartz-sulfide and carbonate-sulfide mineralization, (2) uranium, and (3) post-uranium quartz-carbonate-sulfide mineralization. (1) K–Ar ages for white mica from wall rock alteration of the pre-uranium mineralization style range from 304.5 ± 5.8 to 307.6 ± 6.0 Ma coinciding with the post-orogenic exhumation of the Moldanubian orogenic root and retrograde-metamorphic equilibration of the high-grade metamorphic host rocks. The fluid inclusion record consists of low-salinity aqueous inclusions, together with H2O-CO2-CH4, CO2-CH4, and pure CH4 inclusions. The fluid inclusion, paragenetic, and isotope data suggest that the pre-uranium mineralization formed from a reduced low-salinity aqueous fluid at temperatures close to 300°C. (2) The uraniferous hydrothermal event is subdivided into the pre-ore, ore, and post-ore substages. K–Ar ages of pre-ore authigenic K-feldspar range from 296.3 ± 7.5 to 281.0 ± 5.4 Ma and coincide with the transcurrent reorganization of crustal blocks of the Bohemian Massif and with Late Stephanian to Early Permian rifting. Massive hematitization, albitization, and desilicification of the pre-ore altered rocks indicate an influx of oxidized basinal fluids to the crystalline rocks of the Moldanubian domain. The wide range of salinities of fluid inclusions is interpreted as a result of the large-scale mixing of basinal brines with meteoric water. The cationic composition of these fluids indicates extensive interaction with crystalline rocks. Chlorite thermometry yielded temperatures of 260°C to 310°C. During this substage, uranium was probably leached from the Moldanubian crystalline rocks. The hydrothermal alteration of the ore substage followed, or partly overlapped in time, the pre-ore substage alteration. K–Ar ages of illite from ore substage alteration range from 277.2 ± 5.5 to 264.0 ± 4.3 Ma and roughly correspond with the results of chemical U–Pb dating of authigenic monazite (268 ± 50 Ma). The uranium ore deposition was accompanied by large-scale decomposition of biotite and pre-ore chlorite to Fe-rich illite and iron hydrooxides. Therefore, it is proposed that the deposition of uranium ore was mostly in response to the reduction of the ore-bearing fluid by interaction with ferrous iron-bearing silicates (biotite and pre-ore chlorite). The Th data on primary, mostly aqueous, inclusions trapped in carbonates of the ore substage range between 152°C and 174°C and total salinity ranges over a relatively wide interval of 3.1 to 23.1 wt% NaCl eq. Gradual reduction of the fluid system during the post-ore substage is manifested by the appearance of a new generation of authigenic chlorite and pyrite. Chlorite thermometry yielded temperatures of 150°C to 170°C. Solid bitumens that post-date uranium mineralization indicate radiolytic polymerization of gaseous and liquid hydrocarbons and their derivatives. The origin of the organic compounds can be related to the diagenetic and catagenetic transformation of organic matter in Upper Stephanian and Permian sediments. (3) K–Ar ages on illite from post-uranium quartz-carbonate-sulfide mineralization range from 233.7 ± 4.7 to 227.5 ± 4.6 Ma and are consistent with the early Tethys-Central Atlantic rifting and tectonic reactivation of the Variscan structures of the Bohemian Massif. A minor part of the late Variscan uranium mineralization was remobilized during this hydrothermal event.  相似文献   

17.
In the Port Edward area of southern Kwa-Zulu Natal, South Africa, charnockitic aureoles up to 10 m in width in the normally garnetiferous Nicholson's Point Granite, are developed adjacent to intrusive contacts with the Port Edward Enderbite and anhydrous pegmatitic veins. Mineralogical differences between the country rock and charnockitic aureole suggest that the dehydration reaction Bt + Qtz → Opx + Kfs + H2O and the reaction of Grt + Qtz → Opx + Pl were responsible for the charnockitization. The compositions of fluid inclusions show systematic variation with: (1) the Port Edward Enderbite being dominated by CO2 and N2 fluid inclusions; (2) the non-charnockitized granite by saline aqueous inclusions with 18–23 EqWt% NaCl; (3) the charnockitic aureoles by low-salinity and pure water inclusions (<7 EqWt% NaCl); (4) the pegmatites by aqueous inclusions of various salinity with minor CO2. As a result of the thermal event the homogenization temperatures of the inclusions in charnockite show a much larger range (up to 390 °C) compared to the fluid inclusions in granite (mostly <250 °C). Contrary to fluid-controlled charnockitization (brines, CO2) which may have taken place along shear zones away from the intrusive body, the present “proximal” charnockitized granite formed directly at the contact with enderbite. The inclusions indicate contact metamorphism induced by the intrusion of “dry” enderbitic magma into “wet” granite resulting in local dehydration. This was confirmed by cathodoluminescence microscopy showing textures indicative for the local reduction of structural water in the charnockite quartz. Two-pyroxene thermometry on the Port Edward Enderbite suggests intrusion at temperatures of ∼1000–1050 °C into country rock with temperature of <700 °C. The temperature of aureole formation must have been between ∼700 °C (breakdown of pyrite to form pyrrhotite) and ∼1000 °C. Charnockitization was probably controlled largely by heat related to anhydrous intrusions causing dehydration reactions and resulting in the release and subsequent trapping of dehydration fluids. The salinity of the metamorphic fluid in the contact zones is supposed to have been higher at an early stage of contact metamorphism, but it has lost its salt content by K-metasomatic reactions and/or the preferential migration of the saline fluids out of the contact zones towards the enderbite. The low water activity inhibited the localized melting of the granite. Mineral thermobarometry suggests that after charnockite aureole genesis, an isobaric cooling path was followed during which reequilibration of most of the aqueous inclusions occurred. Received: 8 November 1998 / Accepted: 21 June 1999  相似文献   

18.
The Archean Shawmere anorthosite lies within the granulite facies portion of the Kapuskasing Structural Zone (KSZ), Ontario, and is crosscut by numerous linear alteration veins containing calcite + quartz ± dolomite ± zoisite ± clinozoisite ± margarite ±paragonite ± chlorite. These veins roughly parallel the trend of the Ivanhoe Lake Cataclastic Zone. Equilibria involving clinozoisite + margarite + quartz ± calcite ± plagioclase show that the vein minerals were stable at T < 600 °C, XCO2 < 0.4 at P ≈ 6 kbar. The stabilities of margarite and paragonite in equilibrium with quartz are also consistent with T < 600 °C and XCO2 < 0.4 at 6 kbar. Additional assemblages consisting of calcite + clinochlore + quartz + talc + margarite indicate T < 500 °C with XCO2 > 0.9. Thus, vein formation, while clearly retrograde, spanned a range of temperatures, and fluid compositions evolved from H2O-rich to CO2-rich. The calcite in the retrograde veins has δ18O values that range from 8.4 to 11.2‰ (average = +9.7 ± 0.9‰) and δ13C values that range from −3.9 to −1.6‰ (average = −3.1 ± 0.6‰). These values indicate that the fluids from which calcite precipitated underwent extensive exchange with the anorthosite and other crustal lithologies. The fluids may have been initially derived either from devolatilization of metamorphic rocks or crystallization of igneous rocks in the adjacent Abitibi subprovince. Vein quartz contains CO2-rich fluid inclusions (final melting T = −57.0 to −58.7 °C) that range in size from 5 to 17 μm. Measured homogenization temperatures (T h) range from −44.0 to 14.5 °C, however for most inclusions (46 of S1), T h = −44.0 to −21.1 °C (ρCO2 ≈ 1.13 to 1.05 g/cm3). At 400 to 600 °C, these densities correspond to pressures of 3.5 to 7 kbar, which is the best estimate of pressures of vein formation. It has been argued that some high density CO2-rich fluid inclusions found in the KSZ were formed during peak metamorphism and thus document the presence of a CO2-rich fluid during peak granulite facies metamorphism (Rudnick et al. 1984). The association of high density CO2-rich fluid inclusions with clearly retrograde veins documents the formation of similar composition and density inclusions after the peak of metamorphism. Thus, the coincidence of entrapment pressures calculated from fluid inclusion density measurements with peak metamorphic pressures alone should not be considered strong evidence for peak metamorphic inclusion entrapment. All fluid inclusion results are consistent with an initially semi-isobaric retrograde PT path. Received: 2 April 1996 / Accepted: 15 November 1996  相似文献   

19.
The Youjiang basin, which flanks the southwest edge of the Yangtze craton in South China, contains many Carlin-type gold deposits and abundant paleo-oil reservoirs. The gold deposits and paleo-oil reservoirs are restricted to the same tectonic units, commonly at the basinal margins and within the intrabasinal isolated platforms and/or bioherms. The gold deposits are hosted by Permian to Triassic carbonate and siliciclastic rocks that typically contain high contents of organic carbon. Paragenetic relationships indicate that most of the deposits exhibit an early stage of barren quartz ± pyrite (stage I), a main stage of auriferous quartz + arsenian pyrite + arsenopyrite + marcasite (stage II), and a late stage of quartz + calcite + realgar ± orpiment ± native arsenic ± stibnite ± cinnabar ± dolomite (stage III). Bitumen in the gold deposits is commonly present as a migrated hydrocarbon product in mineralized host rocks, particularly close to high grade ores, but is absent in barren sedimentary rocks. Bitumen dispersed in the mineralized rocks is closely associated and/or intergrown with the main stage jasperoidal quartz, arsenian pyrite, and arsenopyrite. Bitumen occurring in hydrothermal veins and veinlets is paragenetically associated with stages II and III mineral assemblages. These observations suggest an intimate relationship between bitumen precipitation and gold mineralization. In the paleo-petroleum reservoirs that typically occur in Permian reef limestones, bitumen is most commonly observed in open spaces, either alone or associated with calcite. Where bitumen occurs with calcite, it is typically concentrated along pore/vein centers as well as along the wall of pores and fractures, indicating approximately coeval precipitation. In the gold deposits, aqueous fluid inclusions are dominant in the early stage barren quartz veins (stage I), with a homogenization temperature range typically of 230°C to 270°C and a salinity range of 2.6 to 7.2 wt% NaCl eq. Fluid inclusions in the main and late-stage quartz and calcite are dominated by aqueous inclusions as well as hydrocarbon- and CO2-rich inclusions. The presence of abundant hydrocarbon fluid inclusions in the gold deposits provides evidence that at least during main periods of the hydrothermal activity responsible for gold mineralization, the ore fluids consisted of an aqueous solution and an immiscible hydrocarbon phase. Aqueous inclusions in the main stage quartz associated with gold mineralization (stage II) typically have a homogenization temperature range of 200–230°C and a modal salinity around 5.3 wt% NaCl eq. Homogenization temperatures and salinities of aqueous inclusions in the late-stage drusy quartz and calcite (stage III) typically range from 120°C to 160°C and from 2.0 to 5.6 wt% NaCl eq., respectively. In the paleo-oil reservoirs, aqueous fluid inclusions with an average homogenization temperature of 80°C are dominant in early diagenetic calcite. Fluid inclusions in late diagenetic pore- and fissure-filling calcite associated with bitumen are dominated by liquid C2H6, vapor CH4, CH4–H2O, and aqueous inclusions, with a typical homogenization temperature range of 90°C to 180°C and a salinity range of 2–8 wt% NaCl eq. It is suggested that the hydrocarbons may have been trapped at relatively low temperatures, while the formation of gold deposits could have occurred under a wider and higher range of temperatures. The timing of gold mineralization in the Youjiang basin is still in dispute and a wide range of ages has been reported for individual deposits. Among the limited isotopic data, the Rb–Sr date of 206 ± 12 Ma for Au-bearing hydrothermal sericite at Jinya as well as the Re–Os date of 193 ± 13 Ma on auriferous arsenian pyrite and 40Ar/39Ar date of 194.6 ± 2 Ma on vein-filling sericite at Lannigou may provide the most reliable age constraints on gold mineralization. This age range is comparable with the estimated petroleum charging age range of 238–185 Ma and the Sm–Nd date of 182 ± 21 Ma for the pore- and fissure-filling calcite associated with bitumen at the Shitouzhai paleo-oil reservoir, corresponding to the late Indosinian to early Yanshanian orogenies in South China. The close association of Carlin-type gold deposits and paleo-oil reservoirs, the paragenetic coexistence of bitumens with ore-stage minerals, the presence of abundant hydrocarbons in the ore fluids, and the temporal coincidence of gold mineralization and hydrocarbon accumulation all support a coeval model in which the gold originated, migrated, and precipitated along with the hydrocarbons in an immiscible, gold- and hydrocarbon-bearing, basinal fluid system.  相似文献   

20.
The Gyeongsang Basin of southeastern Korea contains numerous Cretaceous-early Tertiary (120–40 Ma) granitoid intrusions formed at a convergent plate boundary. The geotectonic setting is similar to that associated with porphyry-type mineralization elsewhere in the Circumpacific region. However, erosion has removed higher-level economic mineralization and exposed deeper levels of the granitoids, representing the poorly mineralized “bottoms” of porphyry copper systems. The intrusions of the Gyeongsang Basin thus provide a unique opportunity to advance our understanding of magmatic-hydrothermal evolution in the roots of porphyry-type systems, below the level of economic mineralization.

The physical and chemical environment during crystallization of the magmas has been characterized through studies of silicate melt and aqueous fluid inclusions in the granitoids. Two different types of silicate melt inclusions were recognized based on occurrence and room-temperature appearance. Type-I inclusions contain one or more crystalline phases and vapor; type-II inclusions consist of a cluster of small crystals, partially devitrified glass, and vapor. Petrographic and Raman analyses indicate that most silicate melt inclusions contain muscovite daughter crystals. Some also contain feldspar. Solidus temperatures of type-I inclusions in quartz phenocrysts range from ≈630to 650°C, whereas solidus temperatures of type-I and type-II inclusions in vug quartz are slightly higher (640–670°C). Liquidus temperatures span a much wider range compared to solidus temperatures, with maximum liquidus temperatures of melts in phenocrysts being slightly higher (≤930°C) than those in vug quartz (≤910°C).

Three types of aqueous inclusions were observed based on occurrence and room temperature phase proportions. Type-A inclusions are liquid rich and low to moderate in salinity; type-B inclusions are vapor rich and low in salinity; type-C inclusions are liquid rich and contain a halite daughter mineral. Some type- A inclusions with a salinity of approximately 25 wt% NaCl equivalent are spatially associated with silicate melt inclusions in phenocrysts, where they occur as three-dimensional clusters of tiny inclusions surrounding the silicate melt inclusion. Type-A inclusions also occur along fractures in quartz phenocrysts. Non-fracture-controlled type-C inclusions are rare in phenocryst quartz, but are common in vug quartz, where they are associated with silicate melt inclusions. Type-C inclusions that coexist with silicate melt inclusions generally homogenize by halite dissolution after the vapor bubble and show a wide range in salinity, from about 30 to >60 wt% NaCl equivalent. Coexisting halite-bearing (Type-C) and vapor-rich (Type-B) inclusions in phenocryst quartz suggest local immiscibility in the late-or post-magmatic fluid.

Pressure-temperature conditions during the final stages of magmatic-hydrothermal activity associated with the granitoid intrusions of the Gyeongsang Basin were approximately 630° to 670° C and 1.9 to 2.5 kbars. These results suggest that the granitoids do not contain economic porphyry coppertype mineralization because the magmas crystallized at high pressures (relative to typical porphyry copper magmas) and did not become saturated in water until a relatively late stage in the crystallization history. Failure to reach water saturation resulted in most of the copper in the original melt being sequestered as a trace component in earlier-crystallizing silicate and sulfide phases to produce anomalous but subeconomic copper grades. Furthermore, owing to the depth of emplacement, less energy was available to fracture the rocks when water did exsolve from the magma, and the pressure remained too high for aqueous fluid immiscibility to be an important metal-concentrating or depositing mechanism. Geological, petrographic, and geochemical characteristics suggest that the granitoid rocks of the Gyeongsang Basin represent ethroot zones of porphyry-type systems, and any higher-grade mineralization that may have been present higher in the system has since been removed by erosion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号