首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The study of star forming regions (SFR) allows us to observe many young stellar objects with both the same metallicities and distances but with different masses. Because of its close distance ( 140pc) Taurus-Auriga is one of the best studied SFR with more than 100 well-studied, low-mass, pre-main sequence stars, T Tauri stars (TTS). A motivation for studying X-ray emission of T associations is to understand the origin of X-rays and coronal activity. The large sample observed with the ROSAT All-Sky Survey (RASS) also enables us to compare different types of young stars. Other primary goals include star formation efficiency and the interaction of young stars with their intermediate environment (probed by absorption of X-rays). RASS detection rates are comparable withEinstein Observatory results: 43 out of 65 (66%) weak-lined TTS (WTTS) and 9 out of 79 (11%) classical TTS (CTTS) exhibit X-ray emission above RASS detection limit. A strong correlation between X-ray surface flux and stellar rotation indicates that WTTS are intrinsically more X-ray active than CTTS, because WTTS rotate faster. However, rotation is not the only parameter that determines X-ray activity. Also, we compare Taurus-Auriga TTS with TTS of southern SFR like ScoCen, Lupus, Chamaeleon, and CrA. A new result is that CTTS and WTTS can be discriminated reliably by their X-ray spectral hardness ratios. X-ray emission of CTTS appears to be harder, partly because of circumstellar absorption. Spectral fits give results consistent with Raymond-Smith spectra and emission temperatures of 1.0 keV for both WTTS and CTTS. However, we find that CTTS and WTTS have significantly different X-ray luminosity functions. Medians of absorption corrected X-ray luminosities (logL X in cgs units) are 29.701 ± 0.045 for WTTS and 29.091 ± 0.032 for CTTS. WTTS are intrinsically more luminous than CTTS, most likely because WTTS rotate on average faster than CTTS and are less absorbed. This paper concentrates on differences between CTTS and WTTS and indirect clues to be drawn from X-ray absorption and hardness ratios about circumstellar material around TTS.  相似文献   

2.
We present a spectroscopic and photometric follow-up of binary stars, discovered in a sample of X-ray sources, aimed at a deep characterization of the stellar X-ray population in the solar neighborhood and in Star Forming Regions (SFRs). The sources have been selected from the RasTyc sample, obtained by the cross-correlation between the ROSAT all-sky survey and Tycho catalogues (Guillout et al., 1999). Thanks to the high resolution spectroscopy, we have obtained good radial velocity curves, whose solutions provided us with the mass ratios and minimum masses of the components. We have also obtained an accurate spectral classification with codes specifically developed by us. In addition, we could obtain information on the age of the sources through the Lii-6708 line and on the chromospheric activity level through the Hα line.We show also some results on very young pre-main sequence (PMS) binaries discovered as optical counterparts of X-ray sources in SFRs. The spectroscopic and photometric monitoring has allowed us to determine the orbital and physical parameters and the rotation periods, that are of great importance for testing the models of PMS evolution.  相似文献   

3.
I argue that temperatures of spots, responsible for observed periodical light variations of T Tauri stars (TTS), are not known with reliable accuracy to discriminate between chromospheric and accretion theories of TTS 's phenomenon. The hypothesis is set up that spots on classical TTS (CTTS) are due to heating of stellar surface by radiation from a collisional accretion shock, whereas spots on weak line TTS (WTTS), at least in some cases, are connected with a collisionless accretion shock rather than chromospheric activity. Possible scenarios of WTTS interaction with circumstellar matter are discussed.  相似文献   

4.
In understanding the nucleosynthesis of the elements in stars, one of the most important quantities is the reaction rate and it must be evaluated in terms of the stellar temperature T, and its determination involves the knowledge of the excitation function σ(E) of the specific nuclear reaction leading to the final nucleus. In this paper, the effect of thermonuclear reaction rates to the pre-main sequence evolution of low mass stars having masses 0.7, 0.8, 0.9 and 1M are studied by using our modified Stellar Evolutionary Program.  相似文献   

5.
We have started a spectroscopic survey to identify new chromospherically active components and low-mass pre-main sequence (PMS) stars in recently discovered All Sky Automated Survey (ASAS) eclipsing binaries. In this paper, we briefly describe our scientific motivation, the observing tools and the results obtained from the first phase of this survey. Using the available observing facilities in India, the spectroscopic observations of a sample of 180 candidate eclipsing binary stars selected from ASAS-I&II releases were carried out during 2004–2006. The strength of Hα emission was used to characterize the level of chromospheric activity. Our spectroscopic survey reveals that out of 180 stars about 36 binary systems show excess Hα emission. One of the objects in our sample, ASAS 081700-4243.8, displays very strong Hα emission. Follow-up high-resolution spectroscopic observations reveal that this object is indeed very interesting and most likely a classical Be-type system with K0III companion.  相似文献   

6.
Observations of rotational modulation of continuum brightness and photospheric and chromospheric spectral-line profiles of late-type stars indicate the presence of very inhomogeneous surface temperature distributions. We present three stellar examples (VY Ari, HR 7275, HU Vir) where time-series photometry is used to trace the evolution of spotted regions. Simultaneous spectroscopy and Doppler imaging for one of the three stars (HU Virgo, Fig. 1) makes it possible to compute the temperature distribution of the photosphere and the relative intensity distribution of parts of the chromosphere (from CaII K and H line profiles). The combination of time-series spot modeling and Doppler imaging enabled us to determine thesign and amount of differential surface rotation on HU Vir. We found a big, cool polar spot (see figure below) and a differential (surface) rotation law where higher-latitude regions rotate faster than lower-latitude regions (opposite to what we see on the Sun). Currently, this ensemble of techniques - time-series photometry and photospheric and chromospheric Doppler imaging - is only applicable to stars overactive by approximately a factor of 100 as compared to the active Sun, e.g. the evolved components in RS CVn-type binaries and some rapidly-rotating, single, pre-main sequence stars or giant stars. Stellar rotation is a fundamental parameter for (magnetic) activity. Starspots, or any other surface inhomogeneities, allow one to derive very precise stellar rotation rates and, if coupled with seismological observations of solar-type stars, could provide information on the internal angular momentum distribution in overactive late-type stars.To be published in Astronomy & Astrophysics.  相似文献   

7.
Non-degenerate stars of essentially all spectral classes are soft X-ray sources. Their X-ray spectra have been important in constraining physical processes that heat plasma in stellar environments to temperatures exceeding one million degrees. Low-mass stars on the cooler part of the main sequence and their pre-main sequence predecessors define the dominant stellar population in the galaxy by number. Their X-ray spectra are reminiscent, in the broadest sense, of X-ray spectra from the solar corona. The Sun itself as a typical example of a main-sequence cool star has been a pivotal testbed for physical models to be applied to cool stars. X-ray emission from cool stars is indeed ascribed to magnetically trapped hot gas analogous to the solar coronal plasma, although plasma parameters such as temperature, density, and element abundances vary widely. Coronal structure, its thermal stratification and geometric extent can also be interpreted based on various spectral diagnostics. New features have been identified in pre-main sequence stars; some of these may be related to accretion shocks on the stellar surface, fluorescence on circumstellar disks due to X-ray irradiation, or shock heating in stellar outflows. Massive, hot stars clearly dominate the interaction with the galactic interstellar medium: they are the main sources of ionizing radiation, mechanical energy and chemical enrichment in galaxies. High-energy emission permits to probe some of the most important processes at work in these stars, and put constraints on their most peculiar feature: the stellar wind. Medium and high- resolution spectroscopy have shed new light on these objects as well. Here, we review recent advances in our understanding of cool and hot stars through the study of X-ray spectra, in particular high-resolution spectra now available from XMM-Newton and Chandra. We address issues related to coronal structure, flares, the composition of coronal plasma, X-ray production in accretion streams and outflows, X-rays from single OB-type stars, massive binaries, magnetic hot objects and evolved WR stars.  相似文献   

8.
We have built different models for stars of the same spectral type than the Sun but with different levels of chromospheric activity, to study the response of the S index of activity built from the emission of the Ca II H and K lines to changes in the chromospheric structure. We found that the fact that there are many stars with either strong or weak emission, but few with intermediate values of S, the so-called Vaughan–Preston gap, can be due to a discontinuity in the response of the Ca II lines to chromospheric heating. In fact, we are able to reproduce the observed distribution of the number of stars as a function of S.  相似文献   

9.
In the spectra of red giants the chromospheric emission feature found in the core of the Ca II K line often exhibits an asymmetric profile. This asymmetry can be documented by a parameter V/R which is classified as > 1, 1, or < 1 if the violet wing of the emission profile is of greater, equal, or lower intensity than the redward wing. A literature search has been conducted to compile a V/R dataset which builds on the large survey of bright field giants made by Wilson (1976). Among stars of luminosity classes II–III–IV the majority of those with V/R > 1 are found to be bluer than B-V =1.3, while those with V/R < 1 are mostly redder than this colour. Stars with nearly symmetric profiles, V/R≈ 1, are found throughout the colour range 0.8 < B-V < 1.5. There is no sharp transition line separating stars of V/R > 1 and < 1 in the colour-magnitude diagram, but rather a ‘transition zone’ centered at B-V ≈ 1.3. The center of this zone coincides closely with a ‘coronal dividing line’ identified by Haish, Schmitt and Rosso (1991) as the red envelope in the H–R diagram of giants detected in soft x-ray emission by ROSAT. It is suggested that both the transition to a Ca II K emission asymmetry of V/R < 1 and the drop in soft x-ray activity across the coronal dividing line are related to changes in the dynamical state of the chromospheres of red giants. By contrast, the onset of photometric variability due to pulsation occurs among stars of early-M spectral type, that are redward of the mid-point of the Ca II V/R ‘transition zone’, suggesting that the chromospheric motions which produce an asymmetry of V/R < 1 are established prior to the onset of pulsation. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
Elemental abundances in late-type stars are of interest in several ways: they determine the location of the stars in the HR diagram and therefore their ages, as well as the atmospheric structure in their middle and upper photospheres. Especially in the case of chromospherically active late-type stars the question arises to what degree the upper photosphere is influenced by the nearby chromosphere. Analysing S/N ∼ 200 and Δλ/λ ∼ 20 000 data, we found a mean metallicity index [M/H] = −0.2 for programme K and M field stars based on an analysis of spectra in the region 5500–9000 Å. We also found that the Ca  I 6162-Å transition is a potential surface gravity indicator for K-type stars. For the chromospheric activity interval 4.4 < log  F Mg II  < 6.6 we did not find any chromospheric activity impact on photospheric and upper photospheric transitions. With the derived metallicity, we confirmed the Li abundance from our previous paper and thus its dependence on the Mg  II chromospheric activity index. The nature of the spectrum for the active M-type star Gl 896A is explained by pure rotation of 14 km s−1. As far as the lithium–rotation relation is concerned, the spectrum of Gl 517 is rotationally broadened as well, by 12 km s−1, and the Li abundance is the second highest in our sample of stars. However, there is no link between very high Li abundance, 2.2 dex, in the K dwarf star Gl 5 and stellar rotation.  相似文献   

11.
We study the differences in chromospheric structure induced in K stars by stellar activity, to expand our previous work for G stars, including the Sun as a star. We selected six stars of spectral type K with  0.82 < B − V < 0.90  , including the widely studied Epsilon Eridani and a variety of magnetic activity levels. We computed chromospheric models for the stars in the sample, in most cases in two different moments of activity. The models were constructed to obtain the best possible match with the Ca  ii K and the Hβ observed profiles. We also computed in detail the net radiative losses for each model to constrain the heating mechanism that can maintain the structure in the atmosphere. We find a strong correlation between these losses and   S Ca II  , the index generally used as a proxy for activity, as we found for G stars.  相似文献   

12.
The relationships among traditional wind and disk diagnostics - Hα and [OI]λ6300 lines and IR luminosity excesses, respectively - and star parameters are critically analysed. The total sample includes 109 PMS stars - 20 Weak-line T Tauri (WTTS), 45 Classical T Tauri (CTTS) and 44 HAeBe stars-. Our results suggest that Hα is neither a wind nor an accretion tracer. Hα and [OI] emissions seem to correlate very well with the photospheric luminosity and not with ΔLIR/Lph, a parameter related to the origin of the IR excesses. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
We present here the results of our high resolution echelle spectroscopic observations of six recently identified spectroscopic binary systems with late-type stellar components (HD 82159 (BD + 11 2052 A); HIP 63322 (BD + 39 2587); HD 160934 (RE J1738 + 611); HD 89959 (BD + 41 2078); HD 143705 (BD + 29 2752); HD 138157 (OX Ser)). The orbital solution has been obtained using precise radial velocities determined by cross-correlation with radial velocity standard stars as well as previous values reported by other authors. These multiwavelength optical observations allow us to study the chromosphere of these active binary systems using the information provided by several optical spectroscopic features (from Ca II H &; K to Ca II IRT lines) that are formed at different heights in the chromosphere. The chromospheric contribution in these lines has been determined using the spectral subtraction technique. In addition, we have determined rotational velocities (vsin i), lithium (Li I λ 6707.8 Å) abundance, and kinematic properties (membership in representative young disk stellar kinematic groups).  相似文献   

14.
Selected key problems in cool-star astrophysics are reviewed, with emphasis on the importance of new ultraviolet missions to tackle the unresolved issues.UV spectral signatures are an essential probe of critical physical processes related to the production and transport of magnetic energy in astrophysical plasmas ranging, for example, from stellar coronae, to the magnetospheres of magnetars, and the accretion disks of protostars and Active Galactic Nuclei. From an historical point of view, our comprehension of such processes has been closely tied to our understanding of solar/stellar magnetic activity, which has its origins in a poorly understood convection-powered internal magnetic dynamo. The evolution of the Sun's dynamo, and associated magnetic activity, affected the development of planetary atmospheres in the early solar system, and the conditions in which life arose on the primitive Earth. The gradual fading of magnetic activity as the Sun grows old likewise will have profound consequences for the future heliospheric environment. Beyond the Sun, the magnetic activity of stars can influence their close-in companions, and vice versa.Cool star outer atmospheres thus represent an important laboratory in which magnetic activity phenomena can be studied under a wide variety of conditions, allowing us to gain insight into the fundamental processes involved. The UV range is especially useful for such studies because it contains powerful diagnostics extending from warm (∼ 104 K) chromospheres out to hot (1–10 MK) coronae, and very high-resolution spectroscopy in the UV has been demonstrated by the GHRS and STIS instruments on HST but has not yet been demonstrated in the higher energy EUV and X-ray bands. A recent example is the use of the hydrogen Lyα resonance line—at 110 000 resolution with HST STIS—study, for the first time, coronal winds from cool stars through their interaction with the interstellar gas. These winds cannot be detected from the ground, for lack of suitable diagnostics; or in the X-rays, because the outflowing gas is too thin.A 2m class UV space telescope with high resolution spectroscopy and monitoring capabilities would enable important new discoveries in cool-star astronomy among the stars of the solar neighborhood out to about 150 pc. A larger aperture facility (4–6 m) would reach beyond the 150 pc horizon to fainter objects including young brown dwarfs and pre-main sequence stars in star-forming regions like Orion, and magnetic active stars in distant clusters beyond the Pleiades and α Persei. This would be essential, as well, to characterize the outer atmospheres of stars with planets, that will be discovered by future space missions like COROT, Kepler, and Darwin.Deceased October 23, 2005  相似文献   

15.
This is the first paper of a series aimed at studying the properties of late-type members of young stellar kinematic groups. We concentrate our study on classical young moving groups such as the Local Association (Pleiades moving group,     , IC 2391 supercluster (35 Myr), Ursa Major group (Sirius supercluster, 300 Myr), and Hyades supercluster (600 Myr), as well as on recently identified groups such as the Castor moving group (200 Myr). In this paper we compile a preliminary list of single late-type possible members of some of these young stellar kinematic groups. Stars are selected from previously established members of stellar kinematic groups based on photometric and kinematic properties as well as from candidates based on other criteria such as their level of chromospheric activity, rotation rate and lithium abundance. Precise measurements of proper motions and parallaxes taken from the Hipparcos Catalogue, as well as from the Tycho-2 Catalogue, and published radial velocity measurements are used to calculate the Galactic space motions ( U , V , W ) and to apply Eggen's kinematic criteria in order to determine the membership of the selected stars to the different groups. Additional criteria using age-dating methods for late-type stars will be applied in forthcoming papers of this series. A further study of the list of stars compiled here could lead to a better understanding of the chromospheric activity and their age evolution, as well as of the star formation history in the solar neighbourhood. In addition, these stars are also potential search targets for direct imaging detection of substellar companions.  相似文献   

16.
We report observations of the He  i λ 5876 (D3) line in the late A- and early F-type stars in the Pleiades and Alpha Persei star clusters used to determine chromospheric activity levels. This represents the first sample of young stars in this temperature range with chromospheric activity measurements. We find the same average activity level in the young early F stars as in Hyades-age stars and field stars. In addition, the young star sample shows the same large star-to-star variation in activity as seen in the older stars. Thus, as a whole, chromospheric activity in this photospheric temperature range remains the same over nearly a factor of 100 in stellar age (50 Myr to 3 Gyr), in striking contrast to the behaviour of later-type stars. In the five late A stars we find three certain detections of D3 and one likely detection. This includes the bluest star yet observed with a chromospheric D3 line, Pleiades star HII 1362 at ( B − V )0=0.22, making it one of the earliest stars with an observed chromosphere. The late A stars have D3 equivalent widths comparable to the weakest early F stars. However, when comparing D3 measurements in the young late A stars with older late A stars, we find evidence for a slight decrease in activity with age based on the large number of non-detections in the older stars. We find an apparently linear relationship between the activity upper limit and B − V over our entire range of B − V . Extrapolated blueward, this relationship predicts that the chromospheric D3 line would disappear for all stars at B − V ≈0.13.  相似文献   

17.
The long-term monitoring and high photometric precision of the Kepler satellite will provide a unique opportunity to sound the stellar cycles of many solar-type stars using asteroseismology. This can be achieved by studying periodic changes in the amplitudes and frequencies of the oscillation modes observed in these stars. By comparing these measurements with conventional ground-based chromospheric activity indices, we can improve our understanding of the relationship between chromospheric changes and those taking place deep in the interior throughout the stellar activity cycle. In addition, asteroseismic measurements of the convection zone depth and differential rotation may help us determine whether stellar cycles are driven at the top or at the base of the convection zone. In this paper, we analyse the precision that will be possible using Kepler to measure stellar cycles, convection zone depths and differential rotation. Based on this analysis, we describe a strategy for selecting specific targets to be observed by the Kepler Asteroseismic Investigation for the full length of the mission, to optimize their suitability for probing stellar cycles in a wide variety of solar-type stars.  相似文献   

18.
Long-term homogeneous photometry for 35 classical T Tauri stars (CTTS) in the Taurus–Auriga star-forming region has been analyzed. Reliable effective temperatures, interstellar extinctions, luminosities, radii, masses, and ages have been determined for the CTTS. The physical parameters and evolutionary status of 35 CTTS from this work and 34 weak-line T Tauri stars (WTTS) from previous studies have been compared. The luminosities, radii, and rotation periods of low-mass (0.3–1.1 M ) CTTS are shown to be, on average, greater than those of low-mass WTTS, in good agreement with the evolutionary status of these two subgroups. The mean age of the younger subgroup of WTTS from our sample (2.3 Myr) essentially coincides with the mean duration of the protoplanetary disk accretion phase (2.3 Myr) for a representative sample of low-mass stars in seven young stellar clusters. The accretion disk dissipation time scale for the younger subgroup of CTTS (<4 Myr) in the Taurus–Auriga star-forming region is shown to be no greater than 0.4 Myr, in good agreement with the short protoplanetary disk dissipation time scale that is predicted by present-day protoplanetary disk evolution models.  相似文献   

19.
Based on the survey of emission-line stars in a wide field of the Orion star forming region, surface distributions of young stellar populations and gaseous clouds are compared as a whole in an attempt to make a speculation on the star formation process in this region. Existence of a primeval molecular cloud is suggested as the birth site of older members of emission-line stars and probably of X-ray detected pre-main sequence stars. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
We have used new, deep, visible and near infrared observations of the compact starburst cluster in the giant HII region NGC 3603 and its surroundings with the WFC3 on HST and HAWK-I on the VLT to study in detail the physical properties of its intermediate mass (∼1–3 M) stellar population. We show that after correction for differential extinction and actively accreting stars, and the study of field star contamination, strong evidence remains for a continuous spread in the ages of pre-main sequence stars in the range ∼2 to ∼30 Myr within the temporal resolution available. Existing differences among presently available theoretical models account for the largest possible variation in shape of the measured age histograms within these limits. We also find that this isochronal age spread in the near infrared and visible Colour-Magnitude Diagrams cannot be reproduced by any other presently known source of astrophysical or instrumental scatter that could mimic the luminosity spread seen in our observations except, possibly, episodic accretion. The measured age spread and the stellar spatial distribution in the cluster are consistent with the hypothesis that star formation started at least 20–30 Myrs ago progressing slowly but continuously up to at least a few million years ago. All the stars in the considered mass range are distributed in a flattened oblate spheroidal pattern with the major axis oriented in an approximate South-East–North-West direction, and with the length of the equatorial axis decreasing with increasing age. This asymmetry is most likely due to the fact that star formation occurred along a filament of gas and dust in the natal molecular cloud oriented locally in this direction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号