首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

It is axiomatically true that urbanization in India's metropolises and large cities has been exacerbated since the beginning of the millennium, consuming the natural and semi-natural ecosystem on the outskirts of the city, resulting in a zone with a distinct climate known as urban climate. Such a climate—the result of a built-up environment is distinctly different from the natural climate as the paved surface and concrete skyscrapers not only destroy the natural ecosystem, it peculiarly induce a different kind of insolation, cooling and air drainage were lacking in green space, water bodies and open space cannot accommodate with environmental rhythm properly, resulting into the accumulation of heat, ecological derangement of subsurface soil which can easily be predicted by GIS analysis. This paper is an attempt to measure urban growth and its impact on the environment in the metropolitan city Kolkata. The use of satellite data and GIS techniques to detect urban expansion is a highly scientific strategy. Using geospatial techniques, the current study attempts to examine major urban changes in Kolkata and its surroundings from 1988 to 2021. Landsat 5 TM and Landsat 8 OLI temporal data are used to identify land-use change through unsupervised classification; Spectral Radiance Model and Split Window Algorithm method are used for identifying land surface temperature change. SRTM DEM (30 m) has been used to identify flood risk zones and several spectral indices like Normalized Difference Vegetation Index and Modified Normalized Difference Water Index are a further extension for environmental assessment. By all such suitable methods, a clearer change in an urban environment is detected within the period of 33 years (1988–2021). The result shows that the population changes, vegetation cover and built-up area, and accessibility are at a rapid rate. These changes are causing major environmental degradation in the city. The classification result indicates that appropriate land use planning and environmental monitoring are required for the long-term exploitation of these resources.

  相似文献   

2.
3.
Air pollution has been a major transboundary problem and a matter of global concern for decades. Climate change and air pollution are closely coupled. Just as air pollution can have adverse effects on human health and ecosystems, it can also impact the earth’s climate. As we enter an era of rapid climate change, the implications for air quality need to be better understood, both for the purpose of air quality management and as one of the societal consequences of climate change. In this study, an attempt has been made to estimate the current air quality to forecast the air quality index of an urban station Kolkata (22.65°N, 88.45°E), India for the next 5 years with neural network models. The annual and seasonal variability in the air quality indicates that the winter season is mostly affected by the pollutants. Air quality index (AQI) is estimated as a geometric mean of the pollutants considered. Different neural network models are attempted to select the best model to forecast the AQI of Kolkata. The meteorological parameters and AQI of the previous day are utilized to train the models to forecast the AQI of the next day during the period from 2003 to 2012. The selection of the best model is made after validation with observation from 2013 to 2015. The radial basis functional (RBF) model is found to be the best network model for the purpose. The RBF model with various architectures is tried to obtain precise forecast with minimum error. RBF of 5:5-91-1:1 structure is found to be the best fit for forecasting the AQI of Kolkata.  相似文献   

4.
Rapid urbanization has emerged as one of the most critical challenges to ecological sustainability in urban areas. In developing countries, the degradation of the ecosystem is more prominent due to the lack of urban planning. Thus, it has become urgent for researchers to identify the ecological efficiency (EE) changes imposed by urban expansion and promote sustainable land use planning. This study aims to develop a comprehensive urban ecological efficiency (UEE) framework in the Kolkata Metropolitan Area (KMA), India, from 2000 to 2020. Principal component analysis (PCA) was used to develop a remote sensing-based UEE index (UEEI) based on five effective ecological parameters (Greenness, Dryness, Heat, Wetness and vegetation health. A single sensitivity parameter was also calculated to determine the role of a single parameter based on which management strategies can be carried out. The findings showed that (i) there were substantial deteriorations of UEE in the last 20 years. In 2000 the areas with good EE were about 65.5% which declined to 53.72% in 2010 and 20.87% in 2020. The areas with good UEE decreased 68% and 61% from 2000 to 2020 and 2010 to 2020, respectively; (ii) the areas with good UEE were 52% in 2000, while 38% in 2010. Most urban centres (Bhadreshwar, Champdani, Srirampur, Bally, Howrah, Kamarhati, Baranagar, Dum Dum, South Dum Dum, Rajarhat, Bidhannagar) located around the Kolkata megacity are characterized by poor and very poor EE (ranges of 0.60–1.00). Thus, spatiotemporal pattern of UEE could assist to clarify the administrative responsibilities as well as obligations. In addition to this, the UEE framework can help for scientific guidance of urban ecosystem protection and restoration through comprehensive spatial landscape planning.  相似文献   

5.
The sea levels along the semi-arid South Texas coast are noted to have risen by 3–5 mm/year over the last five decades. Data from General Circulation Models (GCMs) indicate that this trend will continue in the 21st century with projected sea level rise in the order of 1.8–5.9 mm/year due to the melting of glaciers and thermal ocean expansion. Furthermore, the temperature in South Texas is projected to increase by as much as 4 °C by the end of the 21st century creating a greater stress on scarce water resources of the region. Increased groundwater use hinterland due to urbanization as well as rising sea levels due to climate change impact the freshwater-saltwater interface in coastal aquifers and threaten the sustainability of coastal communities that primarily rely on groundwater resources. The primary goal of this study was to develop an integrated decision support framework to assist land and water planners in coastal communities to assess the impacts of climate change and urbanization. More specifically, the developed system was used to address whether coastal side (primarily controlled by climate change) or landward side processes (controlled by both climate change and urbanization) had a greater control on the saltwater intrusion phenomenon. The decision support system integrates a sharp-interface model with information from GCMs and observed data and couples them to statistical and information-theoretic uncertainty analysis techniques. The developed decision support system is applied to study saltwater intrusion characteristics at a small coastal community near Corpus Christi, TX. The intrusion characteristics under various plausible climate and urbanization scenarios were evaluated with consideration given to uncertainty and variability of hydrogeologic parameters. The results of the study indicate that low levels of climate change have a greater impact on the freshwater-saltwater interface when the level of urbanization is low. However, the rate of inward intrusion of the saltwater wedge is controlled more so by urbanization effects than climate change. On a local (near coast) scale, the freshwater-saltwater interface was affected by groundwater production locations more so than the volume produced by the community. On a regional-scale, the sea level rise at the coast was noted to have limited impact on saltwater intrusion which was primarily controlled by freshwater influx from the hinterlands towards the coast. These results indicate that coastal communities must work proactively with planners from the up-dip areas to ensure adequate freshwater flows to the coast. Field monitoring of this parameter is clearly warranted. The concordance analysis indicated that input parameter sensitivity did not change across modeled scenarios indicating that future data collection and groundwater monitoring efforts should not be hampered by noted divergences in projected climate and urbanization patterns.  相似文献   

6.
高度城镇化背景下水系演变及其响应   总被引:2,自引:0,他引:2       下载免费PDF全文
针对长江三角洲地区高度城镇化对水系剧烈影响的事实,以该区太湖平原苏州市为例,选取河网密度、水面率、分形维数和支流发育系数作为水系变化指标,运用GIS分析近50年来河网的时空变化规律,在此基础上,研究水系变化对于城镇化及降水变化的定量响应,分析高度城镇化下水系的发展趋势。结果表明:①近50年来研究区水系呈衰减趋势,河网密度、水面率、分形维数和支流发育系数分别下降5.6%、19%、1.2%和3%;区内水系禀赋差异大。②近50年来水系衰减的主要影响因素为城镇化,气候变化对其影响相对较弱;在水系变化中,城镇化的贡献率在67%以上。③随着城镇化率增加,研究区河网密度、分形维数、支流发育系数呈现先增长后衰减的"倒U型"曲线特征;苏州的高度城镇化与其水系表现出"先松弛,后紧密"的关系,二者的发展目前处于曲线右侧;未来将过渡到"高水平适应阶段"。本研究的结果丰富了城镇化与水系发展关系研究,可为其他地区水系系统的健康、绿色发展和保护提供参考。  相似文献   

7.
Research Progress on the Impact of Urbanization on Climate Change   总被引:3,自引:0,他引:3  
The world has been undergoing a remarkable process of urbanization, especially in developing countries in recent years. The urbanization process has brought about great urban development and large population agglomeration, changes in production and lifestyle, and man-made disturbances such as greenhouse gas and pollution emissions. As the global urbanization process continues to advance, its impact on climate change continues to strengthen significantly. This paper mainly reviewed and summarized relevant researches from two aspects: the influence of urbanization on climate change and the mechanism of influence of urbanization on climate change. Urbanization causes regional warming and urban heat island effect, extreme events such as high temperature, heat wave and heavy rainfall increase in frequency, and also leads to increased urban flood risk. The increase of pollutant emission in the process of urbanization is the main cause of air quality deterioration. Urbanization also has an indirect impact on air quality by changing urban climate. Urbanization has an important impact on climatic factors such as relative humidity, wind speed, sunshine and cloud cover. The impacts of urbanization on climate change are mainly realized through underlying surface changes, greenhouse gas and pollution emissions, anthropogenic heat emissions and urban high heat capacity. Urbanization not only directly affects the regional/local climate, but also indirectly affects the regional/local climate by promoting global climate change. Therefore, the impact of urbanization on climate change has a global and regional multi-scale superposition effect.  相似文献   

8.
In the past few decades, rapid urbanization has occurred in many regions of the Kingdom of Saudi Arabia due to increasing population and urban development. Additionally, the effects of global warming on rainfall characteristics have been observed. This rapid change in urbanization and climate change has cause significant changes in the nature of land surfaces and rainfall patterns, which affect the runoff process and the amount of surface runoff during floods. This study investigated the effect of urbanization and rainfall intensity for Hafr Al-Batin watershed located in Saudi Arabia. For this purpose, a hydrologic model, HEC-HMS, was adopted to simulate the flow of different rainfall intesities and urbanization levels. Simulated results showed that for a 100-year storm, a 24-h duration, and an urbanization level of 80%, the peak flow was 213% higher than the estimated current peak and the runoff volume was 112% higher than the current runoff volume. These results show a strong linear correlation between the level of urbanization and both peak discharge and runoff volume. Furthermore, the results indicate that for short return periods, the peak flow is more sensitive to the level of urbanization compared to long periods.  相似文献   

9.
Zhang  Jiawen  Liesch  Tanja  Chen  Zhao  Goldscheider  Nico 《Hydrogeology Journal》2023,31(5):1197-1208

Karst areas contain valuable groundwater resources and high biodiversity, but are particularly vulnerable to climate change and human impacts. Land-use change is the cause and consequence of global environmental change. The releases of the Climate Change Initiative-Land Cover (CCI-LC) and World Karst Aquifer Map (WOKAM) datasets have made it possible to explore global land-use changes in karst areas. This paper firstly analyses the global karst land-use distribution in 2020, as well as the land-use transition characteristics between 1992 and 2020. Then, two indicators, proportion of land-use change and dominant type of land-use change, are proposed to identify the spatial characteristics of land-use change in global karst areas. Finally, three examples of land-use change in karst areas are analyzed in detail. Land-use types and proportions of the global karst areas from large to small are as follows: forest (31.78%), bare area (27.58%), cropland (19.02%), grassland (10.87%), shrubland (7.21%), wetland (1.67%), ice and snow (1.16%) and urban (0.71%). The total area of global karst land-use change is 1.30 million km2, about 4.85% of global karst surface. The land-use change trend of global karst is dominated by afforestation, supplemented by scattered urbanization and agricultural reclamation. The tropical climate has a higher intensity of land-use change. Regions of agricultural reclamation are highly consistent with the population density. These results reflect the impact of human activities and climate change on land-use changes in global karst areas, and serve as a basis for further research and planning of land resource management.

  相似文献   

10.
This article examines the effects of watershed urbanization on stream flood behavior in the Los Angeles metropolitan region. Stream gauge data, spatially distributed rainfall data, land use/land cover, and census population data were used to quantify change in flood behavior and urbanization in multiple watersheds. Increase in flood discharge started at the very early stage of the urbanization when the population density was relatively low but the rate of increase of flood discharge varied across watersheds depending on the distribution of the imperviousness surface and flood mitigation practices. This spatial variability in rainfall–runoff indices and the increasing flood risk across the metropolitan region has posed a challenge to the conventional flood emergency management, which usually responds to flood damages rather than being concerned with the broader issues of land use, land cover, and planning. This study pointed out that alternative land use planning and flood management practices could be mitigating the urban flood implemented hazard.  相似文献   

11.
中国城市洪涝问题及成因分析   总被引:6,自引:0,他引:6       下载免费PDF全文
随着经济社会的发展,中国步入城镇化快速发展的阶段,城镇化率已由2000年的36.22%增加到2014年的54.77%。在全球气候变化与快速城镇化背景下,中国城市洪涝灾害日益严重。阐述了全球气候变化及城镇化对城市降水和极端暴雨的影响机制,并从流域产汇流角度分析了城镇化对洪水过程的影响,系统剖析了中国城市洪涝频发的主要原因。在成因分析的基础上,进一步提出了中国城市洪涝防治的应对策略,主要包括:①以低影响开发理念为指导,加强城市基础设施建设,建设海绵城市;②建立城市洪涝立体监测、预报预警和实时调度系统,强化城市洪涝科学决策能力;③健全和完善城市洪涝应急预案,强化应急管理能力,完善灾害救助和恢复机制。  相似文献   

12.
气候变化和人类活动被认为是城市洪水演变的主要驱动因素,不同区域气候变化和城市化对洪水演变的影响不尽相同,科学识别城市洪水演变的关键驱动要素、量化气候变化与城市化对城市流域洪水演变的影响是城市洪水管理的重要依据。本文以高度城市化的北京市温榆河流域为例,以季节降雨量、气温、流域前期湿度、不透水面积比及流域内地下水埋深作为潜在驱动要素,对温榆河夏季不同概率的洪水建立GAMLSS模型,分析探讨城市流域洪水演变的主要驱动机制。研究结果表明:温榆河流域夏季不同概率的洪水在研究期均呈现出非一致性特性;城市不透水面积的扩张和降水是温榆河流域夏季洪水变化的主要驱动要素,不同等级洪水的变化具有不同的驱动机制,高于概率70%的小洪水的变化主要受到流域下垫面变化的影响,而小于概率45%的低频洪水的变化主要受降水的影响。  相似文献   

13.
Wang  Zhaohua  Liu  Wei  Yin  Jianhua 《Natural Hazards》2014,75(2):257-272

Human activities have become a major source of Earth’s climate change, which brings the rise of surface air temperature and subsurface ocean temperature. Therefore, promoting sustainable consumption and production patterns is imperative to minimize the use of natural resources and reduce emissions of pollutants. This study uses Economic Input–Output Life-Cycle Assessment method and structural decomposition model to identify the driving forces that influence the changes in carbon emissions from China’s residential consumption in the context of sustainable consumption. The findings of the study are as follows: (1) indirect carbon emissions from Chinese household consumption increase rapidly over time; (2) the largest carbon dioxide emitting sector turns from agriculture sector in 1992 into service sector in 2007; (3) the consumption level and the emission intensity are the main drivers that influence the change in indirect carbon emissions; and (4) the factor of consumption level presents positive effect on the emissions, while the emission intensity effect plays a negative role. Besides, the factors of urbanization, production structure, population size and consumption structure also promote the rapid increase in carbon emissions.

  相似文献   

14.
Huang  Shifeng  Zang  Wenbin  Xu  Mei  Li  Xiaotao  Xie  Xuecheng  Li  Zhongmin  Zhu  Jisheng 《Natural Hazards》2014,75(2):139-154

Climate change is one of the main factors that affect runoff changes. In the upstream of Minjiang River, the temperature increased significantly in the last 50 years, while the precipitation decreased on the contrary. In order to analyze the effect of climate change on site runoff, watershed runoff depth and evaporation, nine climate scenarios are assumed based on rainfall and temperature indicators. A SWAT model of Minjiang River is constructed, and runoff simulation is carried out with the nine scenarios. The results show that if precipitation increases or decreases 20 %, the change rate of runoff depth will increase or decrease 28–32 %; if temperature increases or decreases 2 °C, the change rate of runoff depth will decrease or increase 1–6 %; if temperature increases or decreases 2 °C, the change rate of the potential evaporation will increase or decrease 5–16 %, and the actual evaporation rate of variation will increase or decrease 1–6 %. Overall, precipitation variation has greater effect on simulated runoff than temperature variation dose. In addition, temperature variation has more obvious effect on the runoff simulation results in dry years than in wet years. The actual evaporation of watershed depends on evaporation capacity and precipitation and increases with the increasing of the potential evaporation and precipitation. The study also shows that the climate change scenarios analysis technology, combined with SWAT hydrological model, can effectively simulate the effect of climate change on runoff.

  相似文献   

15.
Chaudhuri  S.  Khan  F.  Das  D.  Mondal  P.  Dey  S. 《Natural Hazards》2020,102(3):1571-1588

Thunderstorm overshooting is rare but not an unusual phenomenon in a metropolitan of India, Kolkata (22.57° N; 88.36° E) during the pre-monsoon months (April–May). An attempt is made in this study to identify the important parameters differentiating the thunderstorms in overshooting and non-overshooting categories through data analytics from 2000 to 2015. The present investigation on parametric classification would facilitate in estimating the predictability of thunderstorms with overshooting which subsequently might assist in operational forecast of thunderstorm severity over Kolkata. The altitudes of lifting condensation level (LCL), wind shear, bulk Richardson number (BRN), gust speed, boundary layer characteristics and their correlation with thunderstorm cloud top height (CTH) and also their variation and distribution during overshooting (OTS) and non-overshooting (TS) thunderstorms are analyzed in this study. The result depicts that over Kolkata the intensity of storms during OTS is higher than during TS though the frequency of OTS is less than that of TS. The results further show that the potential temperature (θ), equivalent potential temperature (θe), mixing ratio (es) in the boundary layer, convective available potential energy, convective inhibition energy, BRN and gust speed play significant roles in regulating the CTH during OTS and TS thunderstorms over Kolkata.

  相似文献   

16.
近年来伴随气候变化地表径流呈极端化分布,为水电生态调度带来了挑战。为探究气候变化对电站发电和生态调度的影响、发电和生态目标间协调关系对气候变化的响应,以澜沧江下游梯级电站为例,结合多模式多情景未来径流预估结果及水库发电调度模型,针对发电及生态效益目标实施了单/多目标最优化。结果表明:在气候变化影响下,未来澜沧江径流总量将有所增加,水文变率将显著增强,河道生态所受影响也将增大;电站发电保证率及生态流量破坏率指标受不同调度方案的影响程度较气候变化影响更高,未来发电和生态效益的冲突依然存在;气候变化导致的水文变率增强可加剧发电与生态效益间的冲突,导致保持现有发电效益的同时增大对河道生态的影响。  相似文献   

17.
近年来伴随气候变化地表径流呈极端化分布,为水电生态调度带来了挑战。为探究气候变化对电站发电和生态调度的影响、发电和生态目标间协调关系对气候变化的响应,以澜沧江下游梯级电站为例,结合多模式多情景未来径流预估结果及水库发电调度模型,针对发电及生态效益目标实施了单/多目标最优化。结果表明:在气候变化影响下,未来澜沧江径流总量将有所增加,水文变率将显著增强,河道生态所受影响也将增大;电站发电保证率及生态流量破坏率指标受不同调度方案的影响程度较气候变化影响更高,未来发电和生态效益的冲突依然存在;气候变化导致的水文变率增强可加剧发电与生态效益间的冲突,导致保持现有发电效益的同时增大对河道生态的影响。  相似文献   

18.
气候变化对中国水资源情势影响综合分析   总被引:27,自引:4,他引:23       下载免费PDF全文
介绍了近年在气候变化对中国水资源影响研究方面的若干进展。研究表明,中国水资源问题的产生不仅与人口和社会经济快速发展有联系,更与气候环境的显著变化密切相关;未来的气候变化将会导致一些流域水资源更加短缺和洪涝灾害更加频繁,对流域水资源和可持续发展产生重要影响;在流域水资源综合规划与管理中,应十分重视气候变化的影响问题。  相似文献   

19.
The average temperature of Thailand is projected to increase by 2-3 °C, and the annual rainfall is projected to increase by 25% and up to 50% in certain areas. The climate change in future is expected to provide changes in hydrological cycle and therefore impacts the groundwater resources too. In this study, we analyzed the general climate change trends and reviewed the groundwater conditions of Thailand. The climate changes, hydrologic variability and the impact of climate change on groundwater sustainability are also discussed based on a national groundwater monitoring program. Currently, there are 864 groundwater monitoring stations and 1 524 monitoring wells installed in Thailand. Moreover, the impact of climate change on groundwater-dependent systems and sectors is also discussed according to certain case studies, such as saline water intrusion in coastal and inland areas. Managing aquifer recharge and other projects are examples of groundwater adaptation project for the future.  相似文献   

20.
Based on the questionnaire survey, this paper analyzes China’s public perception of climate change in terms of several influence factors and some empirical findings are obtained. We find that some respondents are willing to take individual actions to address climate change, and they pay more attention to climate change or approve that climate change does harm to residents and society; meanwhile, they tend to have confidence in the government to deal with climate change or believe that fiscal and taxation policies are the effective policy measures. However, there are also other respondents unwilling to take actions and argue that climate change proves the natural consequences. Thus, in order to motivate the public to take actions, the paper suggests that the government should widespreadly disseminate relevant knowledge about climate change to the public and guide the work to address climate change and adopt proper fiscal and taxation policies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号