首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Oils, condensates and natural gases in the Kekeya Field, southeast depression of the Tarim Basin were studied for their geochemical characteristics. According to the distribution analysis of the C2/C3 values with C1/C2 values, C2/C3 values with C1/C3 values, as well as C2/C3 values with dryness index, there are two different types of natural gases in the studied field, which are spatially regularly distributed. One is the oil cracking gas, located on shallow reservoirs over X 5 2 reservoir, namely Upper oil legs; the other is kerogen cracking gas, located on X 7 2 reservoirs, X8 reservoirs and E2 k reservoirs, namely Lower oil legs. In addition, the distribution patterns of molar concentration of oils and condensates with different carbon numbers of the n-alkanes in the Kekeya Field indicate that the crude oils have experienced several kinds of secondary alterations, which were closely related to the charging of gaseous hydrocarbons after petroleum accumulation. These results indicate that, based on the research of δ 13C values of individual hydrocarbons, heptane values and isoheptane values of light hydrocarbons and aromatic maturity parameters for oils, condensates and natural gases, oils and gases were charged at different geological time in the Kekeya Field.  相似文献   

2.
Hu  AnPing  Li  Jian  Zhang  WenZheng  Li  ZhiSheng  Hou  Lu  Liu  QuanYou 《中国科学:地球科学(英文版)》2008,51(1):183-194

The Ordos Basin, the second largest sedimentary basin in China, contains the broad distribution of natural gas types. So far, several giant gas fields have been discovered in the Upper and Lower Paleozoic in this basin, each having over 1000×108m3 of proven gas reserves, and several gas pools have also been discovered in the Mesozoic. This paper collected the data of natural gases and elucidated the geochemical characteristics of gases from different reservoirs, and then discussed their origin. For hydrocarbons preserved in the Upper Paleozoic, the elevated δ 13C values of methane, ethane and propane indicate that the gases would be mainly coal-formed gases; the singular reversal in the stable carbon isotopes of gaseous alkanes suggests the mixed gases from humic sources with different maturity. In the Lower Paleozoic, the δ 13C1 values are mostly similar with those in the Upper Paleozoic, but the δ 13C2 and δ 13C3 values are slightly lighter, suggesting that the gases would be mixing of coal-type gases as a main member and oil-type gases. There are multiple reversals in carbon isotopes for gaseous alkanes, especially abnormal reversal for methane and ethane (i.e. δ 13C1>δ 13C2), inferring that gases would be mixed between high-mature coal-formed gases and oil-type gases. In the Mesozoic, the δ 13C values for gaseous alkanes are enriched in 12C, indicating that the gases are mainly derived from sapropelic sources; the carbon isotopic reversal for propane and butane in the Mesozoic is caused by microbial oxidation and mixing of gases from sapropelic sources with different maturity. In contrast to the Upper Paleozoic gases, the Mesozoic gases are characterized by heavier carbon isotopes of iso-butane than normal butane, which may be caused by gases generated from different kerogen types. Finally, according to δ 13C1-R 0 relationship and extremely low total organic carbon contents, the Low Paleozoic gases would not be generated from the Ordovician source as a main gas source, bycontrast, the Upper Paleozoic source as a main gas source is contributed to the Lower Paleozoic gases.

  相似文献   

3.

Natural gases discovered up to now in Lishui Sag, the East China Sea Basin, differ greatly in gaseous compositions, of which hydrocarbon gases amount to 2%–94% while non-hydrocarbon gases are dominated by CO2. Their hydrocarbon gases, without exception, contain less than 90% of methane and over 10% of C2 + heavier hydrocarbons, indicating a wet gas. Carbon isotopic analyses on these hydrocarbon gases showed that δ 13C1, δ 13C2 and δ 13C3 are basically lighter than −44‰, −29‰ and −26‰, respectively. The difference in carbon isotopic values between methane and ethane is great, suggesting a biogenic oil-type gas produced by the mixed organic matter at peak generation. δ 13 \( C_{CO_2 } \) values of nonhydrocarbon gases are all heavier than −10‰, indicating a typical abiogenic gas. The simulation experiment on hydrocarbon generation of organic matter in a closed gold-tube system showed that the proportion of methane in natural gases produced by terrigenous organic matter in the Lingfeng Formation marine deposit is obviously higher than that in natural gases derived from the aquatic and terrigenous mixed organic matter in the Yueguifeng Formation lacustrine deposit, consequently the proportion of heavier hydrocarbons of the former is remarkably lower than that of the latter. Moreover, δ 13C1 values of natural gases produced by terrigenous organic matter in the Lingfeng Formation marine deposit are about 5‰ heavier than those of natural gases derived from the aquatic and terrigenous mixed organic matter in the Yueguifeng Formation lacustrine deposit while δ 13C2 and δ 13C3 values of the former are over 9‰ heavier than those of the latter. Currently the LS36-1 oil-gas pool is the only commercial oil-gas reservoir in Lishui Sag, where carbon isotopic compositions of various hydrocarbon components differ greatly from those of natural gases produced by the Lingfeng Formation organic matter but are very similar to those of natural gases derived from the Yueguifeng Formation organic matter, therefore, natural gases in the LS36-1 oil-gas pool are mainly derived from the Yueguifeng Formation lacustrine source rock rather than the Lingfeng Formation marine or Mingyuefeng Formation coal-measures source rocks.

  相似文献   

4.

Shallow gas reservoirs are distributed widely in Chinese heavy oil-bearing basins. At present, shallow gas resources have opened up giant potentials. The previous researches indicate the intimate genetic relationship between shallow gas and heavy oil. Shallow gas resources are generated from crude oil degraded by anaerobic microscopic organism, it belongs to biogenic gas family of secondary genesis, namely heavy oil degraded gas. Shallow gas resources are usually distributed in the upward position or the vicinity of heavy oil reservoirs. They are mainly of dry gas, which are composed of methane and only tiny C +2 heavy hydrocarbon and relatively higher contents of nitrogen gas. Generally, methane isotopes are light, whose values are between biogenic gas and thermal cracking gas. Ethane isotopes are heavy, which mixed possibly with thermogenic gas. Carbon dioxide bear the characteristics of very heavy carbon isotope, so carbon isotopic fractionation effects are very obvious on the process of microscopic organism degradation crude oil. The heavy oil degraded gas formation, a very complex geological, geochemical and microbiological geochemical process, is the result of a series of reactions of organic matter-microbes and water-hydrocarbon, which is controlled by many factors.

  相似文献   

5.
The Ordos Basin, the second largest sedimentary basin in China, contains the broad distribution of natural gas types. So far, several giant gas fields have been discovered in the Upper and Lower Paleozoic in this basin, each having over 1000×108m3 of proven gas reserves, and several gas pools have also been discovered in the Mesozoic. This paper collected the data of natural gases and elucidated the geochemical characteristics of gases from different reservoirs, and then discussed their origin. For hydrocarbons preserved in the Upper Paleozoic, the elevated δ 13C values of methane, ethane and propane indicate that the gases would be mainly coal-formed gases; the singular reversal in the stable carbon isotopes of gaseous alkanes suggests the mixed gases from humic sources with different maturity. In the Lower Paleozoic, the δ 13C1 values are mostly similar with those in the Upper Paleozoic, but the δ 13C2 and δ 13C3 values are slightly lighter, suggesting that the gases would be mixing of coal-type gases as a main member and oil-type gases. There are multiple reversals in carbon isotopes for gaseous alkanes, especially abnormal reversal for methane and ethane (i.e. δ 13C1>δ 13C2), inferring that gases would be mixed between high-mature coal-formed gases and oil-type gases. In the Mesozoic, the δ 13C values for gaseous alkanes are enriched in 12C, indicating that the gases are mainly derived from sapropelic sources; the carbon isotopic reversal for propane and butane in the Mesozoic is caused by microbial oxidation and mixing of gases from sapropelic sources with different maturity. In contrast to the Upper Paleozoic gases, the Mesozoic gases are characterized by heavier carbon isotopes of iso-butane than normal butane, which may be caused by gases generated from different kerogen types. Finally, according to δ 13C1-R 0 relationship and extremely low total organic carbon contents, the Low Paleozoic gases would not be generated from the Ordovician source as a main gas source, bycontrast, the Upper Paleozoic source as a main gas source is contributed to the Lower Paleozoic gases.  相似文献   

6.
Natural gases discovered up to now in Lishui Sag, the East China Sea Basin, differ greatly in gaseous compositions, of which hydrocarbon gases amount to 2%–94% while non-hydrocarbon gases are dominated by CO2. Their hydrocarbon gases, without exception, contain less than 90% of methane and over 10% of C2 + heavier hydrocarbons, indicating a wet gas. Carbon isotopic analyses on these hydrocarbon gases showed that δ 13C1, δ 13C2 and δ 13C3 are basically lighter than ?44‰, ?29‰ and ?26‰, respectively. The difference in carbon isotopic values between methane and ethane is great, suggesting a biogenic oil-type gas produced by the mixed organic matter at peak generation. δ 13 \(C_{CO_2 } \) values of nonhydrocarbon gases are all heavier than ?10‰, indicating a typical abiogenic gas. The simulation experiment on hydrocarbon generation of organic matter in a closed gold-tube system showed that the proportion of methane in natural gases produced by terrigenous organic matter in the Lingfeng Formation marine deposit is obviously higher than that in natural gases derived from the aquatic and terrigenous mixed organic matter in the Yueguifeng Formation lacustrine deposit, consequently the proportion of heavier hydrocarbons of the former is remarkably lower than that of the latter. Moreover, δ 13C1 values of natural gases produced by terrigenous organic matter in the Lingfeng Formation marine deposit are about 5‰ heavier than those of natural gases derived from the aquatic and terrigenous mixed organic matter in the Yueguifeng Formation lacustrine deposit while δ 13C2 and δ 13C3 values of the former are over 9‰ heavier than those of the latter. Currently the LS36-1 oil-gas pool is the only commercial oil-gas reservoir in Lishui Sag, where carbon isotopic compositions of various hydrocarbon components differ greatly from those of natural gases produced by the Lingfeng Formation organic matter but are very similar to those of natural gases derived from the Yueguifeng Formation organic matter, therefore, natural gases in the LS36-1 oil-gas pool are mainly derived from the Yueguifeng Formation lacustrine source rock rather than the Lingfeng Formation marine or Mingyuefeng Formation coal-measures source rocks.  相似文献   

7.
Petroleum mainly comprises carbon and hydrogen elements. The stable carbon isotopic analysis for whole oil was undertaken as early as the 1930s. After decades, the stable carbon isotopic analytical methods have been developed from analysis for whole oil and oil fractions (e.g., saturated, aromatic and polar frac-tions) into compound-specific isotopic analysis with the emergence of the newly developed GC-C-IRMS analytical technique. Especially, by using com-pound-specific isotopic analytical…  相似文献   

8.
The Luliang and Baoshan basins are two small ba- sins in Yunnan Province. In the recent ten years or so, there have been found a number of natural gas pools of commercial importance in the two basins. Although the gas pools are small in size, the natural …  相似文献   

9.
It is a challenge to determine the source and genetic relationship of condensate, waxy and heavy oils in one given complicated petroliferous area, where developed multiple sets of source rocks with different maturity and various chemical features.The central part of southern margin of Junggar Basin, NW China is such an example where there are condensates, light oils, normal density oils, heavy crude oils and natural gases. The formation mechanism of condensates has been seriously debated for long time;however, no study has integrated it with genetic types of waxy and heavy oils. Taking the central part of southern margin of Junggar Basin as a case, this study employs geological and geochemical methods to determine the formation mechanism of condensates,waxy and heavy oils in a complicated petroliferous area, and reveals the causes and geochemical processes of the co-occurrence of different types of crude oils in this region. Based on detailed geochemical analyses of more than 40 normal crude oils, light oils,condensates and heavy oils, it is found that the condensates are dominated by low carbon number n-alkanes and enriched in light naphthenics and aromatic hydrocarbons. Heptane values of these condensates range from 19% to 21%, isoheptane values from1.9 to 2.1, and toluene/n-heptane ratios from 1.5 to 2.0. The distribution of n-alkanes in the condensates presents a mirror image with high density waxy crude oils and heavy oils. Combined with the oil and gas-source correlations of the crude oils, condensates and natural gas, it is found that the condensates are product of evaporative fractionation and/or phase-controlled fractionation of reservoir crude oils which were derived from mature Cretaceous lacustrine source rocks in the relatively early stage. The waxy oils are the intermediate products of evaporative fractionation and/or phase-controlled fractionation of reservoir crude oils, while the heavy oils are in-situ residuals. Therefore, evaporative fractionation and/or phase-controlled fractionation would account for the formation of the condensate, light oil, waxy oil and heavy oil in the central part of southern margin of Junggar Basin, resulting in a great change of the content in terms of light alkanes, naphthenics and aromatics in condensates, followed by great uncertainties of toluene/n-heptane ratios due to migration and re-accumulation. The results suggest that the origin of the condensate cannot be simply concluded by its ratios of toluene/n-heptane and n-heptane/methylcyclohexane on the Thompson's cross-plot, it should be comprehensively determined by the aspects of geological background, thermal history of source rocks and petroleum generation,physical and chemical features of various crude oils and natural gas, vertical and lateral distribution of various crude oils in the study area.  相似文献   

10.
The composition characteristics of light hydrocarbons from crude oil, chloroform bitumen A, saturated hydrocarbon fraction, aromatic hydrocarbon fraction, and asphaltene fraction during cracking have been studied systematically. The results revealed that the content of n-alkanes, branched alkanes and cycloalkanes in light hydrocarbons from the samples gradually decreased as the simulation temperature increased, and finally almost depleted completely, while the abundance of methane, benzene and its homologues increased obviously and became the main products. The ratios of benzene/ n-hexane and toluene/n-heptane can be used as measures for oil cracking levels. Variation characteristics of maturity parameters of light hydrocarbons, for example, iC4/nC4, iC5/nC5, isoheptane value, 2,2-DMC4/nC6, and 2-MC6+3-MC6/nC7 for different samples with increasing pyrolysis temperature, are consistent with those in petroleum reservoirs, indicating that these parameters may be efficient maturity index.  相似文献   

11.
Kinetic experiments of gas generation for typical samples of marine gas precursors including low-maturity kerogen, residual kerogen and oil as well as dispersed liquid hydrocarbon (DLH) in source rocks were performed by closed system, and the evolution trends of molecular and isotopic compositions of natural gases from different precursors against the maturity (R 0%) at laboratory conditions were analyzed. Several diagrams of gas origin were calibrated by using the experimental data. A diagram based on the ratio of normal and isomerous butane and pentane (i/nC4 ? i/nC5) was proposed and used to identify the origins of the typical marine natural gases in the Sichuan Basin and the Tarim Basin, China. And the maturities of natural gases were estimated by using the statistical relationships between the gaseous molecular carbon isotopic data and maturities (δ13C-R 0%) with different origins. The results indicate that the molecular and isotopic compositions of simulated gases from different precursors are different from each other. For example, the dryness index of the oil-cracking gas is the lowest; the dryness indices of gases from DLH and kerogen in closed system are almost the same; and the dryness index of gases from residual kerogen is extremely high, indicating that the kerogen gases are very dry; the contents of non-hydrocarbon gases in kerogen-cracking gases are far higher than those in oil-cracking and DLH-cracking gases. The molecular carbon isotopes of oil-cracking gases are the lightest, those of kerogen in closed system and GLH-cracking gases are the second lightest, and those of cracking gases from residual kerogen are the heaviest. The calibration results indicate that the diagrams of In(C1/C2)-In(C2/C3) and δ4 3C24 3C3-In(C2/C3) can discriminate primary and secondary cracking gases, but cannot be used to identify gas origin sources, while the diagram of i/nC4 ? i/nC5 can differentiate the gases from different precursors. The application results of these diagrams show that gas mixtures extensively exist in China, which involved the gases from multiple precursors and those from different maturity stages. For example, marine gases in the Sichuan Basin involve the mixture of oil-cracking gases and high-over-maturated kerogen gases, while those in the Tarim Basin involve not only the mixture of gases from multiple precursors, but also those from different maturity gases and post-reservoir alternations such as oxidized degradation and gas intrusion processes.  相似文献   

12.

In the processes of discrimination between oil-cracked gases and kerogen-cracked gases, Behar and Pinzgofer et al.’s results were adopted in the former researches, in which the ratio of C2/C3 is basically a constant while the ratio of C1/C2 gradually increases in the course of primary cracking of kerogen. Otherwise in the course of secondary cracking of oil, the ratio of C2/C3 increases rapidly while C1/C2 keeps relatively stable. Our study on analogue experiment shows that, whether it is oil or kerogen, in its process of gas generating by cracking, the ratios of C2/C3, C1/C2 or C1/C3 will all be increased with the growth of thermal conditions. In comparison, the ratio of C2/C3, which is affected by genetic type to some comparatively less extent, mainly responds to the maturity of gases, while the value of C2/C3 is about 2, and that of C2/iC4 is about 10, and the corresponding value of R o is about 1.5%–1.6%. The influence of gas source on C2/C3 is less than that of gas maturity, otherwise C1/C2 (or C1/C3) is obviously affected by cracking matrices. The ratios of C1/C2, C1/C3 of oil-cracked gases are less than that of kerogen-cracked gases, under the condition that the ratios of C2/C3 are similar in value, so are the value of dryness indexes. There exists wide diffidence between this view and the former discrimination method in theory. The analysis of the spot sample indicates that we can apply the above basic view to dealing efficiently with the problem of the discrimination between oil-cracked gas and kerogen-cracked gas.

  相似文献   

13.
Two comparative simulation experiments(a normal atmospheric-pressure opening system and a 20 MPa closed system)were conducted to study the geochemical evolution of n-alkane,sterane,and terpane biomarkers in the process of oil cracking into gas under different pressures.With an initial experimental temperature set at 300°C,the temperature was increased to 650°C at a heating rate of 30°C/h.The products were tested every 50°C starting at 300°C,and a pressure of 20 MPa was achieved using a water column.The low-maturity crude oil sample was from the Paleogene system in the Dongying sag in eastern China.The threshold temperature obtained for the primary oil cracking process in both pressure systems was 450°C.Before the oil was cracked into gas,some components,including macromolecular n-alkanes,were cracked into medium-or small-sized n-alkanes.The secondary oil cracking of heavy hydrocarbon gases of C2–5to methane mainly occurred between 550°C to 650°C,and the parameters Ln(C1/C2)and Ln(C1/C3),as well as the dry coefficients,increased.Overpressure inhibited the oil cracking process.In the 20 MPa system,the oil conversion rate decreased,the temperature threshold for gas generation rose,and oil cracking was inhibited.Compared with the normal pressure system,high-carbon n-alkanes and other compounds in the 20 MPa pressure system were reserved.Furthermore,the parameters∑C21-/∑22+,Ln(C1/C2),and Ln(C1/C3),as well as the dry coefficients,decreased within the main temperature range.During secondary oil cracking(550°C to 600°C),the Ph/nC18and Pr/nC17decreased.High pressure influenced the evolution of the biomarkers Ts and Tm,C31homohopane,C29sterane,and their related maturity parameters to different extents during oil cracking under different temperature ranges.  相似文献   

14.
Yang  Chun  Luo  Xia  Li  Jian  Li  ZhiSheng  Liu  QuanYou  Wang  YuLin 《中国科学:地球科学(英文版)》2008,51(1):140-147

The Xushen gas field, located in the north of Songliao Basin, is a potential giant gas area for China in the future. Its proved reserves have exceeded 1000×108 m3 by the end of 2005. But, the origin of natural gases from the deep strata is still in debating. Epimetamorphic rocks as a potential gas source are widely spreading in the northern basement of Songliao Basin. According to pyrolysis experiments for these rocks in the semi-confined system, gas production and geochemistry of alkane gases are discussed in this paper. The Carboniferous-Permian epimetamorphic rocks were heated from 300°C to 550°C, with temperature interval of 50°C. The gas production was quantified and measured for chemical and carbon isotopic compositions. Results show that δ 13C1 is less than −20‰, carbon isotope trend of alkane gas is δ 13C1<δ 13C2<δ 13C3 or δ 13C1<δ 13C2>δ 13C3, these features suggest that the gas would be coal-type gas at high-over maturity, not be inorganic gas with reversal trend of gaseous alkanes (δ 13C1>δ 13C2>δ 13C3). These characteristics of carbon isotopes are similar with the natural gas from the basin basement, but disagree with gas from the Xingcheng reservoir. Thus, the mixing gases from the pyrolysis gas with coal-typed gases at high-over maturity or oil-typed gases do not cause the reversal trend of carbon isotopes. The gas generation intensity for epimetamorphic rocks is 3.0×108–23.8×108 m3/km2, corresponding to R o from 2.0% to 3.5% for organic matter.

  相似文献   

15.
Abiogenic hydrocarbons in commercial gases from the Songliao Basin, China   总被引:3,自引:0,他引:3  
This paper discusses the kinetic fractionation, composition and distribution characteristics of carbon and hydrogen isotopes for various alkane gases formed in different environments, by different mecha- nisms and from different sources in nature. It is demonstrated that the biodegradation or thermode- gradation of complex high-molecule sedimentary organic material can form microbial gas or thermogenic gas. The δ 13C1 value ranges from -110‰ to -50‰ for microbial gases but from -50‰ to -35‰ (even heavier) f...  相似文献   

16.
Aromatic hydrocarbons are generally main distillation of crude oil and organic extract of source rocks. Bicyclic and tricyclic aromatic hydrocarbons can be purified by two-step method of chromatography on alumina. Carbon isotopic composition of individual aromatic hydrocarbons is affected not only by thermal maturity, but also by organic matter input, depositional environment, and hydrocarbon generation process based on the GC-IRMS analysis of Upper Ordovician, Lower Ordovician, and Cambrian source rocks in different areas in the Tarim Basin, western China. The subgroups of aromatic hydrocarbons as well as individual aromatic compound, such as 1-MP, 9-MP, and 2,6-DMP from Cambrian-Lower Ordovician section show more depleted 13 C distribution. The 13 C value difference between Cambrian-Lower Ordovician section and Upper Ordovician source rocks is up to 16.1‰ for subgroups and 14‰ for individual compounds. It can provide strong evidence for oil source correlation by combing the 13 C value and biomarker distribution of different oil and source rocks from different strata in the Tarim Basin. Most oils from Tazhong area have geochemical characteristics such as more negative 13C9-MP value, poor gammacerane, and abundant homohopanes, which indicate that Upper Ordovician source rock is the main source rock. In contrast, oils from Tadong area and some oils from Tazhong area have geochemical characteristics such as high 13C9-MP value, abundant gammacerane, and poor homohopanes, which suggest that the major contributor is Cambrian-Lower Ordovician source rock.  相似文献   

17.
An igneous intrusion of 94m thick was discovered intruding into the Silurian sandstone from Tazhong 18 Well. The petroleum previously preserved in the Silurian sandstone reservoir was altered into black carbonaceous bitumen by abnormally high heat stress induced by the igneous intrusion. The reflectance of the carbonaceous bitumen reaches as high as 3.54%, indicating that the bitumen had evolved into a high thermal evolution level. Similar to the Silurian samples from the neighboring Tazhong 11, Tazhong 12, Tazhong 45 and Tazhong 47 wells, the distribution of C27, C28 and C29 steranes of the carbonaceous bitumen is still “V”-shaped and can still be employed as an efficient parameter in oil source correlation. The “V”-shaped distribution indicates that the hydrocarbons from the Tazhong 18 and the neighboring wells were all generated from the Middle-Upper Ordovician hydrocarbon source rocks. However, the oil source correlation parameters associated with and terpanes had been changed greatly by the high heat stress and can no longer be used in oil source correlation. The δ 13C values of the petroleum from the neighboring wells are between −32.53%. and −33.37%., coincident with those of the Paleozoic marine petroleum in the Tarim Basin. However, the δ 13C values of the carbonaceous bitumen from the Tazhong 18 Well are between −27.18%. and −29.26%., isotopically much heavier than the petroleum from the neighboring wells. The content of light hydrocarbons (nC14nC20) of the saturated hydrocarbon fraction in the carbonaceous bitumen is extremely higher than the content of heavy hydrocarbons. The light/heavy hydrocarbon ratios (ΣnC21 nC22 + are between 4.56 and 39.17. In the saturated fraction, the even numbered hydrocarbons are predominant to the odd numbered, and the OEP (Odd to Even Predominance) values are between 0.22 and 0.49. However, the content of light hydrocarbons in the petroleum from the neighboring wells is relatively low and the content of the even numbered hydrocarbons is almost equal to that of the odd numbered. Compared with the samples from the neighboring wells, the abundance of non-alkylated aromatic hydrocarbons, such as phenanthrenes, and polycyclic aromatic hydrocarbons (PAHs), such as fluoranthane, pyrene, benzo[a]anthracene and benzofluoranthene, are relatively high. Supported by the National Key Basic Research and Development Project (Grant No. 2005CB422103)  相似文献   

18.
Hydrocarbon samples taken from bottom sediments of the Barents Sea in summer 2010 in two grounds near the Shtokman Gas Condensate Field were studied. The concentration of hydrocarbons was found to increase with sampling depth along with a decrease in Corg concentration. The composition of alkanes had mixed genesis: autochthonous homologues (n-C16-C17) dominated in the low-molecular domain, while oil ones dominated in the high-molecular domain; light polyarenes dominated in the composition of polycyclic aromatic hydrocarbons. The seepage of hydrocarbons from the sedimentary stratum and their transformation in the surface layer of bottom sediments are considered as their major source. The relatively low hydrocarbon concentrations converted to dry mass and in the composition of Corg are supposed to be due to a decrease in the intensity of fluid flows, since the hydrocarbon reservoirs of the Shtokman Field are firmly capped by an impermeable stratum of mostly clay rocks.  相似文献   

19.
The edifice of Mount Rainier, an active stratovolcano, has episodically collapsed leading to major debris flows. The largest debris flows are related to argillically altered rock which leave areas of the edifice prone to failure. The argillic alteration results from the neutralization of acidic magmatic gases that condense in a meteoric water hydrothermal system fed by the melting of a thick mantle of glacial ice. Two craters atop a 2000-year-old cone on the summit of the volcano contain the world's largest volcanic ice-cave system. In the spring of 1997 two active fumaroles (T=62°C) in the caves were sampled for stable isotopic, gas, and geochemical studies.Stable isotope data on fumarole condensates show significant excess deuterium with calculated δD and δ18O values (−234 and −33.2‰, respectively) for the vapor that are consistent with an origin as secondary steam from a shallow water table which has been heated by underlying magmatic–hydrothermal steam. Between 1982 and 1997, δD of the fumarole vapor may have decreased by 30‰.The compositions of fumarole gases vary in time and space but typically consist of air components slightly modified by their solubilities in water and additions of CO2 and CH4. The elevated CO2 contents (δ13CCO2=−11.8±0.7‰), with spikes of over 10,000 ppm, require the episodic addition of magmatic components into the underlying hydrothermal system. Although only traces of H2S were detected in the fumaroles, most notably in a sample which had an air δ13CCO2 signature (−8.8‰), incrustations around a dormant vent containing small amounts of acid sulfate minerals (natroalunite, minamiite, and woodhouseite) indicate higher H2S (or possibly SO2) concentrations in past fumarolic gases.Condensate samples from fumaroles are very dilute, slightly acidic, and enriched in elements observed in the much higher temperature fumaroles at Mount St. Helens (K and Na up to the ppm level; metals such as Al, Pb, Zn Fe and Mn up to the ppb level and volatiles such as Cl, S, and F up to the ppb level).The data indicate that the hydrothermal system in the edifice at Mount Rainier consists of meteoric water reservoirs, which receive gas and steam from an underlying magmatic system. At present the magmatic system is largely flooded by the meteoric water system. However, magmatic components have episodically vented at the surface as witnessed by the mineralogy of incrustations around inactive vents and gas compositions in the active fumaroles. The composition of fumarole gases during magmatic degassing is distinct and, if sustained, could be lethal. The extent to which hydrothermal alteration is currently occurring at depth, and its possible influence on future edifice collapse, may be determined with the aid of on site analyses of fumarole gases and seismic monitoring in the ice caves.  相似文献   

20.
Shallow gas reservoirs are distributed widely in Chinese heavy oil-bearing basins. At present, shallow gas resources have opened up giant potentials. The previous researches indicate the intimate genetic relationship between shallow gas and heavy oil. Shallow gas resources are generated from crude oil degraded by anaerobic microscopic organism, it belongs to biogenic gas family of secondary genesis, namely heavy oil degraded gas. Shallow gas resources are usually distributed in the upward position or the vicinity of heavy oil reservoirs. They are mainly of dry gas, which are composed of methane and only tiny C 2 + heavy hydrocarbon and relatively higher contents of nitrogen gas. Generally, methane isotopes are light, whose values are between biogenic gas and thermal cracking gas. Ethane isotopes are heavy, which mixed possibly with thermogenic gas. Carbon dioxide bear the characteristics of very heavy carbon isotope, so carbon isotopic fractionation effects are very obvious on the process of microscopic organism degradation crude oil. The heavy oil degraded gas formation, a very complex geological, geochemical and microbiological geochemical process, is the result of a series of reactions of organic matter-microbes and water-hydrocarbon, which is controlled by many factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号