首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Products of contrasting mingled magmas are widespread in volcanoes and intrusions. Subvolcanic trachyte intrusions hosting mafic enclaves crop out in the Manori–Gorai area of Mumbai in the Deccan Traps. The petrogenetic processes that produced these rocks are investigated here with field data, petrography, mineral chemistry, and whole rock major, trace, and Pb isotope chemistry. Local hybridization has occurred and has produced intermediate rocks such as a trachyandesitic dyke. Feldspar crystals have complex textures and an unusually wide range in chemical composition. Crystals from the trachytes cover the alkali feldspar compositional range and include plagioclase crystals with anorthite contents up to An47. Crystals from the mafic enclaves are dominated by plagioclase An72–90, but contain inclusions of orthoclase and other feldspars covering the entire compositional range sampled in the trachytes. Feldspars from the hybridized trachyandesitic dyke yield mineral compositions of An80–86, An47–54, Ab94–99, Or45–60, and Or96–98, all sampled within individual phenocrysts. We show that these compositional features are consistent with partial melting of granitoid rocks by influx of mafic magmas, followed by magma mixing and hybridization of the partial melts with the mafic melts, which broadly explains the observed bulk rock major and trace element variations. However, heterogeneities in Pb isotopic compositions of trachytes are observed on the scale of individual outcrops, likely reflecting initial variations in the isotopic compositions of the involved source rocks. The combined data point to one or more shallow-level trachytic magma chambers disturbed by multiple injections of trachytic, porphyritic alkali basaltic, and variably hybridized magmas.  相似文献   

2.
 The 1963 eruption of Gunung Agung produced 0.95 km3 dense rock equivalent (DRE) of olivine±hornblende-bearing, weakly phyric, basaltic andesite tephra and lava. Evidence for magma mixing in the eruptive products includes whole-rock compatible and incompatible trace element trends, reverse and complex compositional zoning of mineral phases, disequilibrium mineral assemblages, sieve-textured plagioclase phenocrysts, and augite rims on reversely zoned orthopyroxene. Basalt magma mixed with pre-existing andesite magma shortly before eruption to yield basaltic andesite with a temperature of 1040–1100  °C at an assumed pressure of 2 kb, f O2>NNO, and an average melt volatile content (H2O±CO2) of 4.3 wt.%. Magma-mixing end members may have provided some of the S and Cl emitted in the eruption. Glass inclusions in phenocrysts contain an average of 650 ppm S and 3130 ppm Cl as compared with 70 ppm and 2220 ppm, respectively, in the matrix glass. Maximum S and Cl contents of glass inclusions approach 1800 and 5000 ppm, respectively. Application of the petrologic method to products of the 1963 eruption for estimating volatile release yields of 2.5×1012 g (Mt) of SO2 and 3.4 Mt of Cl released from the 0.65 km3 of juvenile tephra which contributed to stratospheric injection of H2SO4 aerosols on 17 March and 16 May, when eruption column heights exceeded 20 km above sea level. An independent estimate of SO2 release from atmospheric aerosol loading (11–12 Mt) suggests that approximately 7 Mt of SO2 was injected into the stratosphere. The difference between the two estimates can be most readily accounted for by the partitioning of S, as well as some Cl, from the magma into a water-rich vapor phase which was released upon eruption. For other recent high-S-release eruptions of more evolved and oxidized magmas (El Chichón, Pinatubo), the petrologic method gives values two orders of magnitude less than independent estimates of SO2 emissions. Results from this study of the Agung 1963 magma and its volatile emissions, and from related studies on eruptions of more mafic magmas, suggest that SO2 emissions from eruptions of higher-S-solubility magma may be more reliably estimated by the petrologic method than may those from more-evolved magma eruptions. Received: 29 June 1994 / Accepted: 25 April 1996  相似文献   

3.
Compositional heterogeneity (56–64 wt% SiO2 whole-rock) in samples of tephra and lava from the 1986 eruption of Augustine Volcano, Alaska, raises questions about the physical nature of magma storage and interaction beneath this young and frequently active volcano. To determine conditions of magma storage and evolutionary histories of compositionally distinct magmas, we investigate physical and chemical characteristics of andesitic and dacitic magmas feeding the 1986 eruption. We calculate equilibrium temperatures and oxygen fugacities from Fe-Ti oxide compositions and find a continuous range in temperature from 877 to 947°C and high oxygen fugacities (ΔNNO=1–2) for all magmas. Melt inclusions in pyroxene phenocrysts analyzed by Fourier-transform infrared spectroscopy and electron probe microanalysis are dacitic to rhyolitic and have water contents ranging from <1 to ∼7 wt%. Matrix glass compositions are rhyolitic and remarkably similar (∼75.9–76.6 wt% SiO2) in all samples. All samples have ∼25% phenocrysts, but lower-silica samples have much higher microlite contents than higher-silica samples. Continuous ranges in temperature and whole-rock composition, as well as linear trends in Harker diagrams and disequilibrium mineral textures, indicate that the 1986 magmas are the product of mixing between dacitic magma and a hotter, more mafic magma. The dacitic endmember is probably residual magma from the previous (1976) eruption of Augustine, and we interpret the mafic endmember to have been intruded from depth. Mixing appears to have continued as magmas ascended towards the vent. We suggest that the physical structure of the magma storage system beneath Augustine contributed to the sustained compositional heterogeneity of this eruption, which is best explained by magma storage and interaction in a vertically extensive system of interconnected dikes rather than a single coherent magma chamber and/or conduit. The typically short repose period (∼10 years) between Augustine's recent eruptive pulses may also inhibit homogenization, as short repose periods and chemically heterogeneous magmas are observed at several volcanoes in the Cook Inlet region of Alaska.  相似文献   

4.
Before the 1991–1992 activity, a large andesite lava dome belonging to the penultimate Pinatubo eruptive period (Buag ∼ 500 BP) formed the volcano summit. Buag porphyritic andesite contains abundant amphibole-bearing microgranular enclaves of basaltic–andesite composition. Buag enclaves have lower K2O and incompatible trace element (LREE, U, Th) contents than mafic pulses injected in the Pinatubo reservoir during the 1991–1992 eruptive cycle. This study shows that Buag andesite formed by mingling of a hot, water-poor and reduced mafic magma with cold, hydrous and oxidized dacite. Depending on their size, enclaves experienced variable re-equilibration during mixing/mingling. Re-equilibration resulted in hydration, oxidation and transfer of mobile elements (LILE, Cu) from the dacite to the mafic melts and prompted massive amphibole crystallization. In Buag enclaves, S-bearing phases (sulfides, apatite) and melt inclusions in amphibole and plagioclase record the evolution of sulfur partition among melt, crystal and fluid phases during magma cooling and oxidation. At high temperature, sulfur is partitioned between andesitic melt and sulfides (Ni-pyrrhotite). Magma cooling, oxidation and hydration resulted in exsolution of a S–Cl–H2O vapor phase at the S-solubility minimum near the sulfide–sulfate redox boundary. Primary magmatic sulfide (pyrrhotite) and xenocrystic sulfide grains (pyrite), recycled together with olivines and pyroxenes from old mafic intrusives, were replaced by Cu-rich phases (chalcopyrite, cubanite) and, partially, by Ba–Sr sulfate. Sulfides degassed and transformed into residual spongy magnetite in response to fS2 drop during final magma ascent and decompression. Our research suggests that a complete evaluation of the sulfur budget at Pinatubo must take into account the en route S assimilation from the country rocks. Moreover, this study shows that the efficiency of sulfur transfer between mafic recharges and injected magmas is controlled by the extent and rate of mingling, hydrous flushing and melt oxidation. Vigorous mixing/mingling and transformation of the magmatic recharge into a spray of small enclaves is required in order to efficiently strip their primary S-content that otherwise remains locked in the sulfides. Hydrous flushing increases the magma oxidation state of the recharges and modifies their primary volatile concentrations that cannot be recovered by the study of late-formed mineral phases and melt inclusions. Conversely, S stored in both late-formed Cu-rich sulfides and interstitial rhyolitic melt represents the pre-eruptive sulfur budget immediately available for release from mafic enclaves during their decompression.  相似文献   

5.
The Tertiary Taylor Creek Rhyolite of southwest New Mexico comprises at least 20 lava domes and flows. Each of the lavas was erupted from its own vent, and the vents are distributed throughout a 20 km by 50 km area. The volume of the rhyolite and genetically associated pyroclastic deposits is at least 100 km3 (denserock equivalent). The rhyolite contains 15%–35% quartz, sanidine, plagioclase, ±biotite, ±hornblende phenocrysts. Quartz and sanidine account for about 98% of the phenocrysts and are present in roughly equal amounts. With rare exceptions, the groundmass consists of intergrowths of fine-grained silica and alkali feldspar. Whole-rock major-element composition varies little, and the rhyolite is metaluminous to weakly peraluminous; mean SiO2 content is about 77.5±0.3%. Similarly, major-element compositions of the two feldsparphenocryst species also are nearly constant. However, whole-rock concentrations of some trace-elements vary as much as several hundred percent. Initial radiometric age determinations, all K–Ar and fission track, suggest that the rhyolite lava field grew during a period of at least 2 m.y. Subsequent 40Ar/39Ar ages indicate that the period of growth was no more than 100 000 years. The time-space-composition relations thus suggest that the Taylor Creek Rhyolite was erupted from a single magma reservoir whose average width was at least 30 km, comparable in size to several penecontemporaneous nearby calderas. However, this rhyolite apparently is not related to a caldera structure. Possibly, the Taylor Creek Phyolite magma body never became sufficiently volatile rich to produce a large-volume pyroclastic eruption and associated caldera collapse, but instead leaked repeatedly to feed many relatively small domes and flows.The new 40Ar/39Ar ages do not resolve preexisting unknown relative-age relations among the domes and flows of the lava field. Nonetheless, the indicated geologically brief period during which Taylor Creek Rhyolite magma was erupted imposes useful constraints for future evaluation of possible models for petrogenesis and the origin of trace-element characteristics of the system.  相似文献   

6.
Based on detailed field, petrographic, chemical, and isotopic data, this paper shows that the youngest magmas of the active Nisyros volcano (South Aegean Arc, Greece) are an example of transition from rhyolitic to less evolved magmas by multiple refilling with mafic melts, triggering complex magma interaction processes. The final magmatic activity of Nisyros was characterized by sub-Plinian caldera-forming eruption (40?ka), emplacing the Upper Pumice (UP) rhyolitic deposits, followed by the extrusion of rhyodacitic post-caldera domes (about 31–10?ka). The latter are rich in magmatic enclaves with textural and compositional (basaltic–andesite to andesite) characteristics that reveal they are quenched portions of mafic magmas included in a cooler more evolved melt. Dome-lavas have different chemical, isotopic, and mineralogical characteristics from the enclaves. The latter have lower 87Sr/86Sr and higher 143Nd/144Nd values than dome-lavas. Silica contents and 87Sr/86Sr values decrease with time among dome-lavas and enclaves. Micro-scale mingling processes caused by enclave crumbling and by widespread mineral exchanges increase from the oldest to the youngest domes, together with enclave content. We demonstrate that the dome-lavas are multi-component magmas formed by progressive mingling/mixing processes between a rhyolitic component (post-UP) and the enclave-forming mafic magmas refilling the felsic reservoir (from 15?wt.% to 40?wt.% of mafic component with time). We recognize that only the more evolved enclave magmas contribute to this process, in which recycling of cumulate plagioclase crystals is also involved. The post-UP end-member derives by fractional crystallization from the magmas leftover after the previous UP eruptions. The enclave magma differentiation develops mainly by fractional crystallization associated with multiple mixing with mafic melts changing their composition with time. A time-related picture of the relationships between dome-lavas and relative enclaves is proposed, suggesting a delay between a mafic magma input and the relative dome outpouring. We also infer that the magma viscosity reduction by re-heating allows dome extrusion without explosive activity.  相似文献   

7.
A new geochronological and geochemical study was carried out to better constrain the petrogenesis and eruptive history of Monte Amiata, a large Pleistocene trachydacitic volcano of Southern Tuscany. Previous studies suggested a magma mixing origin between calc-alkaline silicic melts from the Tuscan Magmatic Province (TMP) and potassic mafic melts like those found in the Roman Magmatic Province (RMP). Two eruptive episodes–the first at ca. 300 kyr, the second at ca. 200 kyr–were distinguished from the few available ages. However, both the involvement of a RMP-like melt as mafic end-member and the timing of volcanic activity remained to be ascertained. The K–Ar ages obtained on plagioclase, sanidine and glass separated from Mt Amiata volcanic rocks demonstrate the sanidine is the most suitable phase for K–Ar dating. Sanidine yields ages of 304–293 kyr for the basal trachydacitic unit (BTC), 298–280 kyr in the domes unit (DLC) and unexpected older ages of 312–308 kyr for the more mafic summit lava unit (OLL). A careful re-examination of the literature ages together with those obtained in this study shows that they tend to a common age of ca. 300 kyr whatever the volcanic unit. We interpret this as a reset of the K–Ar chronometer in response to a consequent recharge of the silicic magma reservoir by hot mafic melts. This recharge most probably triggered the first volcanic eruption of Mt Amiata magmas. In our model, we suppose an initially chemically-stratified magma chamber; the input of deep hot mafic melts reset the crystals clock and probably allowed the eruption of the huge amount of trachydacitic crystal mush. We propose that the controversial BTC unit could have emplaced during a non-explosive eruption if we consider either pre-eruption passive degassing or extrusion of the trachydacites as magmatic foam.First Pb isotopic data of mafic enclaves from the trachydacitic units, together with major and trace elements and new Sr and Nd data support the magma mixing as the dominant process at the origin of the Mt Amiata volcanic rocks. The similar LILE/HFSE ratios evidenced in this contribution between the magmatic enclaves of Mt Amiata and RMP volcanic rocks, together with their comparable Sr, Nd and Pb isotopic compositions, definitively argue for the involvement of a RMP-like melt in the mixing. The Mt Amiata is thus indisputably a hybrid volcano between TMP and RMP in terms of petrogenesis and ages.  相似文献   

8.
Rhyolites occur as a subordinate component of the basalt-dominated Eastern Snake River Plain volcanic field. The basalt-dominated volcanic field spatially overlaps and post-dates voluminous late Miocene to Pliocene rhyolites of the Yellowstone–Snake River Plain hotspot track. In some areas the basalt lavas are intruded, interlayered or overlain by ~15 km3 of cryptodomes, domes and flows of high-silica rhyolite. These post-hotspot rhyolites have distinctive A-type geochemical signatures including high whole-rock FeOtot/(FeOtot+MgO), high Rb/Sr, low Sr (0.5–10 ppm) and are either aphyric, or contain an anhydrous phenocryst assemblage of sodic sanidine ± plagioclase + quartz > fayalite + ferroaugite > magnetite > ilmenite + accessory zircon + apatite + chevkinite. Nd- and Sr-isotopic compositions overlap with coeval olivine tholeiites (ɛNd = −4 to −6; 87Sr/86Sri = 0.7080–0.7102) and contrast markedly with isotopically evolved Archean country rocks. In at least two cases, the rhyolite lavas occur as cogenetic parts of compositionally zoned (~55–75% SiO2) shield volcanoes. Both consist dominantly of intermediate composition lavas and have cumulative volumes of several 10’s of km3 each. They exhibit two distinct, systematic and continuous types of compositional trends: (1) At Cedar Butte (0.4 Ma) the volcanic rocks are characterized by prominent curvilinear patterns of whole-rock chemical covariation. Whole-rock compositions correlate systematically with changes in phenocryst compositions and assemblages. (2) At Unnamed Butte (1.4 Ma) the lavas are dominated by linear patterns of whole-rock chemical covariation, disequilibrium phenocryst assemblages, and magmatic enclaves. Intermediate compositions in this group resulted from variable amounts of mixing and hybridization of olivine tholeiite and rhyolite parent magmas. Interestingly, models of rhyolite genesis that involve large degrees of melting of Archean crust or previously consolidated mafic or silicic Tertiary intrusions do not produce observed ranges of Nd- and Sr-isotopes, extreme depletions in Sr-concentration, and cogenetic spectra of intermediate rock compositions for both groups. Instead, least-squares mass-balance, energy-constrained assimilation and fractional crystallization modeling, and mineral thermobarometry can explain rhyolite production by 77% low-pressure fractional crystallization of a basaltic trachyandesite parent magma (~55% SiO2), accompanied by minor (0.03–7%) assimilation of Archean upper crust. We present a physical model that links the rhyolites and parental intermediate magmas to primitive olivine tholeiite by fractional crystallization. Assimilation, recharge, mixing and fractional melting occur to limited degrees, but are not essential parts of the rhyolite formation process. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. This paper constitutes part of a special issue dedicated to Bill Bonnichsen on the petrogenesis and volcanology of anorogenic rhyolites.  相似文献   

9.
Over the last 42 ka, volcanic activity at Lipari Island (Aeolian Arc, Italy) produced lava domes, flows and pyroclastic deposits with rhyolitic composition, showing in many cases evidence of magma mixing such as latitic enclaves and banding. In this same period, on nearby Vulcano Island, similar rhyolitic lava domes, pyroclastic products and lava flows, ranging in composition from shoshonite to rhyolite, were erupted. As a whole, the post-42 ka products of Lipari and Vulcano show geochemical variations with time, which are well correlated between the two islands and may correspond to a modification of the primary magmas. The rhyolitic products are similar to each other in their major elements composition, but differ in their trace element abundances (e.g. La ranging from 40 to 78 ppm for SiO2 close to 75 wt%). Their isotopic composition is variable, too. The 87Sr/86Sr (0.704723–0.705992) and 143Nd/144Nd (0.512575–0.512526) ranges partially overlap those of the more mafic products (latites), having 87Sr/86Sr from 0.7044 to 0.7047 and 143Nd/144Nd from 0.512672 to 0.512615. 206Pb/204Pb is 19.390–19.450 in latites and 19.350–19.380 in rhyolites. Crystal fractionation and crustal assimilation processes of andesitic to latitic melts, showing an increasing content in incompatible elements in time, may explain the genesis of the different rhyolitic magmas. The rocks of the local crustal basement assimilated may correspond to lithotypes present in the Calabrian Arc. Mixing and mingling processes between latitic and rhyolitic magmas that are not genetically related occur during most of the eruptions. The alignment of vents related to the volcanic activity of the last 40 ka corresponds to the NNW–SSE Tindari–Letojanni strike-slip fault and to the correlated N–S extensional fault system. The mafic magmas erupted along these different directions display evidence of an evolution at different PH2O conditions. This suggests that the Tindari–Letojanni fault played a relevant role in the ascent, storage and diversification of magmas during the recent volcanic activity.  相似文献   

10.
The Monte Guardia rhyolitic eruption (~22 ka, Lipari, Aeolian Islands, Italy) produced a sequence of pyroclastic deposits followed by the emplacement of lava domes. The total volume of dense magma erupted was nearly 0.5 km3. The juvenile clasts in the pyroclastic deposits display a variety of magma mixing evidence (mafic magmatic enclaves, streaky pumices, mineral disequilibria and heterogeneous glass composition). Petrographic, mineralogical and geochemical investigations and melt inclusion studies were carried out on the juvenile clasts in order to reconstruct the mixing process and to assess the pre-eruptive chemico-physical magmatic conditions. The results suggest that the different mingling and mixing textures were generated during a single mixing event between a latitic and a rhyolitic end member. A denser, mixed magma was first erupted, followed by a larger volume of an unmixed, lighter rhyolitic one. This compositional sequence is the reverse of what would be expected from the tapping of a zoned magma chamber. The Monte Guardia rhyolitic magma, stored below 200 MPa, was volatile-rich and fluid-saturated, or very close to this, despite its relatively low explosivity. In contrast to previous interpretations, there exists the possibility that the rhyolite could rise and erupt without the trigger of a mafic input. The entire data collected are compatible with two possible mechanisms that would generate a reversely zoned sequence: (1) the occurrence of thermal instabilities in a density stratified, salic to mafic magma chamber and (2) the intrusion of rising rhyolite into a shallower mafic sill/dike.  相似文献   

11.
The Nevado Sabancaya in southern Peru has exhibited a persistent eruptive activity over eight years following a violent eruption in May–June 1990. The explosive activity consisted of alternated vulcanian and phreatomagmatic events, followed by declining phreatic activity since late 1997. The mean production rate of magma has remained low (106–107 m3 per year).The 1990–1998 eruptive episode produced andesitic and dacitic magmas. The juvenile tephra span a narrow range of compositions (60–64 wt% SiO2). While SiO2 contents do vary slightly, they do not show any systematic variation with time. Phenocryst assemblages in the juvenile rocks consist of mainly plagioclase, associated with high-Ca pyroxene, hornblende, biotite, and iron-titanium oxides. Rare fine-grained magmatic enclaves, with angular to subrounded shapes, are contained within some of the juvenile lava blocks, which were expelled since 1992. They have a homogeneous andesitic composition (57 wt% SiO2) and show randomly oriented interlocking columnar or acicular crystals (plagioclase and amphibole), with interstitial glass and a few voids, which define a quench-textured groundmass.Textural, mineralogical and chemical evidence suggests that the 1990–1998 eruptions have mainly erupted hybrid andesites, except for the 1990 dacite. The hybrid andesites contain a mixed population of plagioclase phenocrysts: Ca-rich clear plagioclase (An40–60), Na-rich clear plagioclase (An25–35), and inversely zoned dusty-rimmed plagioclase with a sodic core (An25–40) surrounded by a Ca-rich mantle (An45–65). Melt-inclusions, wavy dissolution surfaces and stepped zoning within the dusty-rimmed plagioclases are compatible with resorption induced by magma recharge events. Chemical and isotopic lines of evidence also show that andesites are hybrids resulting from magma mixing processes. Repeated magma recharge, incomplete homogenisation and different degrees of crustal assimilation may explain the extended range of isotopic signatures.Our study leads to propose an evolution model for the magmatic system at Nevado Sabancaya. The main magma body consisted of dacitic magmas differentiating through extensive open-system crystallization (AFC). Repeated recharge of more mafic magmas induced magma mixing, leading to the formation of hybrid andesites. A partially crystalline boundary layer formed at the interface between the andesites and the recharge magma. The magmatic enclaves were produced by the disruption and dispersion of this andesitic layer as a result of new magma injection and/or sustained tectonic activity.Periodic magma recharge and interactions with groundwater are two processes that have enabled the explosive regime to remain persistent over an 8-year-long period. What precise mechanism triggers the eruptive activity remains speculative, but it may be related either to new magma injection, or to the sustained tectonic activity that occurred at that time in the vicinity of the volcano, or a combination of both.  相似文献   

12.
Nisyros island is a calc-alkaline volcano, built up during the last 100 ka. The first cycle of its subaerial history includes the cone-building activity with three phases, each characterized by a similar sequence: (1) effusive and explosive activity fed by basaltic andesitic and andesitic magmas; and (2) effusive andextrusive activity fed by dacitic and rhyolitic magmas. The second eruptive cycle includes the caldera-forming explosive activity with two phases, each consisting of the sequence: (1) rhyolitic phreatomagmatic eruptions triggering a central caldera collapse; and (2) extrusion of dacitic-rhyolitic domes and lava flows. The rocks of this cycle are characteized by the presence of mafic enclaves with different petrographic and chemical features which testify to mixing-mingling processes between variously evolved magmas. Jumps in the degree of evolution are present in the stratigraphic series, accompanied by changes in the porphyritic index. This index ranges from 60% to about 5% and correlates with several teochemical parameters, including a negative correlation with Sr isotope ratios (0.703384–0.705120). The latter increase from basaltic andesites to intermediate rocks, but then slightly decrease in the most evolved volcanic rocks. The petrographic, geochemical and isotopic characteristics can be largely explained by processes occurring in a convecting, crystallizing and assimilating magma chamber, where crystal sorting, retention, resorption and accumulation take place. A group of crystal-rich basaltic andesites with high Sr and compatible element contents and low incompatible elements and Sr isotope ratios probably resulted from the accumulation of plagioclase and pyroxene in an andesitic liquid. Re-entrainment of plagioclase crystals in the crystallizing magma may have been responsible for the lower 87Sr/86Sr in the most evolved rocks. The gaps in the degree of evolution with time are interpreted as due to liquid segregation from a crystal mush once critical crystallinity was reached. At that stage convection halted, and a less dense, less porphyritic, more evolved magma separated from a denser crystal-rich magma portion. The differences in incompatible element enrichment of pre-and post-caldera dacites and the chemical variation in the post-caldera dome sequence are the result of hybridization of post-caldera dome magmas with more mafic magmas, as represented by the enclave compositions. The occurrence of the quenched, more mafic magmas in the two post-caldera units suggests that renewed intrusion of mafic magma took place after each collapse event.  相似文献   

13.
The recent finding of mafic enclaves in the Rocche Rosse (RR) lava flow, the last magmatic product on Lipari (Aeolian Islands, Italy) (AD 1230 ± 40), opens the possibility to investigate in detail the most recent magmatic system of the island, an important issue for the volcanic hazard assessment of the area. The RR lava flow is an aphyric rhyolitic coulée consisting of grey and black pumice and black and grey obsidian. Enclaves have ellipsoidal to spheroidal shape and vary from mm-sized in the central portion of the flow, to cm-sized, at the top and in the flow front, where they are also more abundant. Enclaves are shoshonitic-latitic (group A) and trachytic (group B) in composition. The mineralogy of group A consists of dominant clinopyroxene crystals with minor abundance of feldspar (plagioclase > K-feldspar), olivine and biotite, while group B is composed of feldspar (K-feldspar > plagioclase) with minor clinopyroxene, olivine and biotite. Geochemical modeling suggests that the host rhyolitic rocks could be the product of AFC (Assimilation plus Fractional Crystallization) of a magma compositionally similar to the associated shoshonitic-latitic enclaves, which, in turn, could be obtained, through an AFC process, from the primitive melts erupted as olivine hosted melt inclusions during the last 15 ka at Vulcano. The already-known last 42 ka relationship between Lipari and Vulcano Islands is here reinforced until historical time, especially for the last 1 ka. The geochemical and petrological overlap between Lipari and Vulcano is interpreted to reflect the existence of a similar magmatic system underneath the two islands. The nearly aphyric RR rhyolites are interpreted to be the products of a superheated (temperature far above the liquidus) and initially water-undersaturated magma that underwent degassing close to the surface inhibiting microlite crystallization.  相似文献   

14.
Degassing during magma ascent in the Mule Creek vent (USA)   总被引:1,自引:1,他引:1  
 The structures and textures of the rhyolite in the Mule Creek vent (New Mexico, USA) indicate mechanisms by which volatiles escape from silicic magma during eruption. The vent outcrop is a 300-m-high canyon wall comprising a section through the top of a feeder conduit, vent and the base of an extrusive lava dome. Field relations show that eruption began with an explosive phase and ended with lava extrusion. Analyses of glass inclusions in quartz phenocrysts from the lava indicate that the magma had a pre-eruptive dissolved water content of 2.5–3.0 wt% and, during eruption, the magma would have been water-saturated over the vertical extent of the present outcrop. However, the vesicularity of the rhyolite is substantially lower than that predicted from closed-system models of vesiculation under equilibrium conditions. At a given elevation in the vent, the volume fraction of primary vesicles in the rhyolite increases from zero close to the vent margin to values of 20–40 vol.% in the central part. In the centre the vesicularity increases upward from approximately 20 vol.% at 300 m below the canyon rim to approximately 40 vol.% at 200 m, above which it shows little increase. To account for the discrepancy between observed vesicularity and measured water content, we conclude that gas escaped during ascent, probably beginning at depths greater than exposed, by flow through the vesicular magma. Gas escape was most efficient near the vent margin, and we postulate that this is due both to the slow ascent of magma there, giving the most time for gas to escape, and to shear, favouring bubble coalescence. Such shear-related permeability in erupting magma is supported by the preserved distribution of textures and vesicularity in the rhyolite: Vesicles are flattened and overlapping near the dense margins and become progressively more isolated and less deformed toward the porous centre. Local zones have textures which suggest the coalescence of bubbles to form permeable, collapsing foams, implying the former existence of channels for gas migration. Local channelling of gas into the country rocks is suggested by the presence of sub-horizontal syn-eruptive rhyolitic tuffisite veins which depart from the vent margin and invade the adjacent country rock. In the central part of the vent, similar local channelling of gas is indicated by steep syn-eruption tuffisite veins which cut the rhyolite itself. We conclude that the suppression of explosive eruption resulted from gas separation from the ascending magma and vent structure by shear-related porous flow and channelling of gas through tuffisite veins. These mechanisms of gas loss may be responsible for the commonly observed transition from explosive to effusive behaviour during the eruption of silicic magma. Received: 24 May 1995 / Accepted: 13 March 1996  相似文献   

15.
 Physical properties of cryptodome and remelted samples of the Mount St. Helens grey dacite have been measured in the laboratory. The viscosity of cryptodome dacite measured by parallel–plate viscometry ranges from 10.82 to 9.94 log10 η (Pa s) (T=900–982  °C), and shrinkage effects were dilatometrically observed at T>900  °C. The viscosity of remelted dacite samples measured by the micropenetration method is 10.60–9.25 log10 η (Pa s) (T=736–802  °C) and viscosities measured by rotational viscometry are 3.22–1.66 log10 η (Pa s) (T=1298–1594  °C). Comparison of the measured viscosity of cryptodome dacitic samples with the calculated viscosity of corresponding water-bearing melt demonstrates significant deviations between measured and calculated values. This difference reflects a combination of the effect of crystals and vesicles on the viscosity of dacite as well as the insufficient experimental basis for the calculation of crystal-bearing vesicular melt viscosities at low temperature. Assuming that the cryptodome magma of the 18 May 1980 Mount St. Helens eruption was residing at 900  °C with a phenocryst content of 30 vol.%, a vesicularity of 36 vol.% and a bulk water content of 0.6 wt.%, we estimate the magma viscosity to be 1010.8 Pa s. Received: 25 August 1996 / Accepted: 19 July 1997  相似文献   

16.
The Kos Plateau Tuff (KPT) eruption of 161 ka was the largest explosive Quaternary eruption in the eastern Mediterranean. We have discovered an uplifted beach deposit of abraded pumice cobbles, directly overlain by the KPT. The pumice cobbles resemble pumice from the KPT in petrography and composition and differ from Plio-Pleistocene rhyolites on the nearby Kefalos Peninsula. The pumice contains enclaves of basaltic andesite showing chilled lobate margins, suggesting co-existence of two magmas. The deposit provides evidence that the precursory phase of the KPT eruption produced pumice rafts, and defines the paleoshoreline for the KPT, which elsewhere was deposited on land. The beach deposit has been uplifted about 120 m since the KPT eruption, whereas the present marine area south of Kos has subsided several hundred metres, as a result of regional neotectonics. The basaltic andesite is more primitive than other mafic rocks known from the Kos–Nisyros volcanic centre and contains phenocrysts of Fo89 olivine, bytownite, enstatite and diopside. Groundmass amphibole suggests availability of water in the final stages of magma evolution. Geochemical and mineralogical variation in the mafic products of the KPT eruption indicate that fractionation of basaltic magma in a base-of-crust magma chamber was followed by mixing with rhyolitic magma during eruption. Low eruption rates during the precursory activity may have minimised the extent of mixing and preserved the end-member magma types.  相似文献   

17.
The Mt Somers Volcanics are part of a suite of mid-Cretaceous (89 ± 2 Ma) intermediate to silicic volcanics, erupted onto an eroded surface of Torlesse sediments. Rock types vary from basaltic andesite to high-silica rhyolite. Andesites are medium- to high-K with phenocrysts of plagioclase, orthopyroxene and pigeonite. Dacites are peraluminous and commonly contain granulite facies xenoliths and garnet xenocrysts. Equilibrium mineral assemblages indicate metamorphic pressures of close to 6 kbar at 800°C. Rhyolites are peraluminous with phenocrysts of quartz, sanidine, plagioclase, biotite, garnet and orthopyroxene. The ferromagnesian phases show textural evidence of magmatic crystallization and are chemically distinct from xenocryst phases in dacites. Equilibrium assemblages indicate that early magmatic crystallization occurred at close to 7 kbar (20 km depth) at above 850°C, with melt-water contents of less than 3.5%. Major-element contents, trace-element contents and an initial 87Sr/86Sr ratio of 0.7085 indicate that the rhyolites formed by partial melting of dominantly quartzo-feldspathic Torlesse sediments, leaving a granulite-facies residue. The chemical variation displayed by the rhyolites is best explained by fractional crystallization of the observed high-pressure phenocryst assemblage. Most elements show a compositional gap between rhyolite and dacite. The major-element, trace-element and Sr isotope compositions of the intermediate lavas are best explained by assimilation of lower crustal material combined with fractional crystallization in mantle-derived tholeiitic magmas. Magmatism was the result of heat and magma flux from the mantle, during the change from compressive to extensional tectonics after the culmination of the Rangitata Orogeny.  相似文献   

18.
The Superior volcanic field occupies approximately 8,000 square kilometers of central Arizona in the zone between the southern Basin and Range Province and the Colorado Plateaus Province. The primary structural elements of an eruptive center in the western part of this field are: 1) volcanic plateau, 2) ring fracture zone, and 3) resurgent caldera core. A northwest trending graben controls the location of three small subsided blocks, the Willow Springs cauldron (2 km diameter), the Black Mesa cauldron (4 km diameter), and the Florence Junction cauldron (8 km diameter), which were centers for rhyolite ash and lava eruption. These late features are superimposed on a much larger volcano-tectonic structure, the Superstition resurgent cauldron which subsided at an earlier stage following the extrusion of quartz latite welded tuff. The history of the volcanic center is as follows: An early ring of dacite domes of up to 900 meters in relief formed a semi-circular are 7 km in diameter on the western margin of the caldera. The last phases of dome building were contemporaneous with the extrusion of a vast quartz latite welded tuff (22.6 m.y.). The plateau formed by the welded tuff collapsed to a maximum depth of 800 meters along a northwest trending graben which is the locus of three small cauldrons. These late cauldrons were the source of rhyolitic magma which produced non-welded ash flows, lava (21 m.y.), and a thick sequence of epiclastic breccias. The rhyolitic volcanism was followed by intrusion of domes and extrusion of glassy lavas (20 m.y.) of quartz latite composition in a 270° are 16 km in diameter concentric to the arc of older dacite domes. Following deposition of the epiclastic breccia and intrusion of the ring fracture dikes was the extrusion of mafic lava (18 m.y.) into low places in the graben. The mafic lava composition ranges from basalt to basanite.  相似文献   

19.
A key question in volcanology is the driving mechanisms of resurgence at active, recently active, and ancient calderas. Valles caldera in New Mexico and Lake City caldera in Colorado are well-studied resurgent structures which provide three crucial clues for understanding the resurgence process. (1) Within the limits of 40Ar/39Ar dating techniques, resurgence and hydrothermal alteration at both calderas occurred very quickly after the caldera-forming eruptions (tens of thousands of years or less). (2) Immediately before and during resurgence, dacite magma was intruded and/or erupted into each system; this magma is chemically distinct from rhyolite magma which was resident in each system. (3) At least 1?km of structural uplift occurred along regional and subsidence faults which were closely associated with shallow intrusions or lava domes of dacite magma. These observations demonstrate that resurgence at these two volcanoes is temporally linked to caldera subsidence, with the upward migration of dacite magma as the driver of resurgence. Recharge of dacite magma occurs as a response to loss of lithostatic load during the caldera-forming eruption. Flow of dacite into the shallow magmatic system is facilitated by regional fault systems which provide pathways for magma ascent. Once the dacite enters the system, it is able to heat, remobilize, and mingle with residual crystal-rich rhyolite remaining in the shallow magma chamber. Dacite and remobilized rhyolite rise buoyantly to form laccoliths by lifting the chamber roof and producing surface resurgent uplift. The resurgent deformation caused by magma ascent fractures the chamber roof, increasing its structural permeability and allowing both rhyolite and dacite magmas to intrude and/or erupt together. This sequence of events also promotes the development of magmatic–hydrothermal systems and ore deposits. Injection of dacite magma into the shallow rhyolite magma chamber provides a source of heat and magmatic volatiles, while resurgent deformation and fracturing increase the permeability of the system. These changes allow magmatic volatiles to rise and meteoric fluids to percolate downward, favouring the development of hydrothermal convection cells which are driven by hot magma. The end result is a vigorous hydrothermal system which is driven by magma recharge.  相似文献   

20.
By applying a number of analytical techniques across a spectrum of spatial scales (centimeter to micrometer) in juvenile components, we show that the Cerro Galán volcanic system has repeatedly erupted magmas with nearly identical geochemistries over >3.5 Myr. The Cerro Galán system produced nine ignimbrites (∼5.6 to 2 Ma) with a cumulative volume of >1,200 km3 (DRE; dense rock equivalent) of calc-alkaline, high-K rhyodacitic magmas (68–71 wt.% SiO2). The mineralogy is broadly constant throughout the eruptive sequence, comprising plagioclase, quartz, biotite, Fe–Ti oxides, apatite, and titanite. Early ignimbrite magmas also contained amphibole, while the final eruption, the most voluminous Cerro Galán ignimbrite (CGI; 2.08 ± 0.02 Ma) erupted a magma containing rare amphibole, but significant sanidine. Each ignimbrite contains two main juvenile clast types; dominant “white” pumice and ubiquitous but subordinate “grey” pumice. Fe–Ti oxide and amphibole-plagioclase thermometry coupled with amphibole barometry suggest that the grey pumice originated from potentially hotter and deeper magmas (800–840°C, 3–5 kbar) than the more voluminous white pumice (770–810°C, 1.5–2.5 kbar). The grey pumice is interpreted to represent the parental magmas to the Galán system emplaced into the upper crust from a deeper storage zone. Most inter-ignimbrite variations can be accounted for by differences in modal mineralogy and crystal contents that vary from 40 to 55 vol.% on a vesicle-free basis. Geochemical modeling shows that subtle bulk-rock variations in Ta, Y, Nb, Dy, and Yb between the Galán ignimbrites can be reconciled with differences in amounts of crystal fractionation from the “grey” parent magma. The amount of fractionation is inversely correlated with volume; the CGI (∼630 km3) and Real Grande Ignimbrite (∼390 km3) return higher F values (proportion of liquid remaining) than the older Toconquis Group ignimbrites (<50 km3), implying less crystal fractionation took place during the upper-crustal evolution of these larger volume magmas. We attribute this relationship to variations in magma chamber geometry; the younger, largest volume ignimbrites came from flat sill-like magma chambers, reducing the relative proportion of sidewall crystallization and fractionation compared to the older, smaller-volume ignimbrite eruptions. The grey pumice clasts also show evidence of silicic recharge throughout the history of the Cerro Galán system, and recharge days prior to eruption has previously been suggested based on reversely zoned (OH and Cl) apatite phenocrysts. A rare population of plagioclase phenocrysts with thin An-rich rims in juvenile clasts in many ignimbrites supports the importance of recharge in the evolution and potential triggering of eruptions. This study extends the notion that large volumes of nearly identical silicic magmas can be generated repeatedly, producing prolonged geochemical homogeneity from a long-lived magma source in a subduction zone volcanic setting. At Cerro Galán, we propose that there is a zone between mantle magma input and upper crustal chambers, where magmas are geochemically “buffered”, producing the underlying geochemical and isotopic signatures. This produces the same parental magmas that are delivered repeatedly to the upper crust. A lower-crustal MASH (melting, assimilation, storage, and homogenization) zone is proposed to act as this buffer zone. Subsequent upper crustal magmatic processes serve only to slightly modify the geochemistry of the magmas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号