首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 743 毫秒
1.
Seasonal and event variations in stream channel area and the contributions of channel precipitation to stream flow were studied on a 106‐ha forested headwater catchment in central Pennsylvania. Variations in stream velocity, flowing stream surface width and widths of near‐stream saturated areas were periodically monitored at 61 channel transects over a two‐year period. The area of flowing stream surface and near‐stream saturated zones combined, ranged from 0·07% of basin area during summer low flows to 0·60% of total basin area during peak storm flows. Near‐stream saturated zones generally represented about half of the total channel area available to intercept throughfall and generate channel precipitation. Contributions of routed channel precipitation from the flowing stream surface and near‐stream zones, calculated using the Penn State Runoff Model (PSRM, v. 95), represented from 1·1 to 6·4% of total stream flow and 2·5–29% of total storm flow (stream flow–antecedent baseflow) during the six events. Areas of near‐stream saturated zones contributed 35–52% of the computed channel precipitation during the six events. Channel precipitation contributed a higher percentage of stream flow for events with low antecedent baseflow when storm flow generated by subsurface sources was relatively low. Expansion of channel area and consequent increases in volumes of channel precipitation with flow increases during events was non‐linear, with greater rates of change occurring at lower than at higher discharge rates. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

2.
The hydrochemical behaviour of catchments is often investigated by inferring stream chemistry through identification of source areas involved in hydrograph separation analysis, yet its dynamic evolution of hydrologic pathways has received little attention. Intensive hydrometric and hydrochemical measurements were performed during two different storms on March 29, 2001 and August 21–22, 2001 to define hydrochemical evolution under the dynamic of flow pathways in a 5·2 ha first‐order drainage of the Kawakami experimental basin (KEB), Central Japan, a forested headwater catchment with various soil depths (1·8 to 5 m) overlying late Neogene of volcanic bedrocks. The hydraulic potential distribution and flow lines data showed that the change in flow direction, which was controlled by rainfall amount and antecedent wetness of the soil profile, agreed well with the hydrochemical change across the slope segment during the storm. Hydrograph separation predicted by end‐member mixing analysis (EMMA) using Ca2+ and SiO2 showed that near surface riparian, hillslope soil water and deep riparian groundwater were important in stream flow generation. The evidence of decrease in solutes concentration at a depth of 1 m in the hillslope and 0·6 m in the near surface riparian during peak storm suggested a flushing of high solutes concentration. Most of the solutes accumulated in the deep riparian groundwater zone, which was due to prominent downward flow and agreed well with the residence time. The distinct flow pathways and chemistry between the near surface riparian and deep riparian groundwater zones and the linkage hillslope aquifer and near surface riparian reservoir, which controls rapid flow and solutes flushing during the storm event, are in conflict with the typical assumption that the whole riparian zone resets flow pathways and chemical signature of hillslope soil water, as has been reported in a previous study. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

3.
A 40 m × 20 m mowed, grass hillslope adjacent to a headwater stream within a 26‐ha watershed in east‐central Pennsylvania, USA, was instrumented to identify and map the extent and dynamics of surface saturation (areas with the water table at the surface) and surface runoff source areas. Rainfall, stream flow and surface runoff from the hillslope were recorded at 5‐min intervals from 11 August to 22 November 1998, and 13 April to 12 November 1999. The dynamics of the water table (0 to 45 cm depth from the soil surface) and the occurrence of surface runoff source areas across the hillslope were recorded using specially designed subsurface saturation and surface runoff sensors, respectively. Detailed data analyses for two rainfall events that occurred in August (57·7 mm in 150 min) and September (83·6 mm in 1265 min) 1999, illustrated the spatial and temporal dynamics of surface saturation and surface runoff source areas. Temporal data analyses showed the necessity to measure the hillslope dynamics at time intervals comparable to that of rainfall measurements. Both infiltration excess surface runoff (runoff caused when rainfall intensity exceeds soil infiltration capacity) and saturation excess surface runoff (runoff caused when soil moisture storage capacity is exceeded) source areas were recorded during these rainfall events. The August rainfall event was primarily an infiltration excess surface runoff event, whereas the September rainfall event produced both infiltration excess and saturation excess surface runoff. Occurrence and disappearance of infiltration excess surface runoff source areas during the rainfall events appeared scattered across the hillslope. Analysis of surface saturation and surface runoff data showed that not all surface saturation areas produced surface runoff that reached the stream. Emergence of subsurface flow to the surface during the post‐rainfall periods appeared to be a major flow process dominating the hillslope after the August rainfall event. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

4.
The hydrology and nitrogen biogeochemistry of a riparian zone were compared before and after the construction of beaver dams along an agricultural stream in southern Ontario, Canada. The beaver dams increased surface flooding and raised the riparian water table by up to 1·0 m. Increased hydraulic gradients inland from the stream limited the entry of oxic nitrate‐rich subsurface water from adjacent cropland. Permeable riparian sediments overlying dense till remained saturated during the summer and autumn months, whereas before dam construction a large area of the riparian zone was unsaturated in these seasons each year. Beaver dam construction produced significant changes in riparian groundwater chemistry. Median dissolved oxygen concentrations were lower in riparian groundwater after dam construction (0·9–2·1 mg L?1) than in the pre‐dam period (2·3–3·9 mg L?1). Median NO3‐N concentrations in autumn and spring were also lower in the post‐dam (0·03–0·07 mg L?1) versus the pre‐dam period (0·1–0·3 mg L?1). In contrast, median NH4‐N concentrations in autumn and spring months were higher after dam construction (0·3–0·4 mg L?1) than before construction (0·13–0·14 mg L?1). Results suggest that beaver dams can increase stream inflow to riparian areas that limit water table declines and increase depths of saturated riparian soils which become more anaerobic. These changes in subsurface hydrology and chemistry have the potential to affect the transport and transformation of nitrate fluxes from adjacent cropland in agricultural landscapes. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
Verification of distributed hydrologic models is rare owing to the lack of spatially detailed field measurements and a common mismatch between the scale at which soil hydraulic properties are measured and the scale of a single modelling unit. In this study, two of the most commonly calibrated parameters, i.e. soil depth and the vertical distribution of lateral saturated hydraulic conductivity Ks, were eliminated by a spatially detailed soil characterization and results of a hillslope‐scale field experiment. The soil moisture routing (SMR) model, a geographic information system‐based hydrologic model, was modified to represent the dominant hydrologic processes for the Palouse region of northern Idaho. Modifications included Ks as a double exponential function of depth in a single soil layer, a snow accumulation and melt algorithm, and a simple relationship between storage and perched water depth (PWD) using the drainable porosity. The model was applied to a 2 ha catchment without calibration to measured data. Distributed responses were compared with observed PWD over a 3‐year period on a 10 m × 15 m grid. Integrated responses were compared with observed surface runoff at the catchment outlet. The modified SMR model simulated the PWD fluctuations remarkably well, especially considering the shallow soils in this catchment: a 0·20 m error in PWD is equivalent to only a 1·6% error in predicted soil moisture content. Simulations also captured PWD fluctuations during a year with high spatial variability of snow accumulation and snowmelt rates at upslope, mid‐slope, and toe slope positions with errors as low as 0·09 m, 0·12 m, and 0·12 m respectively. Errors in distributed and integrated model simulations were attributed mostly to misrepresentation of rain events and snowmelt timing problems. In one location in the catchment, simulated PWD was consistently greater than observed PWD, indicating a localized recharge zone, which was not identified by the soil morphological survey. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
To determine how soil frost changes flowpaths of runoff water along a hillslope, a transect consisting of four soil profiles directed towards a small stream in a mature forest stand was investigated at Svartberget, near Vindeln in northern Sweden. Soil temperature, unfrozen water content, groundwater level and snow depth were investigated along the transect, which started at the riparian peat, and extended 30 m upslope into mineral soils. The two, more organic‐rich profiles closest to the stream had higher water retention and wetter autumn conditions than the sandy mineral soils further upslope. The organic content of the soil influenced the variation in frost along the transect. The first winter (1995–96) had abnormally low snow precipitation, which gave a deep frost down to 40–80 cm, whereas the two following winters had frost depths of 5–20 cm. During winter 1995–96, the two organic profiles close to the stream had a shallower frost depth than the mineral soil profile higher upslope, but a considerably larger amount of frozen water. The fraction of water that did not freeze despite several minus degrees in the soil was 5–7 vol.% in the mineral soil and 10–15 vol.% in the organic soil. From the measurements there were no signs of perched water tables during any of the three snowmelt periods, which would have been strong evidence for changed water flowpaths due to soil frost. When shallow soil layers became saturated during snowmelt, especially in 1997 and 1998, it was because of rising groundwater levels. Several rain on frozen ground events during spring 1996 resulted in little runoff, since most of the rain either froze in the soil or filled up the soil water storage. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

7.
Jason A. Leach  Dan Moore 《水文研究》2017,31(18):3160-3177
Stream temperature controls a number of biological, chemical, and physical processes occurring in aquatic environments. Transient snow cover and advection associated with lateral throughflow inputs can have a dominant influence on stream thermal regimes for headwater catchments in the rain‐on‐snow zone. Most existing stream temperature models lack the ability to properly simulate these processes. We developed and evaluated a conceptual‐parametric catchment‐scale stream temperature model that includes the role of transient snow cover and lateral advection associated with throughflow. The model consists of routines for simulating canopy interception, snow accumulation and melt, hillslope throughflow runoff and temperature, and stream channel energy exchange processes. The model was used to predict discharge and stream temperature for a small forested headwater catchment near Vancouver, Canada, using long‐term (1963–2013) weather data to compute model forcing variables. The model was evaluated against 4 years of observed stream temperature. The model generally predicted daily mean stream temperature accurately (annual RMSE between 0.57 and 1.24 °C) although it overpredicted daily summer stream temperatures by up to 3 °C during extended low streamflow conditions. Model development and testing provided insights on the roles of advection associated with lateral throughflow, channel interception of snow, and surface–subsurface water interactions on stream thermal regimes. This study shows that a relatively simple but process‐based model can provide reasonable stream temperature predictions for forested headwater catchments located in the rain‐on‐snow zone.  相似文献   

8.
Overland flow detectors (OFDs) were deployed in 2012 on a hillslope burned by the 2010 Fourmile Canyon fire near Boulder, Colorado, USA. These detectors were simple, electrical resistor‐type instruments that output a voltage (0–2·5 V) and were designed to measure and record the time of runoff initiation, a signal proportional to water depth, and the runoff hydrograph during natural convective rainstorms. Initiation of runoff was found to be spatially complex and began at different times in different locations on the hillslope. Runoff started first at upstream detectors 56% of the time, at the mid‐stream detectors 6%, and at the downstream detectors 38% of the time. Initiation of post‐wildfire runoff depended on the time‐to‐ponding, travel time between points, and the time to fill surface depression storage. These times ranged from 0·5–54, 0·4–1·1, and 0·2–14 minutes, respectively, indicating the importance of the ponding process in controlling the initiation of runoff at this site. Time‐to‐ponding was modeled as a function of the rainfall acceleration (i.e. the rate of change of rainfall intensity) and either the cumulative rainfall at the start of runoff or the soil–water deficit. Measurements made by the OFDs provided physical insight into the spatial and temporal initiation of post‐wildfire runoff during unsteady flow in response to time varying natural rainfall. They also provided data that can be telemetered and used to determine critical input parameters for hydrologic rainfall–runoff models. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
Dennis G. Dye 《水文研究》2002,16(15):3065-3077
This study investigated variability and trends in the annual snow‐cover cycle in regions covering high‐latitude and high‐elevation land areas in the Northern Hemisphere. The annual snow‐cover cycle was examined with respect to the week of the last‐observed snow cover in spring (WLS), the week of the first‐observed snow cover in autumn (WFS), and the duration of the snow‐free period (DSF). The analysis used a 29‐year time‐series (1972–2000) of weekly, visible‐band satellite observations of Northern Hemisphere snow cover from NOAA with corrections applied by D. Robinson of Rutgers University Climate Laboratory. Substantial interannual variability was observed in WLS, WFS and DSF (standard deviations of 0·8–1·1, 0·7–0·9 and 1·0–1·4 weeks, respectively), which is related directly to interannual variability in snow‐cover area in the regions and time periods of snow‐cover transition. Over the nearly three‐decade study period, WLS shifted earlier by 3–5 days/decade as determined by linear regression analysis. The observed shifts in the annual snow‐cover cycle underlie a significant trend toward a longer annual snow‐free period. The DSF increased by 5–6 days/decade over the study period, primarily as a result of earlier snow cover disappearance in spring. The observed trends are consistent with reported trends in the timing and length of the active growing season as determined from satellite observations of vegetation greenness and the atmospheric CO2 record. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

10.
Wetlands often form the transition zone between upland soils and watershed streams, however, stream–wetland interactions and hydrobiogeochemical processes are poorly understood. We measured changes in stream nitrogen (N) through one riparian wetland and one beaver meadow in the Archer Creek watershed in the Adirondack Mountains of New York State, USA from 1 March to 31 July 1996. In the riparian wetland we also measured changes in groundwater N. Groundwater N changed significantly from tension lysimeters at the edge of the peatland to piezometer nests within the peatland. Mean N concentrations at the peatland perimeter were 1·5, 0·5 and 18·6 µmol L?1 for NH4+, NO3? and DON (dissolved organic nitrogen), respectively, whereas peatland groundwater N concentration was 56·9, 1·5 and 31·6 µmol L?1 for NH4+, NO3? and DON, respectively. The mean concentrations of stream water N species at the inlet to the wetlands were 1·5, 10·1 and 16·9 µmol L?1 for NH4+, NO3? and DON, respectively and 1·6, 28·1 and 8·4 µmol L?1 at the wetland outlet. Although groundwater total dissolved N (TDN) concentrations changed more than stream water TDN through the wetlands, hydrological cross‐sections for the peatland showed that wetland groundwater contributed minimally to stream flow during the study period. Therefore, surface water N chemistry was affected more by in‐stream N transformations than by groundwater N transformations because the in‐stream changes, although small, affected a much greater volume of water. Stream water N input–output budgets indicated that the riparian peatland retained 0·16 mol N ha?1 day?1 of total dissolved N and the beaver meadow retained 0·26 mol N ha?1 day?1 during the study period. Nitrate dominated surface water TDN flux from the wetlands during the spring whereas DON dominated during the summer. This study demonstrates that although groundwater N changed significantly in the riparian peatland, those changes were not reflected in the stream. Consequently, although in‐stream changes of N concentrations were less marked than those in groundwater, they had a greater effect on stream water chemistry—because wetland groundwater contributed minimally to stream flow. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

11.
This study documented the spatial and temporal variability of outflow from a forested hillslope segment during snowmelt at a small mountain catchment in south coastal British Columbia, Canada. A pit 5 m wide was established just upslope from the stream channel. Outflow from the organic horizon was intercepted and measured by a single trough, and outflow from the mineral horizons was measured separately for three adjacent sections. Throughflow exhibited non‐steady‐state behaviour involving shifting allocations of flow amongst different sections of the outflow pit, as well as threshold effects and hysteresis in the relationship between pit outflow and water table elevation. Most of the pit outflow originated from the mineral horizons, indicating that throughflow was the dominant pathway by which water was delivered to the stream channel. Direct precipitation and snowmelt onto near‐stream saturated areas can account for less than 20% of the total outflow from the hillslope segment. Throughflow from the mineral sections consistently peaked either at the same time as or earlier than stream flow from the 150‐ha catchment during diurnal snowmelt cycles, indicating that throughflow appears to respond rapidly enough to contribute to snowmelt‐induced peak stream flow. Pit outflow cannot be extrapolated reliably to the catchment scale on the basis of simple length‐ or area‐based ratios. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

12.
The transformation of snowmelt water chemical composition during melt, elution and runoff in an Arctic tundra basin is investigated. The chemistry of the water flowing along pathways from the surface of melting snow to the 95·5 ha basin outlet is related to relevant hydrological processes. In so doing, this paper offers physically based explanations for the transformation of major ion concentrations and loads of runoff water associated with snowmelt and rainfall along hydrological pathways to the stream outlet. Late‐lying snowdrifts were found to influence the ion chemistry in adjacent reaches of the stream channel greatly. As the initial pulse of ion‐rich melt water drained from the snowdrift and was conveyed through hillslope flowpaths, the concentrations of most ions increased, and the duration of the peak ionic pulse lengthened. Over the first 3 m of overland flow, the concentrations of all ions except for NO increased by one to two orders of magnitude, with the largest increase for K+, Ca2+ and Mg2+. This was roughly equivalent to the concentration increase that resulted from percolation of relatively dilute water through 0·25 m of unsaturated soil. The Na+ and Cl? were the dominant ions in snowmelt water, whereas Ca2+ and Mg2+ dominated the hillslope runoff. On slopes below a large melting snowdrift, ion concentrations of melt water flowing in the saturated layer of the soil were very similar to the relatively dilute concentrations found in surface runoff. However, once the snowdrift ablated, ion concentrations of subsurface flow increased above parent melt‐water concentrations. Three seasonally characteristic hydrochemical regimes were identified in a stream reach adjacent to late‐lying snowdrifts. In the first two stages, the water chemistry in the stream channel strongly resembled the hillslope drainage water. In the third stage, in‐stream geochemical processes, including the weathering/ion exchange of Ca2+ and Mg2+, were the main control of streamwater chemistry. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

13.
Summer stream water quality was monitored before and following the logging of 50% of the boreal forest within three small watersheds (<50 ha) nested in the ‘Ruisseau des Eaux‐Volées’ Experimental Watershed, Montmorency Forest (Québec, Canada). Logging was conducted in winter, on snow cover according to recommended best management practices (BMPs) to minimize soil disturbance and protect advance growth. A 20‐m forest buffer was maintained along perennial streams. In watershed 7·2, cut‐blocks were located near the stream network and logging was partially allowed within the riparian buffer zone. In watersheds 7·5 and 7·7, logging occurred farther away from the stream network. Observations were also made for watershed 7·3 that collected the runoff from watersheds 7·2 and 7·5, and watershed 7·6, the uproad portion of watershed 7·7. The control watershed 0·2 was contiguous to the impacted watersheds and remained undisturbed. Following clearcutting, changes in summer daily maximum and minimum stream temperatures remained within ± 1 °C while changes in diurnal variation did not decrease by more than 0·5 °C. Concentrations of NO3? greatly increased by up to 6000% and concentrations of K+ increased by up to 300% during the second summer after logging. Smaller increases were observed for Fetotal (up to 71%), specific conductance (up to 26%), and Mg2+ (up to 19%). Post‐logging pH decreased slightly by no more than 7% while PO43? concentration remained relatively constant. Suspended sediment concentrations appeared to increase during post‐logging, but there was not enough pre‐logging data to statistically confirm this result. Logging of moderate intensity and respecting established BMPs may account for the limited changes of water quality parameters and the low exceedances of the criteria for the protection of aquatic life. The proximity of the cutover to the stream network and logging within the riparian zone did not appear to affect water quality. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
We examined the contributions of bedrock groundwater to the upscaling of storm‐runoff generation processes in weathered granitic headwater catchments by conducting detailed hydrochemical observations in five catchments that ranged from zero to second order. End‐member mixing analysis (EMMA) was performed to identify the geographical sources of stream water. Throughfall, hillslope groundwater, shallow bedrock groundwater, and deep bedrock groundwater were identified as end members. The contribution of each end member to storm runoff differed among the catchments because of the differing quantities of riparian groundwater, which was recharged by the bedrock groundwater prior to rainfall events. Among the five catchments, the contribution of throughfall was highest during both baseflow and storm flow in a zero‐order catchment with little contribution from the bedrock groundwater to the riparian reservoir. In zero‐order catchments with some contribution from bedrock groundwater, stream water was dominated by shallow bedrock groundwater during baseflow, but it was significantly influenced by hillslope groundwater during storms. In the first‐order catchment, stream water was dominated by shallow bedrock groundwater during storms as well as baseflow periods. In the second‐order catchment, deeper bedrock groundwater than that found in the zero‐order and first‐order catchments contributed to stream water in all periods, except during large storm events. These results suggest that bedrock groundwater influences the upscaling of storm‐runoff generation processes by affecting the linkages of geomorphic units such as hillslopes, riparian zones, and stream channels. Our results highlight the need for a three‐dimensional approach that considers bedrock groundwater flow when studying the upscaling of storm‐runoff generation processes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
J.J. Dick  D. Tetzlaff  C. Soulsby 《水文研究》2015,29(14):3098-3111
We monitored temperatures in stream water, groundwater and riparian wetland surface water over 18 months in a 3.2‐km2 moorland catchment in the Scottish Highlands. The stream occupies a glaciated valley, aligned east–west. It has three main headwater tributaries with a large north facing catchment, a south facing catchment and the smallest east facing headwater. The lower catchment sampling locations begin after the convalescence of all three headwaters. Much of the stream network is fringed by riparian peatlands. Stream temperatures are mainly regulated by energy exchanges at the air–water interface. However, they are also influenced by inflows from the saturated riparian zone, where surface water source areas are strongly connected with the stream network. Consequently, the spatial distribution of stream temperatures exhibits limited variability. Nevertheless, there are significant summer differences between the headwaters, despite their close proximity to each other. This is consistent with aspect (and incident radiation), given the south and east facing headwaters having higher temperatures. The largest, north‐facing sub‐catchment shows lower summer diurnal temperature variability, suggesting that lower radiation inputs dampen temperature extremes. Whilst stream water temperature regimes in the lower catchment exhibit little change along a 1‐km reach, they are similar to those in the largest headwater; probably reflecting size and comparable catchment aspect and hydrological flow paths. Our results suggest that different parts of the channel network and its connected wetlands have contrasting sensitivity to higher summer temperatures. This may be important in land management strategies designed to mitigate the impacts of projected climatic warming. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
Spatial and seasonal variations in CO2 and CH4 concentrations in streamwater and adjacent soils were studied at three sites on Brocky Burn, a headwater stream draining a peatland catchment in upland Britain. Concentrations of both gases in the soil atmosphere were significantly higher in peat and riparian soils than in mineral soils. Peat and riparian soil CO2 concentrations varied seasonally, showing a positive correlation with air and soil temperature. Streamwater CO2 concentrations at the upper sampling site, which mostly drained deep peats, varied from 2·8 to 9·8 mg l?1 (2·5 to 11·9 times atmospheric saturation) and decreased markedly downstream. Temperature‐related seasonal variations in peat and riparian soil CO2 were reflected in the stream at the upper site, where 77% of biweekly variation was explained by an autoregressive model based on: (i) a negative log‐linear relationship with stream flow; (ii) a positive linear relationship with soil CO2 concentrations in the shallow riparian wells; and (iii) a negative linear relationship with soil CO2 concentrations in the shallow peat wells, with a significant 2‐week lag term. These relationships changed markedly downstream, with an apparent decrease in the soil–stream linkage and a switch to a positive relationship between stream flow and stream CO2. Streamwater CH4 concentrations also declined sharply downstream, but were much lower (<0·01 to 0·12 mg l?1) than those of CO2 and showed no seasonal variation, nor any relationship with soil atmospheric CH4 concentrations. However, stream CH4 was significantly correlated with stream flow at the upper site, which explained 57% of biweekly variations in dissolved concentrations. We conclude that stream CO2 can be a useful integrative measure of whole catchment respiration, but only at sites where the soil–stream linkage is strong. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

17.
Analysis of hydrographs from a 4·3 hectare stream head catchment indicates that storm runoff is generated from dynamic source areas. The volume and timing of contributions from different parts of the catchment show, when compared with the extent of surface saturation, that pipeflow generated from areas not saturated at the soil surface is a significant component of the quickflow hydrograph. A simple model of pipeflow generation and contribution is discussed in the light of field results.  相似文献   

18.
Describing the spatial variability of heterogeneous snowpacks at a watershed or mountain‐front scale is important for improvements in large‐scale snowmelt modelling. Snowmelt depletion curves, which relate fractional decreases in snow‐covered area (SCA) against normalized decreases in snow water equivalent (SWE), are a common approach to scale‐up snowmelt models. Unfortunately, the kinds of ground‐based observations that are used to develop depletion curves are expensive to gather and impractical for large areas. We describe an approach incorporating remotely sensed fractional SCA (FSCA) data with coinciding daily snowmelt SWE outputs during ablation to quantify the shape of a depletion curve. We joined melt estimates from the Utah Energy Balance Snow Accumulation and Melt Model (UEB) with FSCA data calculated from a normalized difference snow index snow algorithm using NASA's moderate resolution imaging spectroradiometer (MODIS) visible (0·545–0·565 µm) and shortwave infrared (1·628–1·652 µm) reflectance data. We tested the approach at three 500 m2 study sites, one in central Idaho and the other two on the North Slope in the Alaskan arctic. The UEB‐MODIS‐derived depletion curves were evaluated against depletion curves derived from ground‐based snow surveys. Comparisons showed strong agreement between the independent estimates. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
We measured deuterium excess (d = δD ? 8δ18O) in throughfall, groundwater, soil water, spring water, and stream water for 3 years in a small headwater catchment (Matsuzawa, 0·68 ha) in the Kiryu Experimental Watershed in Japan. The d value represents a kinetic effect produced when water evaporates. The d value of the throughfall showed a sinusoidal change (amplitude: 6·9‰ relative to Vienna standard mean ocean water (V‐SMOW)) derived from seasonal changes in the source of water vapour. The amplitude of this sinusoidal change was attenuated to 1·3–6·9‰ V‐SMOW in soil water, groundwater, spring water, and stream water. It is thought that these attenuations derive from hydrodynamic transport processes in the subsurface and mixing processes at an outflow point (stream or spring) or a well. The mean residence time (MRT) of water was estimated from d value variations using an exponential‐piston flow model and a dispersion model. MRTs for soil water were 0–5 months and were not necessarily proportional to the depth. This may imply the existence of bypass flow in the soil. Groundwater in the hillslope zone had short residence times, similar to those of the soil water. For groundwater in the saturated zone near the spring outflow point, the MRTs differed between shallow and deeper groundwater; shallow groundwater had a shorter residence time (5–8 months) than deeper groundwater (more than 9 months). The MRT of stream water (8–9 months) was between that of shallow groundwater near the spring and deeper groundwater near the spring. The seasonal variation in the d value of precipitation arises from changes in isotopic water vapour composition associated with seasonal activity of the Asian monsoon mechanism. The d value is probably an effective tracer for estimating the MRT of subsurface water not only in Japan, but also in other East Asian countries influenced by the Asian monsoon. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
Because the traditional Soil Conservation Service curve‐number (SCS‐CN) approach continues to be used ubiquitously in water quality models, new application methods are needed that are consistent with variable source area (VSA) hydrological processes in the landscape. We developed and tested a distributed approach for applying the traditional SCS‐CN equation to watersheds where VSA hydrology is a dominant process. Predicting the location of source areas is important for watershed planning because restricting potentially polluting activities from runoff source areas is fundamental to controlling non‐point‐source pollution. The method presented here used the traditional SCS‐CN approach to predict runoff volume and spatial extent of saturated areas and a topographic index, like that used in TOPMODEL, to distribute runoff source areas through watersheds. The resulting distributed CN–VSA method was applied to two subwatersheds of the Delaware basin in the Catskill Mountains region of New York State and one watershed in south‐eastern Australia to produce runoff‐probability maps. Observed saturated area locations in the watersheds agreed with the distributed CN–VSA method. Results showed good agreement with those obtained from the previously validated soil moisture routing (SMR) model. When compared with the traditional SCS‐CN method, the distributed CN–VSA method predicted a similar total volume of runoff, but vastly different locations of runoff generation. Thus, the distributed CN–VSA approach provides a physically based method that is simple enough to be incorporated into water quality models, and other tools that currently use the traditional SCS–CN method, while still adhering to the principles of VSA hydrology. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号