首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Effects of sediment load on hydraulics of overland flow on steep slopes   总被引:6,自引:0,他引:6  
Eroded sediment may have significant effects on the hydraulics of overland flow, but few studies have been performed to quantify these effects on steep slopes. This study investigated the potential effects of sediment load on Reynolds number, Froude number, flow depth, mean velocity, Darcy–Weisbach friction coefficient, shear stress, stream power, and unit stream power of overland flow in a sand‐glued hydraulic flume under a wide range of hydraulic conditions and sediment loads. Slope gradients were varied from 8·7 to 34·2%, unit flow rates from 0·66 to 5·26×10?3 m2 s?1, and sediment loads from 0 to 6·95 kg m?1 s?1. Both Reynolds number (Re) and Froude number (Fr) decreased as sediment load increased, implying a decrease in flow turbulence. This inverse relationship should be considered in modeling soil erosion processes. Flow depth increased as sediment load increased with a mean value of 1·227 mm, caused by an increase in volume of sediment‐laden flow (contribution 62·4%) and a decrease in mean flow velocity (contribution 37·6%). The mean flow velocity decreased by up to 0·071 m s?1 as sediment load increased. The Darcy–Weisbach friction coefficient (f) increased with sediment load, showing that the total energy consumption increased with sediment load. The effects of sediment load on f depended on flow discharge: as flow discharge increased, the influence of sediment load on f decreased due to increased flow depth and reduced relative roughness. Flow shear stress and stream power increased with sediment load, on average, by 80·5% and 60·2%, respectively; however, unit stream power decreased by an average of 11·1% as sediment load increased. Further studies are needed to extend and apply the insights obtained under these controlled conditions to real‐world overland flow conditions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
Field studies on sandy soils of the Cottenham Series in mid-Bedfordshire show that the mean annual rate of sediment transport by overland flow on an 11° mid-slope is 98 g cm1. The feasibility of using sediment transport equations to predict erosion by overland flow on a storm basis is examined by comparing the observed values of sediment yield with values predicted by four sediment transport equations and a regression equation which relates soil loss to runoff energy and rainfall energy. An expression combining Engelund's sediment transport capacity equation and the Manning equation for flow velocity, as modified by Savat for disturbed flow, best reflects field conditions. Although there is a significant correlation (r = 0.69; n 30) between the observed and predicted values using this expression, the coefficient of determination is too low for predictive purposes. Reasons for this are presented.  相似文献   

3.
Lin Ding  Suhua Fu  Hui Zhao 《水文研究》2021,35(3):e14088
Vegetation stems and litter cover have different effects on sediment transport capacity under the same experimental conditions, which in essence, may be due to differences in their hydraulic properties, but the availability of comparative studies is limited. This study aimed to compare the hydraulic properties affected by litter and stem cover, compare differences in the drag forces exerted by litter and stems on overland flow, and develop new Manning's n and flow velocity equations for litter cover. Two series of flume experiments were conducted with the same slope gradients (8.8%, 17.6%, 26.8%) and flow discharge rates (0.5, 1.0 × 10−3 m3 s−1). Artificial Gramineae stems with a 0%–30% cover level and Pinus tabulaeformis litter with a 0%–70% cover level were used in series 1 and series 2, respectively. The flow velocity and depth were measured. The results showed that the Froude number and flow velocity affected by stem cover were much lower than those affected by litter cover, while the opposite trend was observed in the relative magnitude of the Reynolds number, flow depth and shear stress. The form resistance caused by stems was 22–57 times greater than that caused by litter for the same cover level, which suggests that stem cover contributes more than litter cover to increasing the flow resistance and reducing the flow's ability for sediment detachment and transport. Two new equations for calculating Manning's n and flow velocity under the influence of litter cover were developed, with R2 and NSE values of 0.96. The results of this study contribute to revealing the mechanisms of the differences of the effects of stem and litter cover on soil erosion.  相似文献   

4.
Although numerous studies have acknowledged that vegetation can reduce erosion, few process-based studies have examined how vegetation cover affect runoff hydraulics and erosion processes. We present field observations of overland flow hydraulics using rainfall simulations in a typical semiarid area in China. Field plots (5 × 2 m2) were constructed on a loess hillslope (25°), including bare soil plot as control and three plots with planted forage species as treatments—Astragalus adsurgens, Medicago sativa and Cosmos bipinnatus. Both simulated rainfall and simulated rainfall + inflow were applied. Forages reduced soil loss by 55–85% and decreased overland flow rate by 12–37%. Forages significantly increased flow hydraulic resistance expressed by Darcy–Weisbach friction factor by 188–202% and expressed by Manning's friction factor by 66–75%; and decreased overland flow velocity by 28–30%. The upslope inflow significantly increased overland flow velocity by 67% and stream power by 449%, resulting in increased sediment yield rate by 108%. Erosion rate exhibited a significant linear relationship with stream power. M. sativa exhibited the best in reducing soil loss which probably resulted from its role in reducing stream power. Forages on the downslope performed better at reducing sediment yield than upslope due to decreased rill formation and stream power. The findings contribute to an improved understanding of using vegetation to control water and soil loss and land degradation in semiarid environments.  相似文献   

5.
After the Valley Complex Fire burned 86 000 ha in western Montana in 2000, two studies were conducted to determine the effectiveness of contour‐felled log, straw wattle, and hand‐dug contour trench erosion barriers in mitigating postfire runoff and erosion. Sixteen plots were located across a steep, severely burned slope, with a single barrier installed in 12 plots (four per treatment) and four plots left untreated as controls. In a rainfall‐plus‐inflow simulation, 26 mm h?1 rainfall was applied to each plot for 1 h and 48 L min?1 of overland flow was added for the last 15 min. Total runoff from the contour‐felled log (0·58 mm) and straw wattle (0·40 mm) plots was significantly less than from the control plots (2·0 mm), but the contour trench plots (1·3 mm) showed no difference. The total sediment yield from the straw wattle plots (0·21 Mg ha?1) was significantly less than the control plots (2·2 Mg ha?1); the sediment yields in the contour‐felled log plots (0·58 Mg ha?1) and the contour trench plots (2·5 Mg ha?1) were not significantly different. After the simulations, sediment fences were installed to trap sediment eroded by natural rainfall. During the subsequent 3 years, sediment yields from individual events increased significantly with increasing 10 min maximum intensity and rainfall amounts. High‐intensity rainfall occurred early in the study and the erosion barriers were filled with sediment. There were no significant differences in event or annual sediment yields among treated and control plots. In 2001, the overall mean annual sediment yield was 21 Mg ha?1; this value declined significantly to 0·6 Mg ha?1 in 2002 and 0·2 Mg ha?1 in 2003. The erosion barrier sediment storage used was less than the total available storage capacity; runoff and sediment were observed going over the top and around the ends of the barriers even when the barriers were less than half filled. Published in 2007 by John Wiley & Sons, Ltd.  相似文献   

6.
Glacial erosion rates are estimated to be among the highest in the world. Few studies have attempted, however, to quantify the flux of sediment from the periglacial landscape to a glacier. Here, erosion rates from the nonglacial landscape above the Matanuska Glacier, Alaska are presented and compare with an 8‐yr record of proglacial suspended sediment yield. Non‐glacial lowering rates range from 1·8 ± 0·5 mm yr?1 to 8·5 ± 3·4 mm yr?1 from estimates of rock fall and debris‐flow fan volumes. An average erosion rate of 0·08 ± 0·04 mm yr?1 from eight convex‐up ridge crests was determined using in situ produced cosmogenic 10Be. Extrapolating these rates, based on landscape morphometry, to the Matanuska basin (58% ice‐cover), it was found that nonglacial processes account for an annual sediment flux of 2·3 ± 1·0 × 106 t. Suspended sediment data for 8 years and an assumed bedload to estimate the annual sediment yield at the Matanuska terminus to be 2·9 ± 1·0 × 106 t, corresponding to an erosion rate of 1·8 ± 0·6 mm yr?1: nonglacial sources therefore account for 80 ± 45% of the proglacial yield. A similar set of analyses were used for a small tributary sub‐basin (32% ice‐cover) to determine an erosion rate of 12·1 ± 6·9 mm yr?1, based on proglacial sediment yield, with the nonglacial sediment flux equal to 10 ± 7% of the proglacial yield. It is suggested that erosion rates by nonglacial processes are similar to inferred subglacial rates, such that the ice‐free regions of a glaciated landscape contribute significantly to the glacial sediment budget. The similar magnitude of nonglacial and glacial rates implies that partially glaciated landscapes will respond rapidly to changes in climate and base level through a rapid nonglacial response to glacially driven incision. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
Limited information exists on one of the mechanisms governing sediment input to streams: streambank erosion by ground water seepage. The objective of this research was to demonstrate the importance of streambank composition and stratigraphy in controlling seepage flow and to quantify correlation of seepage flow/erosion with precipitation, stream stage and soil pore water pressure. The streambank site was located in Northern Mississippi in the Goodwin Creek watershed. Soil samples from layers on the streambank face suggested less than an order of magnitude difference in vertical hydraulic conductivity (Ks) with depth, but differences between lateral Ks of a concretion layer and the vertical Ks of the underlying layers contributed to the propensity for lateral flow. Goodwin Creek seeps were not similar to other seeps reported in the literature, in that eroded sediment originated from layers underneath the primary seepage layer. Subsurface flow and sediment load, quantified using 50 cm wide collection pans, were dependent on the type of seep: intermittent low‐flow (LF) seeps (flow rates typically less than 0·05 L min?1), persistent high‐flow (HF) seeps (average flow rate of 0·39 L min?1) and buried seeps, which eroded unconsolidated bank material from previous bank failures. The timing of LF seeps correlated to river stage and precipitation. The HF seeps at Goodwin Creek began after rainfall events resulted in the adjacent streambank reaching near saturation (i.e. soil pore water pressures greater than ?5 kPa). Seep discharge from HF seeps reached a maximum of 1·0 L min?1 and sediment concentrations commonly approached 100 g L?1. Buried seeps were intermittent but exhibited the most significant erosion rates (738 g min?1) and sediment concentrations (989 g L?1). In cases where perched water table conditions exist and persistent HF seeps occur, seepage erosion and bank collapse of streambank sediment may be significant. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
Supraglacial rivers on the Greenland Ice Sheet (GrIS) transport large volumes of surface meltwater toward the ocean, yet have received relatively little direct research. This study presents field observations of channel width, depth, velocity, and water surface slope for nine supraglacial channels on the south‐western GrIS collected between July 23 and August 20, 2012. Field sites are located up to 74 km inland and span 494–1485 m elevation, and contain measured discharges larger than any previous in situ study: from 0.006 to 23.12 m3/s in channels 0.20 to 20.62 m wide. All channels were deeply incised with near vertical banks, and hydraulic geometry results indicate that supraglacial channels primarily accommodate greater discharges by increasing velocity. Smaller streams had steeper water surface slopes (0.74–8.83%) than typical in terrestrial settings, yielding correspondingly high velocities (0.40–2.60 m/s) and Froude numbers (0.45–3.11) with supercritical flow observed in 54% of measurements. Derived Manning's n values were larger and more variable than anticipated from channels of uniform substrate, ranging from 0.009 to 0.154 with a mean value of 0.035 ± 0.027 despite the absence of sediment, debris, or other roughness elements. Ubiquitous micro‐depressions in shallow sections of the channel bed may explain some of these roughness values. However, we find that other, unobserved sources of flow resistance likely contributed to these elevated Manning's n values: future work should explicitly consider additional sources of flow resistance beyond bed roughness in supraglacial channels. We conclude that hydraulic modeling for these channels must allow for both subcritical and supercritical flow, and most importantly must refrain from assuming that all ice‐substrate channels exhibit similar hydraulic behavior, especially for Froude numbers and Manning's n. Finally, this study highlights that further theoretical and empirical work on supraglacial channel hydraulics is necessary before broad scale understanding of ice sheet hydrology can be achieved. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
The loss of P in overland flow from most cultivated soils is controlled by erosion, and in‐turn soil moisture. We evaluated the effect of soil moisture on erosion and P transport in overland flow by applying rainfall (7 cm h?1) to packed soil boxes (1 m long and 0·15 m wide) and field plots (1 and 10 m long by 1 m wide) of silt loams in a central Pennsylvania (USA) catchment. Flow from packed soil boxes took longer to initiate as antecedent soil moisture decreased from field capacity (2 min) to air dried (8 to 9 min). Even in the more complex field plots (i.e. soil heterogeneity and topography), the wetter site (1 by 10 m plot; 70% field capacity) produced flow more quickly (3 min) and in greater volume (439 L) than the drier site (1 by 10 m plot; 40% field capacity, 15 min, and 214 L, respectively). However, less suspended sediment was transported from wetter soil boxes (1·6 to 2·5 g L?1) and field plots (0·9 g L?1) than drier boxes (2·9 to 4·2 g L?1) and plots (1·2 g L?1). Differences are attributed to their potential for soil aggregate breakdown, slaking and dispersion, which contribute to surface soil sealing and crusting, as dry soils are subject to rapid wetting (by rainfall). During flow, selective erosion and antecedent moisture conditions affected P transport. At field capacity, DRP and PP transport varied little during overland flow. Whereas P transport from previously dry soil decreased rapidly after the initiation of flow (6 to 1·5 mg TP L?1), owing to the greater slaking and dispersion of P‐rich particles into flow at the beginning than end of the flow event. These results indicate that soil moisture fluctuations greatly effect erosion and P transport potential and that management to decrease the potential for loss should consider practices such as conservation tillage and cover crops, particularly on areas where high soil P and erosion coincide. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

10.
Validation of a vegetated filter strip model (VFSMOD)   总被引:2,自引:0,他引:2  
Vegetated filter strips (VFS) are designed to reduce sediment load and other pollutants into water bodies. However, adaptation of VFS in the field has been limited owing to lack of data about their efficiency and performance under natural field conditions. A number of models are available that simulate sediment transport and trapping in VFS, but there is a general lack of confidence in VFS models owing to limited validation studies and model limitations that prevent correct application of these models under field conditions. The objective of this study is to test and validate a process‐based model (VFSMOD) that simulates sediment trapping in VFS. This model links three submodels: modified Green–Ampt's infiltration, Quadratic overland flow submodel based on kinematic wave approximation and University of Kentucky sediment filtration model. A total of 20 VFS, 2, 5, 10 and 15 m long and with various vegetation covers, were tested under simulated sediment and runoff conditions. The results of these field experiments were used to validate the VFS model. The model requires 25 input parameters distributed over five input files. All input parameters were either measured or calculated using experimental data. The observed sediment trapping efficiencies varied from 65% in the 2‐m long VFS to 92% in the 10‐m long filters. No increase in sediment removal efficiency was observed at higher VFS length. Application of the VFS model to experimental data was satisfactory under the condition that actual flow widths are used in the model instead of the total filter width. Predicted and observed sediment trapping efficiencies and infiltration volume fitted very well, with a coefficient of determination (R2) of 0·9 and 0·95, respectively. Regression analyses revealed that the slope and intercept of the regression lines between predicted versus observed infiltration volume and trapping efficiency were not significantly different than the line of perfect agreement with a slope of 1·0 and intercept of 0·0. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

11.
The nature and rates of fluvial and slope processes change over time and space as urbanized areas replace forested land in Singapore. Storm-based and time-based data, from undisturbed rainforests, heavily disturbed construction sites, urban grass-covered slopes and an experimental plot, are collected to observe the impact of rainwater on the soil moisture conditions, surface microtopography, runoff generation, sediment movement, and ground lowering in the three different categories of land use. The undisturbed forested environment is characterized by high throughfall (58% of total rainfall) and frequent negative soil moisture suctions. The slow and unconcentrated overland flow during heavy storms is restricted by the forest floor microtopography. No rills develop. Ground lowering is recorded as 3·2–3·4 mm a?1. But sediment movement is episodic and suspended sediment concentrations in overland flow are 172–222 mg l?1. During urban construction, gully development is rapid on the bare slopes, runoff generation, voluminous, and sediment-laden discharges (5200–75498 mg l?1) lead to sediment plumes at channel mouths. Ground lowering rates are measured at 132·4 mm a?1. Once grass-covered, runoff carries less suspended sediment (800 mg l?1) and ground lowering rates are reduced, but depend on the condition of the cover, ranging from 0·2 to 8·2 mm a?1. As urban development continues, environments are altered both in time as well as spatially.  相似文献   

12.
Z. Shi  H. J. Zhou 《水文研究》2004,18(15):2877-2892
Theoretical and experimental studies were undertaken to gain insight into physical parameters controlling the flocculation and settling properties of mud flocs in the Changjiang Estuary, China. The Rouse equation is applied to vertical profiles of suspended sediment concentration to determine the bulk mean settling velocity (ws) of sediment suspended in the Changjiang Estuary. Both in situ point‐sampled and acoustically measured profiles of suspended mud concentrations were fit selectively. The calculated settling velocities ws mainly ranged from 0·4 to 4·1 mm s?1 for the point‐sampled data set, and from 1·0 to 3·0 mm s?1 for the acoustically measured data set. Furthermore, the settling velocities of mud flocs increased with mean concentration (C?) of mud flocs in suspension and were proportional to increasing bottom shear stress (τb) of tidal flow. The best equation for the field settling velocity of mud flocs in the Changjiang Estuary can be expressed by the power law: ws = mC?n (m, 1·14–2·37; n, 0·84–1·03). It is suggested that C? and τb were the dominant physical parameters controlling the flocculation and ws of mud flocs in suspension. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

13.
Vegetative filter strips (VFSs) can effectively trap sediment in overland flow, but little information is available on its performance in controlling high‐concentration sediment and the runoff hydraulics in VFS. Flume experiments were conducted to investigate the sediment deposition, hydraulics of overland flow and their relationships in simulating VFS under a great range of sediment concentrations with four levels of vegetation cover (bare slope and 4%, 11% and 17%) and two flow rates (15 and 30 L min?1). Sediment concentrations varied from 30 to 400 kg m?3 and slope gradient was 9°. Both the deposited sediment load and deposition efficiency in VFS increased as the vegetation cover increased. Sediment concentration had a positive effect on the deposited load but no effect on deposition efficiency. A lower flow rate corresponded to greater deposition efficiency but had little effect on deposited load. Flow velocities decreased as vegetation cover increased. Sediment concentration had a negative effect on the mean velocity but no effect on surface velocity. Hydraulic resistance increased as the vegetation cover and sediment concentration increased. Sediment deposition efficiency had a much more pronounced relationship with overland flow hydraulics compared with deposited load, especially with the mean flow velocity, and there was a power relationship between them. Flow regime also affected the sediment deposition efficiency, and the efficiency was much higher under subcritical than supercritical flow. The results will be useful for the design of VFS and the control of sediment flowing into rivers in areas with serious soil erosion. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
A replicated field study using rainfall simulation and overland flow application was conducted in central Oahu, Hawaii, on a clay‐dominated Oxisol with a 9% slope. Three main treatment groups were examined: a bare treatment, a group of four rolled erosion control systems (RECSs) with open weave designs, and a group of five randomly oriented fibre RECSs. A total of 1122 measurements of runoff and erosion were made to examine treatment differences and to explore temporal patterns in runoff and sediment flux. All erosion control systems significantly delayed the time required to generate plot runoff under both simulated rainfall (35 mm h?1) and the more intense trickle flow application (114 mm h?1). Once runoff was generated during the rainfall application phase, the bare treatment runoff coefficients were significantly lower than those from the two groups of RECSs, as surface seal disruption by rilling is inferred to have enhanced infiltration in the bare treatments. During the more intense phase of overland flow application, the reverse pattern was observed. Interrill contributing‐area roughness was reduced on the bare treatment, facilitating increased runoff to well‐developed rill networks. Meanwhile, the form roughness associated with the RECSs delayed interrill flow to the poorly organized rills that formed under some of the RECSs. Regardless of runoff variations between treatments, sediment output was significantly lower from all surfaces covered by RECSs. The median cumulative sediment output from the bare surfaces was 6·9 kg, compared with 1·2 kg from the open‐weave RECSs and 0·2 kg from the random‐fibre RECSs. The random‐fibre systems were particularly effective under the more stressful overland flow application phase, with 63 times less sediment eroded than the bare treatments and 12 times less than that from the open‐weave systems. Architectural design differences between the two groups of RECSs are discussed in light of their relation to erosion process dynamics and shear stress partitioning. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.
Resistance to flow at low to moderate stream discharge was examined in five small (12–77 km2 drainage area) tributaries of Chilliwack River, British Columbia, more than half of which exhibit planar bed morphology. The resulting data set is composed of eight to 12 individual estimates of the total resistance to flow at 61 cross sections located in 13 separate reaches of five tributaries to the main river. This new data set includes 625 individual estimates of resistance to flow at low to moderate river stage. Resistance to flow in these conditions is high, highly variable and strongly dependent on stage. The Darcy–Weisbach resistance factor (ff) varies over six orders of magnitude (0·29–12 700) and Manning's n varies over three orders of magnitude (0·047–7·95). Despite this extreme range, both power equations at the individual cross sections and Keulegan equations for reach‐averaged values describe the hydraulic relations well. Roughness is divided into grain and form (considered as all non‐grain sources) components. Form roughness is the dominant component, accounting for about 90% of the total roughness of the system (i.e., form roughness is on average 8.6 times as great as grain roughness). Of the various quantitative and qualitative form‐roughness indicators observed, only the sorting coefficient (σ = D84/D50) correlates well with form roughness. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
The acceleration of saltating grains by overland flow causes momentum to be transferred from the flow to the grains, thereby increasing flow resistance and bed roughness. To assess the impact of saltating sediment on overland flow hydraulics, velocity profiles in transitional and turbulent flows on a fixed sand-covered bed were measured using hot-film anemometry. Five discharges were studied. At each discharge, three flows were measured: one free of sediment, one with a relatively low sediment load, and one with a relatively high sediment load. In these flows from 83 to 90 per cent of the sediment was travelling by saltation. As a result, in the sediment-laden flows the near-bed velocities were smaller and the velocity profiles steeper than those in the equivalent sediment-free flows. Sediment loads ranged up to 87·0 per cent of transport capacity and accounted for as much as 20·8 per cent of flow resistance (measured by the friction factor) and 89·7 per cent of bed roughness (measured by the ratio of the roughness length to median grain diameter). It is concluded that saltating sediment has a considerable impact on overland flow hydraulics, at least on fixed granular beds. Saltation is likely to have a relatively smaller effect on overland flow on natural hillslopes and agricultural fields where form and wave resistance dominate. Still, saltation is generally of greater significance in overland flow than in river flow, and for this reason its effect on overland flow hydraulics is deserving of further study. © 1998 John Wiley & Sons, Ltd.  相似文献   

17.
Recent studies in the Mediterranean area have shown gully erosion to have a very significant contribution to total soil loss. In the Penedès vineyard region (NE Spain), between 15 and 27% of the land is affected by large gullies and gully‐wall retreat seems to be an ongoing process. Multi‐date digital elevation model (DEM) analysis has allowed computation of sediment production by gully erosion, showing that the sediment production rates are very high by the, up‐to‐date, usual global standards. Here, we present a study carried out using large‐scale multi‐date (1975 and 1995) aerial photographs (1 : 5000 and 1 : 7000) to monitor sediment yield caused by large gullies in the Penedès region (NE Spain). High‐resolution DEMs (1 m grid) were derived and analysed by means of geographical information systems techniques to determine the gully erosion rates. Rainfall characteristics within the same study period were also analysed in order to correlate with the soil loss produced. Mass movement was the main process contributing to total sediment production. This process could have been favoured by rainfalls recorded during the period: 58% of the events were of an erosive character and showed high kinetic energy and erosivity. A sediment production rate of 846 ± 40 Mg ha?1 year?1, a sediment deposition rate of 270 ± 18 Mg ha?1 year?1 and a sediment delivery ratio of 68·1% were computed for a gully area of 0·10 km2. The average net erosion within the study period (1975–95) was 576 ± 58 Mg ha?1 year?1. In comparison with other methods, the proposed method also includes sediment produced by processes other than only overland flow, i.e. downcutting, headcutting, and mass movements and bank erosion. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

18.
This paper describes the design, operation and performance of a field‐portable ‘drip‐type’ simulator and erosion measurement system. The system was constructed specifically for soil erosion research in the humid tropics and has been used extensively in Malaysian Borneo. The simulator is capable of producing replicable storms of up to 200 mm h?1 intensity and 20–30 minutes duration with a drop‐size distribution close to that of natural storms of such intensity (D50 of simulated rainfall is 4·15 mm at 200 mm h?1 and 3·65 mm at 160 mm h?1, D50 measured during natural rainfall = 3·25 mm). The simulator is portable and simply constructed and operates without a motor or electronics, thus making it particularly useful in remote, mountainous areas. The erosion measurement system allows assessment of: (1) rainsplash detachment and net downslope transport from the erosion plot; (2) slopewash (erosion transported by overland flow); and (3) infiltration capacity and overland flow. The performance of the simulator–erosion system compared with previous systems is assessed with reference to experiments carried out in primary and regenerating tropical rainforest at Danum Valley (Malaysian Borneo). The system was found to compare favourably with previous field simulators, producing a total storm kinetic energy of 727 J m?2 (over a 20‐minute storm event) and a kinetic energy rate of 0·61 J m?2 s?1, approximately half that experienced on the ground during a natural rainfall event of similar intensity, despite the shorter distance to the ground. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
For interrill erosion, raindrop‐induced detachment and transport of sediment by rainfall‐disturbed sheet flow are the predominant processes, while detachment by sheet flow and transport by raindrop impact are negligible. In general, interrill subprocesses are inter‐actively affected by rainfall, soil and surface properties. The objective of this work was to study the relationships among interrill runoff and sediment loss and some selected para‐meters, for cultivated soils in central Greece, and also the development of a formula for predicting single storm sediment delivery. Runoff and soil loss measurement field experiments have been conducted for a 3·5‐year period, under natural storms. The soils studied were developed on Tertiary calcareous materials and Quaternary alluvial deposits and were textured from sandy loam to clay. The second group of soils showed greater susceptibility to sealing and erosion than the first group. Single storm sediment loss was mainly affected by rain and runoff erosivity, being significantly correlated with rain kinetic energy (r = 0·64***), its maximum 30‐minute intensity (r = 0·64***) and runoff amount (r = 0·56***). Runoff had the greatest correlation with rain kinetic energy (r = 0·64***). A complementary effect on soil loss was detected between rain kinetic energy and its maximum 30‐minute intensity. The same was true for rain kinetic energy and topsoil aggregate instability, on surface seal formation and thus on infiltration characteristics and overland flow rate. Empirical analysis showed that the following formula can be used for the successful prediction of sediment delivery (Di): Di = 0·638βEI30tan(θ) (R2 = 0·893***), where β is a topsoil aggregate instability index, E the rain kinetic energy, I30 the maximum 30‐minute rain intensity and θ the slope angle. It describes soil erodibility using a topsoil aggregate instability index, which can be determined easily by a simple laboratory technique, and runoff through the product of this index and rain kinetic energy. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
Field experiments at Tiramoana station 30 km north of Christchurch, New Zealand using an erosion plot 16·5 m long, 0·6 m wide, and with a slope of 14–14·5° on rendzina soil aimed to measure the variability of flow velocity and of soil aggregates transport rate in shallow overland flow. Discharge/cross‐section area ratio was used to estimate mean velocity, and high‐speed digital video camera and image analysis provided information about flow and sediment transport variability. Six flow runs with 0·5–3·0 L s?1 discharges were supercritical with Froude numbers close to or more than 1. Mean flow velocity followed Poiseuille law, float numbers were more than 1·5 and hydraulic resistance was an inverse proportional function of the Reynolds number, which is typical for laminar flows. Hence actual velocity varied through time significantly and the power spectrum was of ‘red‐noise’, which is typical for turbulent flow. Sediment transport rates had even higher variability, and soil aggregates transport was a compound Poisson process. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号