首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We use direct numerical simulations of forced MHD turbulence with a forcing function that produces two different signs of kinetic helicity in the upper and lower parts of the domain. We show that the mean flux of magnetic helicity from the small‐scale field between the two parts of the domain can be described by a Fickian diffusion law with a diffusion coefficient that is approximately independent of the magnetic Reynolds number and about one third of the estimated turbulent magnetic diffusivity. The data suggest that the turbulent diffusive magnetic helicity flux can only be expected to alleviate catastrophic quenching at Reynolds numbers of more than several thousands. We further calculate the magnetic helicity density and its flux in the domain for three different gauges. We consider the Weyl gauge, in which the electrostatic potential vanishes, the pseudo‐Lorenz gauge, where the speed of light is replaced by the sound speed, and the ‘resistive gauge’ in which the Laplacian of the magnetic vector potential acts as a resistive term. We find that, in the statistically steady state, the time‐averaged magnetic helicity density and the magnetic helicity flux are the same in all three gauges (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
For a better understanding of solar magnetic field evolution it is appropriate to evaluate the magnetic helicity based on observations and to compare it with numerical simulation results. We have developed a method for calculating the vector potential of a magnetic field given in a finite volume; the method requires the magnetic flux to be balanced on all the side boundaries of the considered volume. Our method uses a fast Laplace/Poisson solver to obtain the vector potentials for a given magnetic field and for the corresponding potential (current-free) field. This allows an efficient calculation of the relative magnetic helicity in a finite 3D volume. We tested our approach on a theoretical model (Low and Lou, Astrophys. J. 352, 343, 1990) and also applied our method to the magnetic field above active region NOAA 8210 obtained by a photospheric-data-driven MHD model. We found that the amount of accumulated relative magnetic helicity coincides well with the relative helicity inflow through the boundaries in the ideal and non-ideal cases. The temporal evolution of relative magnetic helicity is consistent with that of magnetic energy. The maximum value of normalized helicity, H m2=0.0298, is reached just before a drastic energy release by magnetic reconnection. This value is close to the corresponding value inferred from the formula that connects the magnetic flux and the accumulated magnetic helicity based on the observations of solar active regions.  相似文献   

3.
We present the evolution of magnetic field and its relationship with mag- netic(current)helicity in solar active regions from a series of photospheric vector magnetograms obtained by Huairou Solar Observing Station,longitudinal magne- tograms by MDI of SOHO and white light images of TRACE.The photospheric current helicity density is a quantity reflecting the local twisted magnetic field and is related to the remaining magnetic helicity in the photosphere,even if the mean current helicity density brings the general chiral property in a layer of solar active regions.As new magnetic flux emerges in active regions,changes of photospheric cur- rent helicity density with the injection of magnetic helicity into the corona from the subatmosphere can be detected,including changes in sign caused by the injection of magnetic helicity of opposite sign.Because the injection rate of magnetic helicity and photospheric current helicity density have different means in the solar atmosphere, the injected magnetic helicity is probably not proportional to the current helicity den- sity remaining in the photosphere.The evidence is that rotation of sunspots does not synchronize exactly with the twist of photospheric transverse magnetic field in some active regions(such as,delta active regions).They represent different aspects of mag- netic chirality.A combined analysis of the observational magnetic helicity parameters actually provides a relative complete picture of magnetic helicity and its transfer in the solar atmosphere.  相似文献   

4.
We derive the magnetic helicity for configurations formed by flux tubes contained fully or only partially in the spatial domain considered (called closed and open configurations, respectively). In both cases, magnetic helicity is computed as the sum of mutual helicity over all possible pairs of magnetic flux tubes weighted by their magnetic fluxes. We emphasize that these mutual helicities have properties which are not those of mutual inductances in classical circuit theory. For closed configurations, the mutual helicity of two closed flux tubes is their relative winding around each other (known as the Gauss linkage number). For open configurations, the magnetic helicity is derived directly from the geometry of the interlaced flux tubes so it can be computed without reference to a ground state (such as a potential field). We derive the explicit expression in the case of a planar and spherical boundary. The magnetic helicity has two parts. The first one is given only by the relative positions of the flux tubes on the boundary. It is the only part if all flux tubes are arch-shaped. The second part counts the integer number of turns each pair of flux tubes wind about each other. This provides a general method to compute the magnetic helicity with discrete or continuous distributions of magnetic field. The method sets closed and open configurations on an equal level within the same theoretical framework.  相似文献   

5.
Grigoryev  V.M.  Ermakova  L.V. 《Solar physics》2002,207(2):309-321
The process of active region formation was researched by analyzing the densities of electric current and electric current helicity in the photosphere. The observational data were obtained with the vector magnetograph of the Sayan observatory. The appearance (as the sunspot developed) of the part of current helicity which is determined by the vertical components of the magnetic field and electric current density was studied. It is concluded that the loop-like magnetic flux tube which is responsible for the active region emergence contains thinner tubes with the same structure. The electric current system in a sunspot is simplified as the sunspot forms perhaps because the thinner flux tubes are merged together.  相似文献   

6.
EVOLUTION OF MAGNETIC HELICITY IN MAGNETIC RECONNECTION   总被引:1,自引:0,他引:1  
Hu  Y. Q.  Xia  L. D.  Li  X.  Wang  J. X.  Ai  G. X. 《Solar physics》1997,170(2):283-298
This paper presents a definition of magnetic helicity specifically for two-dimensional magnetic fields and derives the associated helicity equation. The newly defined helicity is closely related to its three-dimensional counterpart and serves as a measure of the shear of magnetic field. Based on this, a numerical simulation is carried out on magnetic reconnection occurring in the lower solar atmosphere. It is found that the helicity dissipation due to magnetic reconnection is very small. A large amount of helicity is transferred upward and escapes from the domain of the solution, and the total helicity is approximately conserved during the magnetic reconnection and helicity transfer. This is in support of the applicability of a postulate, which was proposed by Taylor (1974, 1986) concerning the approximate conservation of magnetic helicity in the presence of resistive dissipation and magnetic reconnection in a highly conductive laboratory plasma, to the solar atmosphere.  相似文献   

7.
Solar eruptive phenomena, like flares and coronal mass ejections (CMEs), are governed by magnetic fields. To describe the structure of these phenomena one needs information on the magnetic flux density and the electric current density vector components in three dimensions throughout the atmosphere. However, current spectro-polarimetric measurements typically limit the determination of the vector magnetic field to only the photosphere. Therefore, there is considerable interest in accurate modeling of the solar coronal magnetic field using photospheric vector magnetograms as boundary data. In this work, we model the coronal magnetic field for global solar atmosphere using nonlinear force-free field (NLFFF) extrapolation codes implemented to a synoptic maps of photospheric vector magnetic field synthesized from the Vector Spectromagnetograph (VSM) on Synoptic Optical Long-term Investigations of the Sun (SOLIS) as boundary condition. Using the resulting three-dimensional magnetic field, we calculate the three-dimensional electric current density and magnetic energy throughout the solar atmosphere for Carrington rotation 2124 using our global extrapolation code. We found that spatially, the low-lying, current-carrying core field demonstrates a strong concentration of free energy in the active-region core, from the photosphere to the lower corona (about 70 Mm). The free energy density appears largely co-spatial with the electric current distribution.  相似文献   

8.
In this paper we analyse the non-potential magnetic field and the relationship with current (helicity) in the active region NOAA 9077 in 2000 July, using photospheric vector magnetograms obtained at different solar observatories and also coronal extreme-ultraviolet 171-Å images from the TRACE satellite.
We note that the shear and squeeze of magnetic field are two important indices for some flare-producing regions and can be confirmed by a sequence of photospheric vector magnetograms and EUV 171-Å features in the solar active region NOAA 9077. Evidence on the release of magnetic field near the photospheric magnetic neutral line is provided by the change of magnetic shear, electric current and current helicity in the lower solar atmosphere. It is found that the 'Bastille Day' 3B/5.7X flare on 2000 July 14 was triggered by the interaction of the different magnetic loop systems, which is relevant to the ejection of helical magnetic field from the lower solar atmosphere. The eruption of the large-scale coronal magnetic field occurs later than the decay of the highly sheared photospheric magnetic field and also current in the active region.  相似文献   

9.
The geoeffective magnetic cloud (MC) of 20 November 2003 was associated with the 18 November 2003 solar active events in previous studies. In some of these, it was estimated that the magnetic helicity carried by the MC had a positive sign, as did its solar source, active region (AR) NOAA 10501. In this article we show that the large-scale magnetic field of AR 10501 has a negative helicity sign. Since coronal mass ejections (CMEs) are one of the means by which the Sun ejects magnetic helicity excess into interplanetary space, the signs of magnetic helicity in the AR and MC must agree. Therefore, this finding contradicts what is expected from magnetic helicity conservation. However, using, for the first time, correct helicity density maps to determine the spatial distribution of magnetic helicity injections, we show the existence of a localized flux of positive helicity in the southern part of AR 10501. We conclude that positive helicity was ejected from this portion of the AR leading to the observed positive helicity MC.  相似文献   

10.
Magnetic helicity quantifies the degree to which the magnetic field in a volume is globally sheared and/or twisted. This quantity is believed to play a key role in solar activity due to its conservation property. Helicity is continuously injected into the corona during the evolution of active regions (ARs). To better understand and quantify the role of magnetic helicity in solar activity, the distribution of magnetic helicity flux in ARs needs to be studied. The helicity distribution can be computed from the temporal evolution of photospheric magnetograms of ARs such as the ones provided by SDO/HMI and Hinode/SOT. Most recent analyses of photospheric helicity flux derived a proxy to the helicity-flux density based on the relative rotation rate of photospheric magnetic footpoints. Although this proxy allows a good estimate of the photospheric helicity flux, it is still not a true helicity flux density because it does not take into account the connectivity of the magnetic field lines. For the first time, we implement a helicity density that takes this connectivity into account. To use it for future observational studies, we tested the method and its precision on several types of models involving different patterns of helicity injection. We also tested it on more complex configurations – from magnetohydrodynamics (MHD) simulations – containing quasi-separatrix layers. We demonstrate that this connectivity-based proxy is best-suited to map the true distribution of photospheric helicity injection.  相似文献   

11.
1 INTRODUCTIONRecently Bao, Zhang, Ai, and Zhang (1999), using Huairou vector magnetograph data,have shown that the average current helicity (h.) or the curreflt helicity imbalance ph of activeregions change rapidly after so1ar flares. Up'an the onset of flares it tends to decrease for a fewhours and then to increase again, whereas ifQ some cases the flare promotes an increase in thecurrent helicity The observations led to tbe fol1owing conclusions: (1) raPid and substantialchanges of c…  相似文献   

12.
Using photospheric vector magnetograms of the Huairou Solar Observing Station and coronal X-ray images from the Yohkoh Soft X-Ray Telescope, we calculate the helicity patterns of 43 pairs of active regions and the chirality of 50 pairs of opposite magnetic polarity regions that are connected by transequatorial loops (TLs). To make the results more convincing, two helicity proxies including the local current helicity h c and the force-free factor α best are computed. The results, which are similar for both parameters, are as follows: (1) Current helicity of the active regions pairs connected by transequatorial loops have no obvious regularity: About 50% of the active region pairs carry the same current helicity sign and about 50% of them have the opposite. (2) If we consider the magnetic polarity pairs connected by the TLs, the result is almost the same as that for the active region pairs, with a little more than half of them showing the same chirality. We also make linear force-free extrapolations for 33 TLs and determine their force-free parameter α by comparing extrapolated field lines to X-ray images of the TLs. Out of the 19 cases when the footpoints of the TLs have the same current helicity sign, we find that the sign of α of the TLs is the same as the sign of the current helicity in the footpoints in 12 cases, whereas it is of opposite sign in 4 cases, and in 3 cases the TLs were found to be potential.  相似文献   

13.
We have analyzed the long-term evolution of two active regions (ARs) from their emergence through their decay using observations from several instruments on board SoHO (MDI, EIT and LASCO) and Yohkoh/SXT. We have computed the evolution of the relative coronal magnetic helicity combining data from MDI and SXT with a linear force-free model of the coronal magnetic field. Next, we have computed the injection of helicity by surface differential rotation using MDI magnetic maps. To estimate the depletion of helicity we have counted all the CMEs of which these ARs have been the source, and we have evaluated their magnetic helicity assuming a one to one correspondence with magnetic clouds with an average helicity contain. When these three values (variation of coronal magnetic helicity, injection by differential rotation and ejection via CMEs) are compared, we find that surface differential rotation is a minor contributor to the helicity budget since CMEs carry away at least 10 times more helicity than the one differential rotation can provide. Therefore, the magnetic helicity flux needed in the global balance should come from localized photospheric motions that, at least partially, reflect the emergence of twisted flux tubes. We estimate that the total helicity carried away in CMEs can be provided by the end-to-end helicity of the flux tubes forming these ARs. Therefore, we conclude that most of the helicity ejected in CMEs is generated below the photosphere and emerges with the magnetic flux.  相似文献   

14.
The theory of large scale dynamos is reviewed with particular emphasis on the magnetic helicity constraint in the presence of closed and open boundaries. In the presence of closed or periodic boundaries, helical dynamos respond to the helicity constraint by developing small scale separation in the kinematic regime, and by showing long time scales in the nonlinear regime where the scale separation has grown to the maximum possible value. A resistively limited evolution towards saturation is also found at intermediate scales before the largest scale of the system is reached. Larger aspect ratios can give rise to different structures of the mean field which are obtained at early times, but the final saturation field strength is still decreasing with decreasing resistivity. In the presence of shear, cyclic magnetic fields are found whose period is increasing with decreasing resistivity, but the saturation energy of the mean field is in strong super‐equipartition with the turbulent energy. It is shown that artificially induced losses of small scale field of opposite sign of magnetic helicity as the large scale field can, at least in principle, accelerate the production of large scale (poloidal) field. Based on mean field models with an outer potential field boundary condition in spherical geometry, we verify that the sign of the magnetic helicity flux from the large scale field agrees with the sign of α. For solar parameters, typical magnetic helicity fluxes lie around 1047 Mx2 per cycle.  相似文献   

15.
1 INTRODUCTION Magnetic field plays an important role in solar activity. The stressing and subsequent partialrelaxation of magnetic fields in the active regions are generally accepted to be the energy sourceof solar flares. To quantitatively study the extent of stressed magnetic field as distinct from itspotential field, Hagyard et al. (1984) defined a magnetic shear angle膖he azimuth differencebetween the observed transverse magnetic field vector and the computed potential field vectorth…  相似文献   

16.
Mackay  D.H.  Gaizauskas  V. 《Solar physics》2003,216(1-2):121-142
In this paper we seek the origin of the axial component of the magnetic field in filaments by adapting theory to observations. A previous paper (Mackay, Gaizauskas, and van Ballegooijen, 2000) showed that surface flows acting on potential magnetic fields for 27 days – the maximum time between the emergence of magnetic flux and the formation of large filaments between the resulting activity complexes – cannot explain the chirality or inverse polarity nature of the observed filaments. We show that the inclusion of initial helicity, for which there is observational evidence, in the flux transport model results in sufficiently strong dextral fields of inverse polarity to account for the existence and length of an observed filament within the allotted time. The simulations even produce a large length of dextral chirality when just small amounts of helicity are included in the initial configuration. The modeling suggests that the axial field component in filaments can result from a combination of surface (flux transport) and sub-surface (helicity) effects acting together. Here surface effects convert the large-scale helicity emerging in active regions into a smaller-scale magnetic-field component parallel to the polarity inversion line so as to form a magnetic configuration suitable for a filament.  相似文献   

17.
Using two- and three-dimensional hydromagnetic simulations for a range of different flows, including laminar and turbulent ones, it is shown that solutions expressing the field in terms of Euler potentials (EP) are in general incorrect if the EP are evolved with an artificial diffusion term. In three dimensions, standard methods using the magnetic vector potential are found to permit dynamo action when the EP give decaying solutions. With an imposed field, the EP method yields excessive power at small scales. This effect is more exaggerated in the dynamic case, suggesting an unrealistically reduced feedback from the Lorentz force. The EP approach agrees with standard methods only at early times when magnetic diffusivity did not have time to act. It is demonstrated that the usage of EP with even a small artificial magnetic diffusivity does not converge to a proper solution of hydromagnetic turbulence. The source of this disagreement is not connected with magnetic helicity or the three-dimensionality of the magnetic field, but is simply due to the fact that the non-linear representation of the magnetic field in terms of EP that depend on the same coordinates is incompatible with the linear diffusion operator in the induction equation.  相似文献   

18.
We show that a steady mean-field dynamo in astrophysical rotators leads to an outflow of relative magnetic helicity and thus magnetic energy available for particle and wind acceleration in a corona. The connection between energy and magnetic helicity arises because mean-field generation is linked to an inverse cascade of magnetic helicity. To maintain a steady state in large magnetic Reynolds number rotators, there must then be an escape of relative magnetic helicity associated with the mean field, accompanied by an equal and opposite contribution from the fluctuating field. From the helicity flow, a lower limit on the magnetic energy deposited in the corona can be estimated. Steady coronal activity including the dissipation of magnetic energy, and formation of multi-scale helical structures therefore necessarily accompanies an internal dynamo. This highlights the importance of boundary conditions which allow this to occur for non-linear astrophysical dynamo simulations. Our theoretical estimate of the power delivered by a mean-field dynamo is consistent with that inferred from observations to be delivered to the solar corona, the Galactic corona, and Seyfert 1 AGN coronae.  相似文献   

19.
In a density-stratified turbulent medium, the cross helicity 〈u′⋅B′〉 is considered as a result of the interaction of the velocity fluctuations and a large-scale magnetic field. By means of a quasilinear theory and by numerical simulations, we find the cross helicity and the mean vertical magnetic field to be anti-correlated. In the high-conductivity limit the ratio of the helicity and the mean magnetic field equals the ratio of the magnetic eddy diffusivity and the (known) density scale height. The result can be used to predict that the cross helicity at the solar surface will exceed the value of 1 gauss km s−1. Its sign is anti-correlated to that of the radial mean magnetic field. Alternatively, we can use our result to determine the value of the turbulent magnetic diffusivity from observations of the cross helicity.  相似文献   

20.
We construct an approximation for the magnetic field of galaxies that takes into account the magnetic helicity conservation law. In our calculations, we use the fact that the galactic disk is fairly thin and, therefore, the magnetic field component perpendicular to the galactic disk can be neglected (the so-called no-z approximation). However, an averaging of the magnetic field over the entire galaxy, as was done in previous works, is not performed. Our results are compared both with the approximation that disregards the helicity flux and with the results obtained in models with helicity fluxes but without averaging. We show that, compared to the classical model, there are a number of new effects (for example, magnetic field oscillations) and, compared to the model with averaging, the behavior of the magnetic field “softens”: its stationary value is reached more slowly and the oscillation amplitude decreases. This is because the dissipative processes changing the magnetic field growth rate are taken into account in our model. In contrast to the model with averaging, here it becomes possible to construct the dependence of the magnetic field and helicity on the distance from the galactic center.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号