首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Zdeněk Švestka 《Solar physics》1989,121(1-2):399-417
One has to distinguish between two kinds of the gradual phase of flares: (1) a gradual phase during which no energy is released so that we see only cooling after the impulsive phase (a confined flare), and (2) a gradual phase during which energy release continues (a dynamic flare).The simplest case of (1) is a single-loop flare which might provide an excellent opportunity for the study of cooling processes in coronal loops. But most confined flares are far more complicated: they may consist of sets of unresolved elementary loops, of conglomerates of loops, or they form arcades the components of which may be excited sequentially. Accelerated particles as well as hot and cold plasma can be ejected from the flare site (coronal tongues, flaring arches, sprays, bright and dark surges) and these ejecta may cool more slowly than the source flare itself.However, the most important flares on the Sun are flares of type (2) in which a magnetic field opening is followed by subsequent reconnection of fieldlines that may continue for many hours after the impulsive phase. Therefore, the main attention in this review is paid to the gradual phase of this category of long-decay flares. The following items are discussed in particular: The wide energy range of dynamic flares: from eruptions of quiescent filaments to most powerful cosmic-ray flares. Energy release at the reconnection site and modelling of the reconnection process. The post-flare loops: evidence for reconnection; observations at different wavelengths; energy deposit in the chromosphere, chromospheric ablation, and velocity fields; loops in emission; shrinking loops; magnetic modelling. The gradual phase in X-rays and on radio waves. Post-flare X-ray arches: observations, interpretation, and modelling; relation to metric radio events and mass ejections, multiple-ribbon flares and anomalous events, hybrid events, possible relations between confined and dynamic flares.  相似文献   

2.
Automatic Solar Flare Tracking Using Image-Processing Techniques   总被引:1,自引:0,他引:1  
Measurement of the evolution properties of solar flares through their complete cyclic development is crucial in the studies of Solar Physics. From the analysis of solar H images, we used Support Vector Machines (SVMs) to automatically detect flares and applied image segmentation techniques to compute their properties. We also present a solution for automatically tracking the apparent separation motion of two-ribbon flares and measuring their moving direction and speed in the magnetic fields. From these measurements, with certain assumptions, we inferred the reconnection of the electric field as a measure of the rate of the magnetic reconnection in the corona. The automatic procedure is a valuable tool for real-time monitoring of flare evolution.  相似文献   

3.
Preflare state     
Discussion on the preflare state held at the Ottawa Flares 22 Workshop focused on the interpretation of solar magnetograms and of H filament activity. Magnetograms from several observatories provided evidence of significant build up of electric currents in flaring regions. Images of X-ray emitting structures provided a clear example of magnetic relaxation in the course of a flare. Emerging and cancelling magnetic fields appear to be important for triggering flares and for the formation of filaments, which are associated with eruptive flares. Filaments may become unstable by the build up of electric current helicity. Examples of heliform eruptive filaments were presented at the Workshop. Theoretical models linking filaments and flares are briefly reviewed.Report of Team 1, Flares 22 Workshop, Ottawa, May 25–28, 1993  相似文献   

4.
Livshits  M. A. 《Solar physics》1997,173(2):377-381
Recent observations have provided much real information about the acceleration of particles in solar flares. High-reliability data about accelerated particles have been obtained for an impulsive phase of some flares of the activity cycle XXII. Therefore, it seems reasonable to re-estimate the amount of Li atoms produced in the upper photospheric layers by – reactions. A value of 5 × 10 29 nuclei during the largest impulsive solar events has been found from calculations for the thick-target model. This agrees with observations of the line of lithium. In conclusion, the probability of enhanced Li absorption observed after large impulsive flares in the sunspot penumbra is discussed.  相似文献   

5.
Simple self-consistent models for non-neutral current sheets are considered. Characteristics of high-temperature turbulent current sheets (HTCS) with a small transverse component of magnetic field are determined for conditions in the solar corona. The energy output of such an HTCS is much larger than that of a neutral sheet. This makes it possible to consider the HTCS as an energy source not only in long-lived X-ray loops but also in flaring loops during the not or main phase of a flare. In this case, the magnetic reconnection velocity agrees with the observed velocity of the loop rise. Thus, these phenomena can be interpreted as a result of magnetic reconnection, for example, between new flux emerging from under the photosphere and an old magnetic field.The role of a longitudinal magnetic field in a current sheet is less important for HTCS. As a result of the compression of a longitudinal field, there appears an electric current circulating around the sheet. This current may induce strong Joule heating, if the compression is large. This additional heating is realized because of the annihilation of the main component, not the longitudinal component of magnetic field. The effect is small for HTCS, but may be significant for preflare current sheets.  相似文献   

6.
We discuss the preheating phase of solar flares triggered by emerging magnetic flux. We consider the development of microinstabilities in the diffusion region during the emergence process and we propose four different types of reconnection, by which we explain the preheating, as well as the impulsive phase of flares. We find that during the emergence of new magnetic flux the current sheet will not jump from the initial classical state to a fully turbulent one, but will remain in a marginally turbulent state which may develop either gradually or impulsively depending on the conditions of emergence. As a consequence of this, we find that four cases of reconnection are indeed possible: a week gradual heating, a weak impulsive process, a gradual preheating followed by an impulsive phase, and violent bursty reconnection.The expansion rate of the diffusion region, the duration of the gradual phase, the magnetic energy release, and the energy deposition rate in coronal loops during the gradual phase are derived under simplifying assumptions and applied to X-ray and UV observations of flares from the Solar Maximum Mission.On leave from the Department of Astronomy, Nanjing University, Nanjing, The People's Republic of China.  相似文献   

7.
As a possible mechanism for particle acceleration in the impulsive phase of solar flares, a new particle acceleration mechanism in shock waves is proposed; a collisionless fast magnetosonic shock wave can promptly accelerate protons and electrons to relativistic energies, which was found by theory and relativistic particle simulation. The simultaneous acceleration of protons and electrons takes place in a rather strong magnetic field such that ce pe . For a weak magnetic field ( ce pe ), strong acceleration occurs to protons only. Resonant protons gain relativistic energies within the order of the ion cyclotron period (much less than 1 s for solar plasma parameters). The electron acceleration time is shorter than the ion-cyclotron period.  相似文献   

8.
Except for protons, the chemical composition of solar cosmic rays is very similar to the abundance of the elements at the photosphere of the Sun. If we consider the relative abundance ratio of protons to -particles (P/) at constant rigidity, this ratio is highly variable from one solar cosmic ray event to another. This ratio observed at the Earth, however, decreases monotonically with time from the onset of solar flares and, furthermore, is dependent on the heliocentric distance of the parent flares from the central meridian of the solar disk. P/'s which have been measured before the onset of SC geomagnetic storms change from 1.5 to 50 or more, being a function of the westward position of the source from the east limb of the Sun. These variations with respect to time and heliocentric distance suggest that the propagation of solar cosmic rays is strongly modulated in the interplanetary space. The major part of the -particles seem to propagate as if they are trapped within the magnetic clouds which produce SC geomagnetic and cosmic ray storms at the earth.The chemical composition and rigidity spectra of solar cosmic rays suggest that solar cosmic rays are mainly accelerated by the Fermi mechanism in solar flares. The observed variation of P/'s is produced mainly through the difference between the propagation characteristics of protons and -particles.NAS-NRC Associate with NASA.  相似文献   

9.
Magnetic fields in the low corona are the only plausible source of energy for solar flares. Other energy sources appear inadequate or uncorrelated with flares. Low coronal magnetic fields cannot be measured accurately, so most attention has been directed toward measurements of the photospheric magnetic fields from which coronal developments may be inferred. Observations of these magnetic fields are reviewed. It is concluded that, except possibly for the largest flares, changes in the photospheric magnetic fields in flaring centers are confined to evolutionary changes associated with emergence of new magnetic flux. Flare observations with the 10830 Å line of helium, in particular, are discussed. It is concluded that the brightest flare knots appear near points of emergent magnetic flux. Pre-flare activation and eruptions of H filaments are discussed. It is concluded that the rapid motions in filaments indicate unambiguously that the magnetic fields in the low corona are severely disrupted prior to most flares. The coronal signature of H filament eruptions is illustrated with soft X-ray photographs from the S-054 experiment of the NASA Skylab mission. An attempt is made, by studying X-ray flare morphology, to determine whether flares grow by reconnections between adjacent or intertwined magnetic elements or by triggering, in which each flaring loop drives adjacent loops to unstable states. It is concluded that successive loop brightenings are most easily interpreted as the result of magnetic field reconnections, although better time resolution is required to settle the question. A model of magnetic field reconnections for flares associated with filament activation and emerging magnetic flux is presented.  相似文献   

10.
The fundamental hypothesis by Alfvén and Carlqvist (1967) that solar flares are related to electrical currents in the solar chromosphere and low corona is investigated in the light of modern observations. We confirm the important role of currents in solar flares. There must be tens of such current loops (flux threads) in any flare, and this explains the hierarchy of bursts in flares. We summarize quantitative data on energies, numbers of particles involved and characteristic times. A special case is the high-energy flare: this one may originate in the same way as less energetic ones, but it occurs in regions with higher magnetic field strength. Because of the high particle energies involved their emission seats live only very briefly; hence the area of emission coincides virtually with the seat of the instability. These flares are therefore the best examples for studying the primary instability leading to the flare. Finally, we compare the merits of the original Alfvén-Carlqvist idea (that flares originate by current interruption) with the one that they are due to interaction (reconnection) between two or more fluxthreads. We conclude that a final decision cannot yet be made, although the observed extremely short time constants of flare bursts seem to demand a reconnection-type instability rather than interruption of a circuit.Paper dedicated to Professor Hannes Alfvén on the occasion of his 80th birthday, 30 May 1988.  相似文献   

11.
DOUBLE-LOOP CONFIGURATION OF SOLAR FLARES   总被引:2,自引:0,他引:2  
Hanaoka  Yoichiro 《Solar physics》1997,173(2):319-346
We analyzed several flares, which are presumed to be caused by interactions between an emerging loop and an overlying loop. We call such a basic combination of loops a double-loop configuration, and we reveal its topology on the basis of the microwave and soft X-ray observations of the flares and the magnetograms. In many cases, the magnetic field of the flare loops shows a bipolar + remote unipolar structure, rather than a quadrapole structure. The footpoints of two loops are distributed in three magnetic patches, and two of the footpoints of the loops, one from the emerging loop and the other from the overlying loop, are included in a single magnetic polarity patch. Therefore, the two loops form a three-legged structure, and the two loops are not anti-parallel as assumed in the traditional reconnection models. Typically, the emergence of a parasitic polarity near the major preceding-polarity region or the following one in an active region creates this configuration, but, in one of the analyzed flares, two active regions are involved in the configuration. Not only the flares, but various other active phenomena – microflares, thermal plasma flows like jets, and surges – occur in the same magnetic configuration. Hence, the interaction between two loops, which forms the three-legged structure, is an important source of the various types of activity.  相似文献   

12.
Quasi-steady high-temperature current sheets are an energy source during the main or hot phase of solar flares. Such sheets are shown to be stabilized with respect to the tearing instability by a small transverse component of magnetic field existing in the sheets.  相似文献   

13.
Kane  S. R.  Kreplin  R. W.  Martres  M. -J.  Pick  M.  Soru-Escaut  I. 《Solar physics》1974,38(2):483-497
The relationship between H absorption features, type III radio bursts and soft X-ray emission has been examined in order to determine the characteristics of the particle acceleration process operating when a H-flare may not be detectable. It is found that transient H activity observed in the absence of reported flares is associated with production of relatively weak type III radio and soft X-ray emission. Since such optical phenomena are much more frequent than flares themselves, it is concluded that instabilities generating fast particles may be produced in the corona in a quasi-continuous way with coincident perturbations in the lower solar atmosphere.The soft X-ray component, which is similar to the precursor in flares, is not necessarily the direct product of fast particles, but is probably associated with some type of heating since both the soft X-ray emission and the H features exhibit a similar evolution, the type III bursts occurring near the maximum of this perturbation. The observations are consistent with a model in which the electron acceleration region is located at an altitude where the ion density is 109 cm–3 and most of the accelerated electrons( 20 keV) are confined to coronal altitudes where the ion density is 1010 cm–3.  相似文献   

14.
A physical mechanism for the production of solar flares   总被引:1,自引:0,他引:1  
The weakly ionized photospheric layer in the sunspot environment satisfies certain dynamo inequalities (Equations (11) and (13)) resulting in photospheric Hall current systems. The corresponding Joule dissipation is associated with the surrounding plage area. For critical values of the driving or convective winds (speeds 1 km/s), two stream instability results. The computed energy is of the order of that found in solar flares.  相似文献   

15.
E. W. Cliver 《Solar physics》1995,157(1-2):285-293
The evolution of solar flare nomenclature is reviewed in the context of the paradigm shift, in progress, from flares to coronal mass ejections (CMEs) in solar-terrestrial physics. Emphasis is placed on: the distinction between eruptive (Class II) flares and confined (Class I) flares; and the underlying similarity of eruptive flares inside (two-ribbon flares) and outside (flare-like brightenings accompanying disappearing filaments) of active regions. A list of research questions/problems raised, or brought into focus, by the new paradigm is suggested; in general, these questions bear on the interrelationships and associations of the two classes (or phases) of flares. Terms such as eruptive flare and eruption (defined to encompass both the CME and its associated eruptive flare) may be useful as nominal links between opposing viewpoints in the flares vs CMEs controversy.  相似文献   

16.
A model for second-step electron acceleration in impulsive solar flares is presented. We have extended the theory of stochastic particle acceleration to include Coulomb energy losses which become important at low coronal heights. This inclusion successfully explains the observed steepening of interplanetary electron spectra below 3 MeV following impulsive solar flares taking place at low coronal heights. It also explains the observed spectral differences of relativistic electrons in long-duration and impulsive flares.  相似文献   

17.
M. J. Martres 《Solar physics》1989,119(2):357-384
This paper consists of two parts. We first discuss recent general results on the study of properties of flare homology, and their relevance to the physical interpretation of the flare phenomenon at large. We devote particular attention to the discovery of homologous flares which occur in rapid succession, within a few minutes of each other in many cases. We name these kind of flares rafales. These flares signal the existence of several episodes of energy release within the same magnetic configuration. We also show the existence of particular sites in the solar atmosphere which have peculiar characteristics in terms of solar rotation, and where recurrent flaring may take place over and over again in different solar rotations. This indicates that the disturbance causing the emergence of activity is deep seated, below the solar photosphere. Finally, in the second part, we discuss an extensive set of observations of two homologous flares of a rafale, stressing the dynamic aspects of the observations, particularly the presence of peaks in the vertical component of the velocity field. These results are shown to be in agreement with studies of filament activations and the surging arches which are observed before the flash phase of solar flares.  相似文献   

18.
Sara F. Martin 《Solar physics》1989,121(1-2):215-238
Mass motions are a principal means by which components of solar flares can be distinguished. Typical patterns of mass motions in H are described for chromospheric flare ribbons, remote chromospheric flare patches, flare loops, flaring arches, surges, erupting filaments and some expanding coronal features. Interrelationships between these phenomena are discussed and illustrations of each are presented.  相似文献   

19.
In the past, both magnetospheric substorms and solar flares have almost exclusively been discussed in terms of explosive magnetic reconnection. Such a model may conceptually be illustrated by the so-called tippy-bucket model, which causes sudden unloading processes, namely a sudden (catastrophic, stochastic, and unpredictable) conversion of stored magnetic energy. However, recent observations indicate that magnetospheric substorms can be understood as a result of a directly driven process which can conceptually be illustrated by the pitcher model in which the output rate varies in harmony with the input rate. It is also possible that solar flare phenomena are directly driven by a photospheric dynamo. Thus, explosive magnetic reconnection may simply be an unworkable hypothesis and may not be a puzzle to be solved as the primary energy supply process for magnetospheric substorms and solar flares.  相似文献   

20.
Karlický  Marian  Kotrč  Pavel  Kupryakov  Yurij A. 《Solar physics》2002,211(1-2):231-240
Using TRACE 171 Å image observations and H spectra and images observed at the Ondejov Observatory, the October 1, 2001, eruptive prominence is studied. The evolution of this prominence is described and velocities of specific parts of the prominence are determined. It was found that, after the rising phase of the cold loop-like prominence, its upper part expanded and below this expanding part, around one of its legs a `ring' structure, visible in the TRACE images, was formed. Then, at the same place, a tearing of the prominence leg was recognized. Simultaneous spectral observations of this structure reveal a very broad H line, which indicates strong turbulent motion at these positions. These processes were accompanied by an expanding H envelope. Due to the similarity of the observed `ring' and tearing structures with those modeled by Lau and Finn (1996), the prominence leg tearing is interpreted as a reconnection process between two parallel magnetic ropes having parallel electric currents, but anti-parallel axial magnetic fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号