首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Organic Geochemistry》1987,11(4):291-302
Normal alkanes (n-C13n-C36), isoprenoid hydrocarbons (i-C15, i-C16, i-C18, i-C19, and i-C20) triterpanes (C27C32), and (C27C29) are present in low concentrations offshore Antarctica in near-surface, Quaternary sediment of the Wilkes Land continental margin and of the western Ross Sea. The distributions of these hydrocarbons are interpreted relative to possible sources and processes. The hydrocarbons appear to be mixtures of primary and recycled material from marine and terrigenous sources. The n-alkanes are most abundant and are characterized by two distinct populations, one of probable marine origin and the other likely from terrigenous, vascular plant sources. Because the continent of Antarctica today is devoid of higher plants, the plant-derived hydrocarbons in these offshore sediments probably came from wind-blown material and recycled Antarctic sediment that contains land-plant remains from an earlier period of time. Isoprenoid hydrocarbons are partially recycled and mainly of marine origin; the dominance of pristane over phytane suggests oxic paleoenvironmental conditions. Both modern and ancient triterpanes and steranes are present, and the distribution of these indicates a mixture of primary and recycled bacterial, algal, and possible higher-plant materials. Although the sampled sediments were deposited during the Quaternary, they apparently contain a significant component of hydrocarbons of pre-Quaternary age.  相似文献   

2.
The concentration of hydrocarbons (saturated and aromatic) and synthetic chlorinated compounds (Chlordane, DDT, and PCBs) decreased with depth in sediment cores from mid-Narragansett Bay and reached background levels at different depths. These depths were in general agreement with those expected based on the chronological inputs of these materials to the Bay. Although the total hydrocarbons concentration decreased with depth, the biogenic n-alkanes (n-C25,27,29,31,33) showed a fairly constant concentration with depth as did the organic carbon content of these sediments. The n-alkane odd/even ratio increased with depth in the cores. Size fractionation (> 45 μm and < 45 to > 0.3 μm) of two core sections showed more hydrocarbons associated with the smaller size fraction in the surface section, while the lower section had approximately equal concentrations in both fractions. These trends suggest that over the time period covered by these cores the inputs of biogenic materials has remained relatively constant, while the input of anthropogenic hydrocarbons has increased dramatically during the last 100 yr. This increase is probably due to the expanded use of petroleum over this time period and subsequent chronic inputs to this estuarine environment.  相似文献   

3.
K–Ar clay fraction ages of brittle faults often vary with grain size, decreasing in the finer size fractions, producing an inclined age–grain‐size spectrum. K–Ar ages and mineralogical characterization of gouges from two normal faults in the Kongsberg silver mines, southern Norway, suggest that inclined spectra derived from brittle fault rocks reflect the mixing of inherited components with authigenic mineral phases. The ages of the coarsest and finest fractions constrain faulting at c. 260–270 Ma and reactivation around 200–210 Ma, respectively. This study demonstrates how wall‐rock contamination influences the K–Ar age of the coarsest size fractions and that authigenic illite and K‐feldspar can crystallize synkinematically under equivalent conditions and thus yield the same K–Ar ages.  相似文献   

4.
Hydrocarbon results from gas chromatography of 60 recent sediment and 10 benthic algae samples delineate two distinct shelf environments in the northeastern Gulf of Mexico.Sediments off Florida (shell hashes and sands) have moderate amounts of lipids/total sediment (average 113ppm ± 80%) but low hydrocarbon levels (average 3.06 ppm ± 41%). Aliphatic hydrocarbons are dominated by a series of branched or cyclic, unsaturated C25 isomers. The major n-alkane is n-C17. The n-alkane and isoprenoid patterns are consistent with a marine hydrocarbon source.Sediments closer to the Mississippi River (silts and clays) contain large amounts of lipids (average 232 ppm ± 53%) and hydrocarbons (average 11.7 ppm ± 55%) to total sediment. Aliphatic hydrocarbons are mainly odd carbon number high molecular weight n-alkanes, indicating a terrigenous hydrocarbon source. Isoprenoids are present in greater abundance than in sediments off Florida (n-C17/ pristane and n-C18/phytane ratios ~2to 3). Relatively large amounts of n-C16, together with an even distribution of n-alkanes in the range C14–C20 and a substantial unresolved envelope all point to a fossil fuel input to the Mississippi samples.Samples off the Alabama coast show intermediate characteristics.  相似文献   

5.
A laboratory study has been conducted to determine the best methods for the detection of C10–C40 hydrocarbons at naturally occurring oil seeps in marine sediments. The results indicate that a commercially available method using n-C6 to extract sediments and gas chromatography–flame ionization detection (GC–FID) to screen the resulting extract is effective at recognizing the presence of migrated hydrocarbons at concentrations from 50 to 5000 ppm. When non-biodegraded, the amount of oil charge is effectively tracked by the sum of n-alkanes in the gas chromatogram. However, once the charge oil becomes biodegraded, with the loss of n-alkanes and isoprenoids, the amount of oil is tracked by the quantification of the unresolved complex mixture (UCM). Gas chromatography–mass spectrometry (GC–MS) was also found to be very effective for the recognition of petroleum related hydrocarbons and results indicate that GC–MS would be a very effective tool for screening samples at concentrations below 50 ppm oil charge.  相似文献   

6.
The organic matter of recent deltaic sediments cored in the Mahakam delta, East Kalimantan, has been studied before and after physical fractionation into sands >50 μm, silts 5–50 μm and clays <5 μm. Both the lipid and non-lipid components have been investigated.Weight, carbon and nitrogen fractionation budgets were used to define three types of samples, depending on coarse particle contributions to the total amount of organic matter: a = a first type with more than 50% of the O.M. in the coarse particles, high C/N ratios and O.M. content, b = an intermediary type with medium C/N ratios and O.M. content, each fraction having quite the same O.M. content, c = a third type with less than 5% of the whole O.M. in the sands and the lowest C/N ratios and O.M. content.Concerning the global organic characteristics of the fractions, a systematic increase of C/N ratios occurs when going from clays to sands; the finer the fraction is, the more nitrogenous the compounds are. This enrichment in nitrogen is related to a persistent high rate of hydrolysable material either for argillaceous organic matter-poor sediments or for the clay fractions of all types of samples. Conversely, the type (a) coarse sediments, in particular the sandy components were resistant to acid hydrolysis with burial.Concerning the geochemical markers signatures of granulometric fractions, the distribution patterns of n-alkanes and n-fatty acids are characterized by the predominance of high molecular weight compounds >C22. Carbon preference index (CPI) values are higher in the sands and silts, reflecting their enrichment in continentally-derived vegetation debris. For type (c), the fractionation revealed markers of microbial activity within the clay fractions. For all types of samples, we observed an increase with burial of the n-alkane and n-fatty acid concentrations, particularly in the clay fractions, suggesting possibly a better preservation and/or affinity of lipids with the finest fractions.  相似文献   

7.
The stable hydrogen isotopic compositions (δD) of selected aliphatic hydrocarbons (n-alkanes and isoprenoids) in eight crude oils of similar source and thermal maturity from the Upper Indus Basin (Pakistan) were measured. The oils are derived from a source rock deposited in a shallow marine environment. The low level of biodegradation under natural reservoir conditions was established on the basis of biomarker and aromatic hydrocarbon distributions. A plot of pristane/n-C17 alkane (Pr/n-C17) and/or phytane/n-C18 alkane (Ph/n-C18) ratios against American Petroleum Institute (API) gravity shows an inverse correlation. High Pr/n-C17 and Ph/n-C18 values and low API gravity values in some of the oils are consistent with relatively low levels of biodegradation. For the same oils, δD values for the n-alkanes relative to the isoprenoids are enriched in deuterium (D). The data are consistent with the removal of D-depleted low molecular weight (LMW) n-alkanes (C14–C22) from the oils. The δD values of isoprenoids do not change with progressive biodegradation and are similar for all the samples. The average D enrichment for n-alkanes with respect to the isoprenoids is found to be as much as 35‰ for the most biodegraded sample. For example, the moderately biodegraded oils show an unresolved complex mixture (UCM), loss of LMW n-alkanes (<C15) and moderate changes in the alkyl naphthalene distributions. The relative susceptibility of alkyl naphthalenes at low levels of biodegradation is discussed. The alkyl naphthalene biodegradation ratios were determined to assess the effect of biodegradation. The dimethyl, trimethyl and tetramethyl naphthalene biodegradation ratios show significant differences with increasing extent of biodegradation.  相似文献   

8.
Experimental studies of the effects of thermochemical sulfate reduction (TSR) on light hydrocarbons were conducted in sealed gold tubes for 72 h at 400 °C and 50 MPa. A variety of pyrolysis experiments were carried out, including anhydrous, hydrous without MgSO4 (hydrous experiments) and hydrous with MgSO4 (TSR experiments). Common reservoir minerals including montmorillonite, illite, calcite and quartz were added to various experiments. Measurements of the quantities of n-C9+ normal alkanes (high molecular weight, HMW), n-C6-8 normal alkanes (low molecular weight, LMW), C7-8 isoalkanes, C6-7 cycloalkanes and C6-9 monoaromatics and compound specific carbon isotope analyses were made. The results indicate that TSR decreases hydrocarbon thermal stability significantly as indicated by chemically lower concentrations and isotopically heavier LMW saturated hydrocarbons in the TSR experiments compared to the hydrous and anhydrous experiments. In the LMW saturated hydrocarbon fraction, cycloalkanes tend to be more resistant to TSR than n-alkanes and isoalkanes. TSR promotes aromatization reactions and favors the generation of monoaromatics, resulting in higher chemical concentrations and isotopically equivalent compositions of monoaromatics in the anhydrous, hydrous and TSR experiments. This indicates that LMW monoaromatics are thermally stable during the pyrolysis experiments. Acid rather than basic catalyzed ionic reactions probably play a major role in TSR. This is suggested by the promotion effects of acid-clay minerals including illite and particularly montmorillonite. The basic mineral calcite retards the destruction of n-C9+ normal alkanes within the TSR experiments. Furthermore, clay minerals have a minor influence on the generation of LMW monoaromatics and play a negative role in regulating the concentrations of LMW saturated hydrocarbons; calcite does not favor the generation of LMW monoaromatics and plays a positive role in controlling the concentrations of LMW saturates relative to clay minerals. Quartz has a negligible role in the TSR experiments.Due to their differential responses to TSR, LMW hydrocarbon parameters, such as Schaefer [Schaefer, R.G., Littke, R., 1988. Maturity-related compositional changes in the low-molecular-weight hydrocarbon fraction of Toarcian Shale. Organic Geochemistry 13, 887-892], Thompson [Thompson, K.F.M., 1988. Gas-condensate migration and oil fractionation in deltaic systems. Marine and Petroleum Geology 5, 237-246], Halpern [Halpern, H., 1995. Development and application of light-hydrocarbon-based star diagrams. American Association of Petroleum Geologists Bulletin 79, 801-815] and Mango [Mango, F.D., 1997. The light hydrocarbons in petroleum: a critical review. Organic Geochemistry 26, 417-440] parameters and stable carbon isotopic compositions of individual LMW saturated hydrocarbons in TSR affected oils should be used with caution. In addition, water promotes thermal cracking of n-C9+ normal alkanes and favors the generation of LMW cycloalkanes and monoaromatics. The result is lower concentrations of n-C9+ HMW normal alkanes and higher concentrations of LMW cycloalkanes and monoaromatics in hydrous experiments relative to anhydrous experiments with or without minerals.This investigation provides a better understanding of the effects of TSR on LMW hydrocarbons and the influence of reservoir minerals on TSR in natural systems. The paper shows how LMW hydrocarbon indicators in TSR altered oils improve understanding of the processes of hydrocarbon generation, migration and secondary alteration in subsurface petroleum reservoirs.  相似文献   

9.
Transfer of organic carbon (OC) from the terrestrial to the oceanic carbon pool is largely driven by riverine and aeolian transport. Before transport, however, terrigenous organic matter can be retained in intermediate terrestrial reservoirs such as soils. Using compound-specific radiocarbon analysis of terrigenous biomarkers their average terrestrial residence time can be evaluated.Here we show compound-specific radiocarbon (14C) ages of terrigenous biomarkers and bulk 14C ages accompanied by geochemical proxy data from core top samples collected along transects in front of several river mouths in the Black Sea. 14C ages of long chain n-alkanes, long chain n-fatty acids and total organic carbon (TOC) are highest in front of the river mouths, correlating well with BIT (branched and isoprenoid tetraether) indices, which indicates contribution of pre-aged, soil-derived terrigenous organic matter. The radiocarbon ages decrease further offshore towards locations where organic matter is dominated by marine production and aeolian input potentially contributes terrigenous organic matter. Average terrestrial residence times of vascular plant biomarkers deduced from n-C29+31 alkanes and n-C28+30 fatty acids ages from stations directly in front of the river mouths range from 900 ± 70 years to 4400 ± 170 years. These average residence times correlate with size and topography in climatically similar catchments, whereas the climatic regime appears to control continental carbon turnover times in morphologically similar drainage areas of the Black Sea catchment. Along-transect data imply petrogenic contribution of n-C29+31 alkanes and input via different terrigenous biomarker transport modes, i.e., riverine and aeolian, resulting in aged biomarkers at offshore core locations. Because n-C29+31 alkanes show contributions from petrogenic sources, n-C28+30 fatty acids likely provide better estimates of average terrestrial residence times of vascular plant biomarkers. Moreover, sedimentary n-C28 and n-C30 fatty acids appear clearly much less influenced by autochthonous sources than n-C24 and n-C26 fatty acids as indicated by increasing radiocarbon ages with increasing chain-length and are, thus, more representative as vascular plant biomarkers.  相似文献   

10.
Various aquatic plants from Lake Qinghai, the largest inland saline lake in China, and terrestrial plants from the surrounding area were investigated for the distribution of n-alkanes and their δD values. The n-alkanes in the samples range from C15 to C33 with C preference index (CPI) values of 4.0–29.7. The n-C23 or n-C25 alkane is the dominant compound in the aquatic submerged plants. The aquatic emergent and terrestrial plants have an abundance maximum at n-C27, n-C29 or n-C31. The average chain length (ACL) values, ranging from 26.0 to 29.6, are closely related to the plant species. The n-alkanes from the aquatic plants have mean δD values of −169‰ to −121‰ and those from the terrestrial plants values of −173‰ to −109‰. The H isotopic composition (δD) and fractionation differ significantly among the plants studied. Comparison shows that additional evaporative enrichment of the lake water associated with saline lakes and humidity influence the δD values of the n-alkanes in aquatic and terrestrial plants, respectively. The mean δD values of n-alkanes in the plants decrease with increasing ACL value. The n-alkanes from the different types of plants are more depleted in D relative to environmental water and those from aquatic plants (with a mean value of −143‰) have a greater isotopic fractionation than terrestrial plants (mean value −113‰).  相似文献   

11.
Vertical transport of selected polycyclic aromatic hydrocarbons (PAHs) in different particle-size fractions of sandy soils was investigated by simulation experiments in soil columns. Tested soil samples were fractionized into three particle-sizes including sand, coarse silt and fine silt (2,000–50, 50–20 and <20 μm). Rainfall simulations were conducted in artificially PAHs contaminated soil columns with 30 cm length and 5 cm diameter in 40 days. PAHs were extracted from soil samples and determined by high performance liquid chromatography (HPLC). Results showed that the residue level of PAHs in fine silt fraction reached 35.85 mg/kg, which was significantly higher than those in sand and coarse silt fraction (16.28 and 11.80 mg/kg, respectively), probably because PAHs in macroporous fractions were prone to volatilize or degrade compared with that in microporous fractions. Linear relationship between the residue levels of individual PAH (R PAHs) and the value of partition coefficient (log K oc) was regressed as R PAHs = 1.55 × log K oc − 5.86, R 2 = 0.91, n = 9. These results indicated that vertical transport of the mixed PAHs in soils were controlled both by the nature of PAHs (i.e. log K oc, molecular weight), soil particle size and soil organic contents, which could influence the transport of PAHs.  相似文献   

12.
Compound-specific isotope analysis has become an important tool in environmental studies and is an especially powerful way to evaluate biodegradation of hydrocarbons. Here, carbon isotope ratios of light hydrocarbons were used to characterise in-reservoir biodegradation in the Gullfaks oil field, offshore Norway. Increasing biodegradation, as characterised, for example, by increasing concentration ratios of Pr/n-C17 and Ph/n-C18, and decreasing concentrations of individual light hydrocarbons were correlated to 13C-enrichment of the light hydrocarbons. The δ13C values of C4 to C9n-alkanes increase by 7-3‰ within the six oil samples from the Brent Group of the Gullfaks oil field, slight changes (1-3‰) being observed for several branched alkanes and benzene, whereas no change (<1‰) in δ13C occurs for cyclohexane, methylcyclohexane, and toluene. Application of the Rayleigh equation demonstrated high to fair correlation of concentration and isotope data of i- and n-pentane, n-hexane, and n-heptane, documenting that biodegradation in reservoirs can be described by the Rayleigh model. Using the appropriate isotope fractionation factor of n-hexane, derived from laboratory experiments, quantification of the loss of this petroleum constituent due to biodegradation is possible. Toluene, which is known to be highly susceptible to biodegradation, is not degraded within the Gullfaks oil field, implying that the local microbial community exhibits rather pronounced substrate specificities. The evaluation of combined molecular and isotopic data expands our understanding of the anaerobic degradation processes within this oil field and provides insight into the degradative capabilities of the microorganisms. Additionally, isotope analysis of unbiodegraded to slightly biodegraded crude oils from several oil fields surrounding Gullfaks illustrates the heterogeneity in isotopic composition of the light hydrocarbons due to source effects. This indicates that both source and also maturity effects have to be well constrained when using compound-specific isotope analysis for the assessment of biodegradation.  相似文献   

13.
Mangrove Lake, Bermuda, is a small coastal, brackish-water lake that has accumulated 14 m of banded, gelatinous, sapropelic sediments in less than 104 yr. Stratigraphic evidence indicates that Mangrove Lake's sedimentary environment has undergone three major depositional changes (peat, freshwater gel, brackish-water gel) as a result of sea level changes. The deposits were examined geochemically in an effort to delineate sedimentological and diagenetic changes. Gas and pore water studies include measurements of sulfides, ammonia, methane, nitrogen gas, calcium, magnesium, chloride, alkalinity, and pH. Results indicate that sulfate reduction is complete, and some evidence is presented for bacterial denitrification and metal sulfide precipitation. The organic-rich sapropel is predominantly algal in origin, composed mostly of carbohydrates and insoluble macromolecular organic matter called humin with minor amounts of proteins, lipids, and humic acids. Carbohydrates and proteins undergo hydrolysis with depth in the marine sapropel but tend to be preserved in the freshwater sapropel. The humin, which has a predominantly aliphatic structure, increases linearly with depth and composes the greatest fraction of the organic matter. Humic acids are minor components and are more like polysaccharides than typical marine humic acids. Fatty acid distributions reveal that the lipids are of an algal and/or terrestrial plant source. Normal alkanes with a total concentration of 75 ppm exhibit two distribution maxima. One is centered about n-C22 with no odd/even predominance, suggestive of a degraded algal source. The other is centered at n-C31 with a distinct odd/even predominance indicative of a vascular plant origin. Stratigraphic changes in the sediment correlate to observed changes in the gas and pore water chemistry and the organic geochemistry.  相似文献   

14.
A detailed organic geochemical study; utilising petrography, biomarker hydrocarbon analysis and high temperature GC analysis of extractable wax hydrocarbon constituents was performed on four marginally oil window-mature source rocks from the Shahejie Formation (Eocene), Damintun depression in eastern China. The main maceral components in the source rocks were vitrinite, liptinite and exinite, with vitrinite being more abundant (>50 vol.%) in organic-lean samples whose TOC contents were between 1 and 2 wt.%. Large differences in pristane/phytane ratios suggested that the organic-rich samples were deposited in a less oxic depositional environment than that for the organic-lean rocks. The distribution of extractable wax hydrocarbons, determined by high temperature GC, showed a marked difference between these two sample types. The organic-rich samples contained high molecular weight hydrocarbons (HMWHCs) dominated by macrocrystalline n-alkanes (n-C23n-C37, typically maximising at n-C29), while the organic-lean samples contained lower amounts of extractable wax hydrocarbons but were relatively rich in microcrystalline components (> n-C35). In all source rocks (Es3 and Es4), a noticeable odd-over-even predominance (OEP) of n-alkane chain lengths (up to n-C65) was evident, consistent with a direct biological origin for the long n-alkyl chains. They were most probably formed during diagenesis from decarboxylation of predominantly even-carbon-numbered aliphatic acids originating from higher plant or lacustrine algal sources and/or were directly biosynthesised in hydrocarbon form. At least two other homologous series of branched/cyclic HMWHCs were observed, one of which was confirmed as a series of branched alkanes (probably methyl-branched). The carbon number distribution patterns of HMWHCs may be primarily controlled by thermal maturity and biogenic source input as well as being influenced by diagenetic reactions governed by depositional environmental conditions, as shown previously [Carlson, R.M.K., Teerman, S.C., Moldowan, J.M., Jacobson, S.R., Chan, E.I., Dorrough, K.S., Seetoo, W.C., Mertani, B., 1993. High temperature gas chromatography of high wax oils. In: Indonesian Petroleum Association, 22nd Annual Convention Proceedings. Jakarta, Indonesian, pp. 483–507. Carlson, R.M.K., Jacobsen, S.R., Moldowan, J.M., Chan E.I., 1994. Potential application of high temperature gas chromatography to Middle Eastern petroleum exploration and production. In: Al-Husseini, M.I. (Ed.), Geo'94, Vol 1., Selected Middle East Papers from The Middle East Petroleum Geoscience Conference, 1994; Gulf PetroLink. Manama, Bahrain, pp. 258–267]. Our study indicates for the first time that Es3 source rocks as well as Es4 facies contain HMWHCs. The distributions of extractable wax hydrocarbons suggest that both Es4 and Es3 members may potentially serve as important parent source rocks for generating waxy petroleum in this region.  相似文献   

15.
Samples of Sphagnum palustre and peat from the Erxianyan peatland, central China, were analyzed for lipids and their carbon isotopes to investigate how lipid distributions respond to hydrological change and to evaluate the importance of the contribution of microbial lipids to the peat moss. The lipids in samples collected from different hydrological settings in and around a pond and in the central part of the bog show clear variation along the hydrological gradient, with higher n-C23/n-C25 alkane ratio values and lower ACL (average chain length) values of long chain n-alkanes, n-fatty alcohols and n-fatty acids at the wetter sites. Although the relationship between the S. palustre lipids and the hydrological conditions can be partially overprinted in peat by an input from vascular plants, lipid ratios such as Paq and ACL can provide useful qualitative information about Sphagnum contributions. In addition, lipid composition and carbon isotope values provide information about microbial activity associated with S. palustre. The occurrence of a high abundance of 7-methylheptadecane in submerged S. palustre is an indication of cyanobacteria in the living peat moss. The relatively 13C-depleted carbon isotope values of the n-C23 alkane could result from the influence of symbiotic methanotrophs on the carbon available for assimilation by S. palustre.  相似文献   

16.
This study reports the first observation of predominant even C-numbered n-alkanes from sediments in the continuous lacustrine-sedimentary section (Maogou) from the Late Miocene to the Early Pliocene (13–4.4 Ma) in the Linxia Basin, NE Tibetan Plateau. The n-alkanes showed a bimodal distribution that is characterised by a centre at n-C16n-C20 with maximum values at n-C18 and n-C27n-C31 as well as at n-C29. The first mode shows a strong even C-number predominance (OEP16–20 0.34–0.66). In contrast, the second mode has a strong odd C-number predominance (OEP27–31 1.20–2.45). Certain types of special autochthonous bacteria are a possible source for this distribution of even C-numbered n-alkanes in lacustrine sediments. These bacteria may have a high production rate in weak oxic–anoxic and arid depositional environments, in which a variety of geochemical parameters have recorded palaeoclimate change.  相似文献   

17.
The present study reports the biomarker distribution of condensate belonging to the early Cretaceous time frame using gas chromatography–mass spectrometry (GC–MS). The early Cretaceous palaeoenvironment was inscribed into these molecular fossils which reflected the source and conditions of deposition of the condensate. The saturate fraction of the condensate is characterized by normal alkanes ranging from n-C9 to n-C29 (CPI-1.13), cycloalkanes and C14 and C15 sesquiterpanes. The aromatic fraction comprises of naphthalene, phenanthrene, their methylated derivatives and cyclohexylbenzenes. Isohexylalkylnaphthalenes, a product of rearrangement process of terpenoids, is detected in the condensate. Several aromatic sesquiterpenoids and diterpenoids have been recorded. Dihydro-ar-curcumene, cadalene and ionene form the assemblage of sesquiterpenoids which are indicative of higher plant input. Aromatic diterpenoid fraction comprises of simonellite and retene. These compounds are also indicative of higher plants, particularly conifer source which had been a predominant flora during the Cretaceous time.  相似文献   

18.
The reactions of a terminal alkene (1-octadecene) and a polymethyl phenol (2,3,6-trimethylphenol) on activated carbon have been investigated in closed system pyrolysis experiments in the temperature range 170-340 °C. The reaction products of 1-octadecene included methane, isomeric octadecenes, methyl substituted alkanes, alkyl aromatics and an homologous series of n-alkanes with carbon numbers indicative of progressive single carbon depletion of the reactant. The reaction products of 2,3,6-trimethylphenol also contained methane, as well as C1-C4 methyl phenols produced by demethylation and methyl transfer reactions. A carbon surface reaction involving the formation of a reactive single carbon intermediate (i.e. methylene/carbene) is proposed. This reaction accounts for the products observed from the pyrolysis experiments and also is consistent with liquid hydrocarbon distributions found in petroleum basins. Methane was the dominant (ca. 85% of C1-C4) gaseous hydrocarbon product of 2,3,6-trimethylphenol but accounted for only ca. 17% of the C1-C4 hydrocarbons from 1-octadecene. These findings suggest that single carbon surface reactions may play an important role in the geochemical formation of crude oil and natural gas and that the composition of the source material and therefore the type of organic compounds undergoing such reactions, influences the hydrocarbon gas composition in sedimentary basins.  相似文献   

19.
Gel permeation chromatography (GPC) using a high performance liquid chromatography (HPLC) system was studied for the separation and enrichment of steroid and hopanoid hydrocarbons from crude oil for stable carbon isotope analysis. A crude oil sample was pretreated using silica gel chromatography and 5A molecular sieve to remove polycyclic aromatic hydrocarbons and n-alkanes. The GPC behavior of both the pretreated saturated hydrocarbon fraction of the oil and standard steroid [5α(H), 14α(H), 17α(H) C27–C29 steranes], hopanoid [17α(H) C27 trisnorhopane, 17α(H), 21β(H) C29–C32 hopanes] and triterpenoid [18α(H)-oleanane, gammacerane] mixtures were examined. The results indicate that 17α(H), 21β(H) hopanes as well as steranes could be enriched efficiently using GPC and that they could be obtained without removing n-alkanes from the oil saturated hydrocarbon fraction. The GPC behavior of steroid and triterpenoid hydrocarbons was controlled by molecular size and shape.  相似文献   

20.
Three fractions of organic matter: lipid (benzene:methanol-extractable), humic acid (alkali-extractable) and kerogen (residue) were extracted from a young marine sediment (Tanner Basin, offshore southern California) and heated for different times (5–116 hr) and temperatures (150°–410°C). The volatile (gases) and liquid products, as well as residual material, were then analyzed. On a weight basis, the lipid fraction produced 58% of the total identified n-alkanes, the kerogen fraction 41%, and the humic acid <1%. Whereas n-alkanes produced from lipid show a CPI > 1.0, those produced by thermal alteration of kerogen display a CPI < 1.0. The volatiles produced by heating the lipid and humic acid fractions were largely CO2 and water, whereas those produced from heated kerogen also included methane, hydrogen gas and small amounts of C2–C4 hydrocarbons. A mechanism for hydrocarbon production due to the thermal alteration of organic constituents of marine sediment is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号