首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
In this study, feasibility of using seawater to neutralize alkaline red mud for its safe disposal has been studied using Taguchi’s design of experimental methodology. Parameters such as weight of red mud, volume of seawater, stirring time and temperature were tested at three levels to study their effect on response characteristic, i.e., pH of the neutralized slurry. The analysis of variance showed that volume of seawater added and quantity of red mud are the two significant parameters with 53.59 and 44.92 % contribution each, respectively. Under the optimized parameters, pH value of red mud slurry reaches to about 8.0 which is within disposable limits. When seawater or other Ca- and Mg-rich brines are added to caustic red mud, the pH of the mixture is reduced causing hydroxide, carbonate or hydroxy carbonate minerals to be precipitated. This mechanism of neutralization process has been explained with emphasis on chemical analysis, mineralogy and morphology of the neutralized red mud. The process improved the physical characteristics of red mud with entrained liquor becoming non-hazardous water with reduced alkalinity. The results would be extremely useful in the process of safe disposal of red mud.  相似文献   

2.
Phosphorous is an essential nutrient used by plants and animals for growth and energy transport. Phosphate cycling studies are important in understanding biological processes, and phosphate analyses are a standard part of the biogeochemists' toolbox. However, these standard techniques fail to be applied to low concentration environments due to a lack of sensitivity. Such low concentration environments include the central gyres such as the North Pacific and North Atlantic subtropical gyres and northeastern Mediterranean gyres where phosphate concentrations average less than 50 nM. In this study, a method was developed to analyze DIP using Liquid Waveguide after Mg (OH)2 coprecipitation. This method uses magnesium (Mg) in seawater sample as a carrier to coprecipitate phosphate. This method has a very low reagent blank because only sodium (Na) hydroxide and 1% HCl are used and these reagents can be easily purified. The simplicity of this method also minimizes the potential for phosphate contamination during sample handling. The aim of this study is to develop a technique for analysis of phosphate in seawater, which is simple, accurate and precise. We used Liquid Waveguide to guarantee accuracy and detect phosphate at levels comparable to the lowest seen in seawater.  相似文献   

3.
It is often argued that the δ18O value of oceanic water was maintained close to 0‰ for hundreds of millions of years, as a consequence of oxygen isotope exchange between oceanic crust and seawater. However, for several decades, the interpretation of the biosedimentary oxygen isotope record has conflicted with the igneous record because, with increasing age, a general trend of decreasing δ18O values (about 6‰) is observed in most carbonates, cherts and phosphates, especially for the Paleozoic and early Mesozoic. We developed a dynamical model of seawater-crust interaction that computes the δ18O value in these two reservoirs as function of time. This model takes into account the continuous production of crust at oceanic ridges, its expansion rate, the permeability profile with space and time, the mineralogical mode of the crust, and the kinetics of oxygen isotope exchange between rock-forming minerals and seawater. The model indicates that the δ18O value of seawater may vary by ±2‰ with a time response ranging from 5 to 50 Ma for expansion rates of 1 to 10 cm.a−1. The variation of ±2‰ is fixed by both integrated water-rock ratio and closure time of the seawater-crust system by sediments. Variations in the oxygen isotope ratio of seawater through time have important implications for the interpretation of the systematically low δ18O values of pre-Jurassic marine sediments. According to our model, marine paleotemperatures could be up to 10°C lower than those expected when applying the classical hypothesis of an ice-free ocean with a δ18O value of −1‰.  相似文献   

4.
Phosphorous is an essential nutrient used by plants and animals for growth and energy transport. Phosphate cycling studies are important in understanding biological processes, and phosphate analyses are a standard part of the biogeochemists’ toolbox. How…  相似文献   

5.
The influence of sea-level rise (SLR) on seawater intrusion (SWI) has been the subject of several publications, which consider collectively a range of functional relationships within various hydrogeological and SLR settings. Most of the recent generalized analyses of SWI under SLR neglect land-surface inundation (LSI) by seawater. A simple analytical method is applied to quantitatively assess the influence and importance of LSI on SLR–SWI problems under idealized conditions. The results demonstrate that LSI induces significantly more extensive SWI, with inland penetration up to an order of magnitude larger in the worst case, compared to the effects of pressure changes at the shoreline in unconfined coastal aquifers with realistic parameters. The study also outlines some of the remaining research challenges in related areas, concluding that LSI impacts are among other important research questions regarding the SLR–SWI problems that have not been addressed, including the effects of aquifer heterogeneities, real-world three dimensionality, and mitigation measures.  相似文献   

6.
《Geochimica et cosmochimica acta》1999,63(11-12):1689-1708
We compare the time series of major element geochemical and Pb- and Nd-isotopic composition obtained for seven hydrogenous ferromanganese crusts from the Atlantic, Indian, and Pacific Oceans which cover the last 60 Myr.Average crust growth rates and age–depth relationships were determined directly for the last about 10 Myr using 10Be/9Be profiles. In the absence of other information these were extrapolated to the base of the crusts assuming constant growth rates and constant initial 10Be/9Be ratios due to the lack of additional information. Co contents have also been used previously to estimate growth rates in Co-rich Pacific and Atlantic seamount crusts (Puteanus and Halbach, 1988). A comparison of 10Be/9Be- and Co-based dating of three Co-rich crusts supports the validity of this approach and confirms the earlier chronologies derived from extrapolated 10Be/9Be-based growth rates back to 60 Ma. Our data show that the flux of Co into Co-poor crusts has been considerably lower. The relationship between growth rate and Co content for the Co-poor crusts developed from these data is in good agreement with a previous study of a wider range of marine deposits (Manheim, 1986). The results suggest that the Co content provides detailed information on the growth history of ferromanganese crusts, particularly prior to 10–12 Ma where the 10Be-based method is not applicable.The distributions of Pb and Nd isotopes in the deep oceans over the last 60 Myr are expected to be controlled by two main factors: (a) variations of oceanic mixing patterns and flow paths of water masses with distinct isotopic signatures related to major paleogeographic changes and (b) variability of supply rates or provenance of detrital material delivered to the ocean, linked to climate change (glaciations) or major tectonic uplift. The major element profiles of crusts in this study show neither systematic features which are common to crusts with similar isotope records nor do they generally show coherent relationships to the isotope records within a single crust. Consequently, any interpretation of time series of major element concentrations of a single crust in terms of paleoceanographic variations must be considered with caution. This is because local processes appear to have dominated over more basin-wide paleoceanographic effects. In this study Co is the only element which shows a relationship to Pb and Nd isotopes in Pacific crusts. A possible link to changes of Pacific deep water properties associated with an enhanced northward advection of Antarctic bottom water from about 14 Ma is consistent with the Pb but not with the Nd isotopic results. The self-consistent profiles of the Pb and Nd isotopes suggest that postdepositional diagenetic processes in hydrogenous crusts, including phosphatization events, have been insignificant for particle reactive elements such as Pb, Be, and Nd. Isotope time series of Pb and Nd show no systematic relationships with major element contents of the crusts, which supports their use as tracers of paleo-seawater isotopic composition.  相似文献   

7.
The Seferihisar-Bal?ova Geothermal system (SBG), Turkey, is characterized by temperature and hydrochemical anomalies along the faults: thermal waters in northern Bal?ova are heated meteoric freshwater, whereas the hot springs of the southern Seferihisar region have a strong seawater contribution. Previous numerical simulations of fluid flow and heat transport indicated that focused upsurge of hot water in faults induces a convective-like flow motion in surrounding units. Salt transport is fully coupled to thermally driven flow to study whether fault-induced convection cells could be responsible for seawater encroachment in the SBG. Isotope data are presented to support the numerical findings. The results show that fault-induced convection cells generate seawater plumes that extend from the seafloor toward the faults. At fault intersections, seawater mixes with rising hot thermal waters. The resulting saline fluids ascend to the surface along the fault, driven by buoyant forces. In Bal?ova, thick alluvium, minor faults and regional flow prevent ascending salty water from spreading at the surface, whereas the weak recharge flow in the thin alluvium of the southern SBG is not sufficient to flush the ascending hot salty waters. These mechanisms could develop in any faulted geothermal system, with implications for minerals and energy migration in sedimentary basins.  相似文献   

8.
A numerical simulation has been carried out to investigate the effects of below-sea-level (b.s.l.) excavation on the raw material quality of a cement quarry in Turkey. The model simulates variations in the hydrodynamic and hydrogeochemical mechanisms in the coastal aquifer upon BSL excavation. In this context, behavior of the seawater intrusion zone, changes in water levels, and salt concentrations have been simulated. In the development of the model, previous geological and hydrogeological reports of the quarry site and the near vicinity have been considered. Eleven new wells (BH-1,...BH-11) have been drilled to reveal hydrogeological features of the area and also for periodical observations of the water levels and hydrogeochemical monitoring. These wells were utilized to develop and calibrate the model to the field conditions. Physical and hydrogeochemical parameters used in the model have been evaluated using available hydrogeological data, the field test results and the related literature. The model has been verified using the field observations. It is based on the virgin conditions of the aquifer as well as on the data for years 1990 and 2001. An average raw material production rate for the cement factory was considered during development of the model, and for making future predictions. Two alternative production scenarios have been considered and probable effects of above-sea-level (a.s.l.) and b.s.l. excavations on seawater intrusion into the aquifer have been studied. Future prediction studies are based on these two production scenarios that assume 43 years of total production (30 years of a.s.l. and 13 years of b.s.l. production) in the quarry. The first scenario, Scenario I, assumes that starting from 2001, the next 30 years would be devoted only to ASL and then the remaining 13 years would be used for b.s.l. production. Scenario II, on the other hand, assumes simultaneous operations both at a.s.l. and b.s.l. levels for the next 43 years after 2001. Effects of b.s.l. production in the quarry site have been simulated accordingly, and seawater intrusion into the aquifer as well as water discharge rates have been predicted for –10, –20 and –30 m production levels.  相似文献   

9.
10.
The Panama coastal aquifer system is an important water resource in the southeast coast of Sri Lanka that provides adequate supplies of water for agriculture and domestic uses. One of the biggest threats to these fragile aquifers is the sea water intrusion. In this study, recharging mechanism and geochemical evaluation of groundwater in the coastal sandy aquifer of Panama were evaluated using chemical and stable isotope techniques. Thirty groundwater samples were collected and analyzed for their major ion concentrations and stable isotope ratios of oxygen (18O/16O) and hydrogen (D/H). All studied samples showed a ranking of major anions in the order Cl> HCO 3 > SO 4 2?  > N-NO3 ? while cations showed a decreasing order of abundance with Na> Ca2+ > Mg2+ > K+. Dominant groundwater hydrogeochemical types were Na–Cl and mixed Ca–Mg–Cl. Results of saturation index calculations indicate that the investigated groundwater body was mostly saturated with respect to calcite, dolomite and gypsum. In addition, stable isotope and geochemical data suggest that fresh groundwater in the aquifer is recharged mainly by local precipitation with slight modification from evaporation and saline water intrusions. Isotope data suggest that mixing of salt water with freshwater occurs in aquifers which are located towards the lagoon. Since the communities in the study area depend entirely on groundwater, an understanding of the hydrogeochemical characteristics of the aquifer system is extremely important for the better water resource management in the region.  相似文献   

11.
An artificial water canal opening is planned between the Agean Sea and the historical Ephesus site for the sake of tourism in the Selçuk sub-basin. In order to predict the effects of the planned canal on freshwater–seawater interface and related contamination in the aquifer, 3-D numerical density dependent flow and solute transport simulations were carried out. The simulations included the pre-pumping and pumping periods without a canal and the prediction period in the presence of the canal. Chloride concentration comparisons of the results obtained from the pre-pumping period and the pumping period indicate that the freshwater-seawater interface in the aquifer has progressed inland due to artificial discharge in the sub-basin. Drawdown during the pumping period is about 15 cm. The planned canal opening could further lower the groundwater levels in the area and would change the groundwater flow directions in the first 4 years. Then the levels and flow directions will nearly recover. However, the canal opening could cause further seawater intrusion into the aquifer to the extent that groundwater would be unfit to use for irrigation after the seventh year of the canal opening in the irrigation cooperative II wells area and would be unfit to use for drinking purposes after the tenth year in the municipality wells area located at the south of the cooperative II wells. On the other hand, the cooperative I wells would not be effected by the opening of the canal.  相似文献   

12.
13.
《Chemical Geology》1999,153(1-4):187-209
This paper describes a model for barite and celestite solubilities in the Na–K–Ca–Mg–Ba–Sr–Cl–SO4–H2O system to 200°C and to 1 kbar. It is based on Pitzer's ion interaction model for the thermodynamic properties of the aqueous phase and on values of the solubility products of the solids revised in this work. It is shown how barite and celestite solubilities in electrolyte solutions can be accurately predicted as a function of temperature and pressure from previously determined Pitzer's parameters. The equilibrium constant for the BaSO4(aq) ion pair dissociation reaction is calculated from recently reported barite solubility in Na2SO4 solutions from 0 to 80°C. Pressure corrections are evaluated through partial molal volume calculations and are partially validated by comparing model predictions to measured barite and celestite solubilities in pure water to 1 kbar and in NaCl solutions to 500 bars. The model is then used to investigate the tendency of ion pairing of Ca, Sr and Ba with sulfate in seawater. Finally, the activity coefficient of aqueous barium sulfate in seawater is calculated for temperature, pressure and salinity values found in the ocean and compared to published values.  相似文献   

14.
15.
A hydrogeochemical model is presented and applied to quantitatively elucidate interdependent reactions among minerals and formation water–seawater mixtures at elevated levels of CO2 partial pressure. These hydrogeochemical reactions (including scale formation) occur within reservoir aquifers and wells and are driven by seawater injection. The model relies on chemical equilibrium thermodynamics and reproduces the compositional development of the produced water (formation water–seawater mixtures) of the Miller field, UK North Sea. This composition of the produced water deviates from its calculated composition, which could result solely from mixing of both the end members (formation water and seawater). This indicates the effect of hydrogeochemical reactions leading to the formation and/or the dissolution of mineral phases.  相似文献   

16.
17.
18.
19.
Analyses of halogen concentration and stable chlorine isotope composition of fluid inclusions from hydrothermal quartz and carbonate veins spatially and temporally associated with giant unconformity-related uranium deposits from the Paleoproterozoic Athabasca Basin (Canada) were performed in order to determine the origin of chloride in the ore-forming brines. Microthermometric analyses show that samples contain variable amounts of a NaCl-rich brine (Cl concentration between 120,000 and 180,000 ppm) and a CaCl2-rich brine (Cl concentration between 160,000 and 220,000 ppm). Molar Cl/Br ratios of fluid inclusion leachates range from ∼100 to ∼900, with most values between 150 and 350. Cl/Br ratios below 650 (seawater value) indicate that the high salinities were acquired by evaporation of seawater. Most δ37Cl values are between −0.6‰ and 0‰ (seawater value) which is also compatible with a common evaporated seawater origin for both NaCl- and CaCl2-rich brines.Slight discrepancies between the Cl concentration, Cl/Br, δ37Cl data and seawater evaporation trends, indicate that the evaporated seawater underwent secondary minor modification of its composition by: (i) mixing with a minor amount of halite-dissolution brine or re-equilibration with halite during burial; (ii) dilution in a maximum of 30% of connate and/or formation waters during its migration towards the base of the Athabasca sandstones; (iii) leaching of chloride from biotites within basement rocks and (iv) water loss by hydration reactions in alteration haloes linked to uranium deposition.The chloride in uranium ore-forming brines of the Athabasca Basin has an unambiguous dominantly marine origin and has required large-scale seawater evaporation and evaporite deposition. Although the direct evidence for evaporative environments in the Athabasca Basin are lacking due to the erosion of ∼80% of the sedimentary pile, Cl/Br ratios and δ37Cl values of brines have behaved conservatively at the basin scale and throughout basin history.  相似文献   

20.
A recent paper by Weyer (Environ Earth Sci 2018, 77:1–16) challenges the widely accepted interpretation of groundwater heads and salinities in the coastal Biscayne aquifer near Miami, Florida, USA. Weyer (2018) suggests that the body of saltwater that underlies fresh groundwater just inland of the coast is not a recirculating wedge of seawater, but results instead from upward migration of deep saline groundwater driven by regional flow. Perhaps more significantly, Weyer (2018) also asserts that established hydrologic theory is fundamentally incorrect with respect to buoyancy. Instead of acting along the direction of gravity (that is, vertically), Weyer (2018) claims, buoyancy acts instead along the direction of the pressure gradient. As a result, Weyer (2018) considers currently available density-dependent groundwater flow and transport modeling codes, and the analyses based on them, to be in error. In this rebuttal, we clarify the inaccuracies in the main points of Weyer’s (2018) paper. First, we explain that Weyer (2018) has misinterpreted observed equivalent freshwater heads in the Biscayne aquifer and that his alternative hypothesis concerning the source of the saltwater does not explain the observed salinities. Then, we review the established theory of buoyancy to identify the problem with Weyer’s (2018) alternative theory. Finally, we present theory and cite successful benchmark simulations to affirm the suitability of currently available codes for modeling density-dependent groundwater flow and transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号