首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The chemical evolution of solutions and secondary minerals was studied in the systems water-granite without volatiles and granite with average concentrations of volatiles under constant thermodynamic conditions corresponding to those observed in natural nitrogen-rich hot springs and at variable (rock/water) ratio. The results show that, at average concentrations of volatiles, the concentrations of anions in solution can approach those observed in natural nitrogen-rich thermal waters, although the TDS (total dissolved solids) is higher than that of natural analogues. Natural nitrogen-rich thermal waters are formed in rocks with volatile abundances higher than the average values.  相似文献   

2.
Reservoir fluid compositions have been assessed from analytical data on water samples collected from thermal and cold waters in Balçova geothermal field. The results of mineral equilibrium modelling indicate that the waters, with some exceptions, are systematically supersaturated with respect to calcite, aragonite, dolomite, chalcedony and quartz, but undersaturated with respect to amorphous silica, celestite, anhydrite and gypsum and undersaturated or supersaturated with respect to barite, low-albite, K-feldspar, gibbsite and Fe(OH)3(a). Calculation of mineral saturation states and geochemical analyses of scale and field observations show that carbonate minerals (calcite, aragonite and dolomite) are most likely to be precipitated as a scale type. Besides carbonates, scale formation risk of amorphous silica, Fe(OH)3(a), anhydrite, barite and celestite minerals should be taken into account in some wells and surface equipment. Most of the waters, with some exceptions, have carbonate scaling risk at all temperatures, whereas the other scaling risks only exist over a limited temperature range. While silica, Fe(OH)3(a) and barite show a scaling tendency at low temperatures, anhydrite and celestite scaling occurs at higher temperatures.  相似文献   

3.
Groundwater with high salinity is widespread in different climatic and geologic environments of the world. The formation of its chemical composition, however, is still debatable. The chemical composition of groundwater has been studied in 19 springs of the Tuva depression. In this area, hydrocarbonate, sulfate, and chloride waters with different cation compositions discharge. Their TDS value varies mainly from 1 to 6 g/L, reaching 315 g/L at only one locality. The chemical composition of the studied waters is reflective of the geostructural, hydrogeologic, landscape, and geochemical conditions. The main processes determining the chemical composition of the waters are their interaction with aluminosilicate minerals, dissolution of gypsum and halite, evaporation, and oxidation of sulfide minerals.  相似文献   

4.
Soil interstitial waters and minerals were collected and analyzed to evaluate the influence of acid deposition on Al chemistry in the soil environment of the Green Lakes Valley Front Range, Colorado. The soil solutions were subjected to a series of batch Al experiments followed by computer modeling to separate the labile from the nonlabile Al, and to estimate the activity of Al3+. The Al solubility in the interstitial waters is complex and is controlled by organic solutes, H4SiO4, and pH. The pH and concentrations of SO2−4 do not correlate with Al concentrations. The chemical equilibria of Al are controlled by amorphous aluminosilicate Al(OH)3(1−x) SiO2x. Studies of mineralogy and soil water chemistry provide a useful combination to evaluate and predict the chemical processes of a soil environment.  相似文献   

5.
《Geochimica et cosmochimica acta》1999,63(23-24):4013-4035
The effect of organic matter during soil/water interaction is still a debated issue on the controls of chemical weathering in a tropical environment. In order to study this effect in detail, we focused on the weathering processes occurring in a small tropical watershed (Nsimi-Zoetélé, South Cameroon). This site offers an unique opportunity to study weathering mechanisms in a lateritic system within a small basin by coupling soil and water chemistry.The lateritic cover in this site can reach up to 40 m in depth and show two pedological distinct zones: unsaturated slope soils on the hills and/or elevated areas; and water-saturated soils in the swamp zone which represent 20% of the basin surface. The study present chemical analysis performed on water samples collected monthly from different localities between 1994–1997 and on soil samples taken during a well drilling in December 1997. The results suggest the existence of chemical and spatial heterogeneities of waters in the basin: colored waters flooding the swamp zone have much higher concentrations of both organic matter (i.e., DOC) and inorganic ions (e.g., Ca, Mg, Al, Fe, Th, Zr) than those from springs and groundwater from the hills. Nevertheless, these organic-rich waters present cation concentrations (Na, Ca, Mg, K) which are among the lowest compared to that of most world rivers. The main minerals in the soils are secondary kaolinite, iron oxi-hydroxides, quartz, and accessory minerals (e.g., zircon, rutile). We mainly focused on the mineralogical and geochemical study of the swamp zone soils and showed through SEM observations the textural characterization of weathered minerals such as kaolinite, zircon, rutile, and the secondary recrystallization of kaolinite microcrystals within the soil profile. Water chemistry and mineralogical observations suggest that hydromorphic soils of the swamp zone are responsible for almost all chemical weathering in the basin. Thus, in order to explain the increase of element concentration in the organic-rich waters, we suggest that organic acids enhance dissolution of minerals such as kaolinite, goethite, and zircon and also favors the transport of insoluble elements such as Al, Fe, Ti, Zr, and REE by chemical complexation. SiO2(aq) concentrations in these waters are above saturation with respect to quartz. Dissolution of phytholithes (amorphous silica) may be responsible for this relatively high SiO2(aq.) concentration. Al/Mg ratios obtained for the soil and the Mengong river waters show that a significant amount of Al does not leave the system due to kaolinite recrystallisation in the swamp zone soils. Geochemical data obtained for this watershed show the important contribution of vegetation and organic matter on chemical weathering in the swamp zone. Quantitatively we propose that the increasing amount in total dissolved solid (TDS) due to organic matter and vegetation effect is about 35%. In summary, this interaction between soils and waters occurs mostly in soils that are very depleted in soluble elements. Thus, the low concentration of major elements in these water is a direct consequence of the depleted nature of the soils.  相似文献   

6.
Chemical analyses of 300 solutions produced by the artificial weathering of eight different feldspars in fourteen experiments of up to 1200hr duration were used to study the evolution of water during weathering. The range of pH was between 4 and 5·5. Within 4 hr of dissolution, the activity of Al was controlled by the pH and the solubility of microcrystalline gibbsite. After 100 hr of dissolution, the pH and microcrystalline halloysite controlled the activities of Al and silicic acid in all of the solutions.Microcrystalline halloysite was the only phase identified in the weathering of plagioclases in distilled water and 1 atm CO2 partial pressure. Montmorillonites, halloysite and other clay minerals were produced from oligoclase in aqueous solutions containing high initial concentrations of Ca. Mg, K and SiO2.The experimentally determined log solubility product of microcrystalline gibbsite was ?32·78 ± 0·04 and log K for the hydrolysis of microcrystalline halloysite was 11.58 ± 0·05. The results suggest that very poorly crystalline metastable phases may control the initial compositions of some waters in contact with rocks containing feldspar minerals.  相似文献   

7.
Evaporative process plays a dominant role in determining the water chemistry of the springs at Teels Marsh, a closed basin in western Nevada. Analysis of the spring waters indicates that calcium, magnesium, sulfate, and silica are removed from solution during dry periods, even though groundwater is undersaturated with respect to gypsum, amorphous silica, and sepiolite. The removal mechanism is precipitation of authigenic phases such as gypsum above the water table, in the vadose zone.In episodes of rain and snowfall in which none of the waters enters the phreatic zone, ions in the rain and snow accumulate near the ground surface. This accumulation of material, together with the sparse rain and snowfall, inhibits chemical weathering of silicate minerals. Only at high elevations in the basin is there sufficient fluxing of water through the alluvium for silicate weathering to make a significant contribution to the sodium content of the springs. When a sufficiently heavy rainfall occurs, salts are partially dissolved and the ions transported to the permanent groundwater. The kinetics of dissolution of secondary phases in the vadose zone exert an important control on the composition of the springs.  相似文献   

8.
The irreversible water–rock mass exchanges leading to the production of the Fiume Grande valley (Calabria, Italy) stream waters and groundwaters, starting from local rainwaters, were simulated through reaction path modeling in reaction progress (stoichiometric) mode. The simulations assumed bulk dissolution of a phyllitic rock and calcite and precipitation of gibbsite, kaolinite, amorphous silica, illite, a smectite solid mixture, a hydroxide solid mixture, and a trigonal carbonate solid mixture. The analytical contents of major and trace elements in stream waters and groundwaters were satisfactorily reproduced. However, further investigations are necessary to clarify the fate of As in this natural systems.
Rosanna De RosaEmail:
  相似文献   

9.
A holistic study of the composition of the basalt groundwaters of the Atherton Tablelands region in Queensland, Australia was undertaken to elucidate possible mechanisms for the evolution of these very low salinity, silica- and bicarbonate-rich groundwaters. It is proposed that aluminosilicate mineral weathering is the major contributing process to the overall composition of the basalt groundwaters. The groundwaters approach equilibrium with respect to the primary minerals with increasing pH and are mostly in equilibrium with the major secondary minerals (kaolinite and smectite), and other secondary phases such as goethite, hematite, and gibbsite, which are common accessory minerals in the Atherton basalts. The mineralogy of the basalt rocks, which has been examined using X-ray diffraction and whole rock geochemistry methods, supports the proposed model for the hydrogeochemical evolution of these groundwaters: precipitation + CO2 (atmospheric + soil) + pyroxene + feldspars + olivine yields H4SiO4, HCO3 , Mg2+, Na+, Ca2+ + kaolinite and smectite clays + amorphous or crystalline silica + accessory minerals (hematite, goethite, gibbsite, carbonates, zeolites, and pyrite). The variations in the mineralogical content of these basalts also provide insights into the controls on groundwater storage and movement in this aquifer system. The fresh and weathered vesicular basalts are considered to be important in terms of zones of groundwater occurrence, while the fractures in the massive basalt are important pathways for groundwater movement.  相似文献   

10.
The mineralogical and chemical variations of ochreous precipitates forming from acid sulphate waters discharged from the lowest mine adit (“Sf. Cruci din Orlea”) of the Ro?ia Montan? Gold Mine (Romania) were investigated by a multianalytical approach (XRPD, IR, TEM, ICP) applied to surface precipitates and associated waters. The mineralogy of the precipitates changed significantly as a consequence of the variations in the chemical parameters of the circulating solutions (mainly pH, Eh, and sulphate concentrations) which were mainly controlled by mixing with unpolluted waters of Ro?ia River. Ochreous precipitates are characterized by high concentrations of potentially toxic elements (PTEs; in particular Cr, Co, Ni, Cu, Zn, As, Cd, and Pb) and consist of a mixture, in variable proportion, of jarosite and schwertmannite, which represent the stable secondary minerals along the investigated transect of Ro?ia River. Particular regard is given to the ability of authigenic phases to selectively scavenge selected PTEs from contaminated solutions during their genesis and minerogenetic evolution. Furthermore, laboratory kinetic batch experiments on natural heterogeneous samples of ochreous precipitates were carried out to investigate the release processes involving PTEs and to verify the type and the amount of elements that can be temporarily/permanently trapped by the solid phase from the contaminated solutions. The comparative analysis of the precipitates and waters of the Ro?ia Montan? mining area indicated that the role of secondary minerals as “mitigating agents” can be limited because even minor pH–Eh oscillations would cause mineralogical transformations that could lead to trace elements mobilization in the environment.  相似文献   

11.
矿物聚合材料:研究现状与发展前景   总被引:53,自引:1,他引:53  
矿物聚合材料是以铝硅酸盐矿物或工业固体废物为主要原料 ,以高岭石作配料 ,硅酸钠作结构模板剂 ,氢氧化钠作激活剂而制成的一类新型无机非金属材料。其形成过程为 :铝硅酸盐固体组分的溶解络合、分散迁移、浓缩聚合和脱水硬化。由铝硅酸盐凝胶相形成的基体相 ,其化学组成与沸石相近 ,微结构极可能与蛋白石类似 ,物理形态上呈三维网络结构 ,将未溶解的固体颗粒胶结为坚硬块体 ,是材料获得良好力学性能和化学稳定性的结构基础。矿物聚合材料的性能主要受配料组成和聚合反应的动力学过程所控制 ,其抗压强度随固化时间的延长而呈抛物线式发展。系统研究配料组成和固化条件对铝硅酸盐聚合反应的影响 ,建立表征矿物聚合材料组成结构性能的物理模型 ,是对其进行结构性能设计的理论基础 ,也是利用铝硅酸盐聚合反应实现工业固体废物资源化的技术关键。  相似文献   

12.
Material balance and equilibrium relations between H2O-rich fluids and sparingly soluble minerals are important for the understanding of chemical processes operative at the earths surface and within the earths crust. These two aspects of any chemical system are subject to graphical analysis, and a technique is devised to allow visual presentation of congruent and incongruent reactions between solutions and sparingly soluble silicate minerals in multi-component systems. The method also illustrates the changes in a solutions' composition resulting from both congruent and incongruent interactions with solids. The technique is particularly useful when interpreting reactions occurring during dissolution and precipitation experiments and is also valuable when interpreting the chemical history of ground waters and surface waters.Analysis of the system MgO-SiO2-H2O-HCl demonstrates that, under near-surface conditions, brucite and serpentine-group minerals dissolve congruently in high pH (basic) solutions while talc dissolves congruently in moderately basic to acidic solutions. In the system Na2O-Al2O3-SiO2-H2O-HCl, gibbsite dissolves congruently in moderately acidic to highly basic solutions and kaolinite and siliceous clay minerals dissolve congruently only in acidic solutions.  相似文献   

13.
The uptake of dissolved organic molecules by kaolinite and montomorillonite clay minerals was measured in distilled water and saltwater solutions. Glucose and valine exhibited low affinities for both clay minerals over a wide range of concentrations in distilled water and seawater solutions. Stearic acid was efficiently removed by both clay minerals from all solutions over the concentration range 10–1000 ppb. These experiments suggest that some dissolved organic molecules may be preferentially removed by clay minerals in natural waters. It is unlikely, however, that the partitioning of simple organic molecules between natural waters and suspended clay minerals could produce the high concentrations of organic matter that occur in most fine-grained sediments.  相似文献   

14.
研究云母和长石等原生硅酸盐矿物的风化速率和风化产物对于深入理解土壤发生过程、营养元素循环以及全球气候变化具有重要的理论意义。本文从自然风化、人工化学风化和生物风化3方面总结了原生硅酸盐矿物风化作用及其产物的特点,重点阐述了微生物参与下的生物风化作用和生物矿化作用及其意义。野外观察和室内实验研究结果表明,微生物可以加速矿物的分解,而且其细胞表面及其产生的胞外多聚糖可以作为次生矿物成核的模板。  相似文献   

15.
The synthesis of illite mixed-layer minerals at surface conditions is possible through precipitation of Al hydroxides from Si-, Mg- and K-containing solutions. It has been shown that amorphous hydroxides of Al, Fe, etc. are capable of coprecipitating silica even from very dilute solutions. By aging of these X-ray amorphous hydroxide—silica precipitates under certain conditions, clay minerals can be synthesized at low temperatures. The presence of Mg particularly favors the formation of three-layer clay minerals. Mg-rich Al hydroxide—silica precipitates permit formation of tri- and di-octahedral smectite, illite and chlorite. The formation of three-layer clay minerals is only possible when the precipitates contain at least 6% MgO. The precipitates stay amorphous if the Mg content is lower. The adsorption of Mg and K on the hydroxide—silica precipitate controls the illite or montmorillonite portion in the mixture of the three-layer silicates. There is a competition for K and Mg adsorption on the hydroxide—silica precipitates. Higher K concentration inhibits the three-layer mineral formation through the lowering of the Mg content in the precipitates. Illite mineral formation is favored under certain K/Mg ratios. Higher NaCl contents do not favor the three-layer mineral formation.The enrichment of Mg and K in the precipitates is not as large as the enrichment of Si in the hydroxides. This means that the illite mineral formation is only possible from solutions with a high-salt content like seawater.  相似文献   

16.
Clay minerals were reacted with silica-spiked solutions of unbuffered distilled water; water buffered at pH 5.5, 8 and 10; alkali chloride solutions; natural and artificial sea water to assess the influence of pH, silica and cation activities. The data are plotted as silica produced by dissolution or sorption of silica by clay surface as a function of initial silica concentration at a given pH and solution composition. This allows the determination of the dissolved silica value at which the clay mineral surface neither dissolves nor sorbs silica. The values of the various activities in different solutions are used to infer the phase equilibria between solution, clay mineral and the surface phase produced either by dissolution or sorption. Most intensively investigated were sorption reactions of kaolinite in sea water and other ionic solutions to form silica-rich, cation-rich surface phases in cationic solutions and silica-rich phases in cation-free solutions.Inferred equilibrium constants imply that silicate reconstitution is doubtful as a mechanism for partial control of silica and cation composition of sea water but is reasonable in silica-rich interstitial waters.  相似文献   

17.
Distribution of polymorphs of aluminum hydroxides within an ore lode of allophone-gibbsite rocks of the Volga region has been studied and compared with the results of experimental research on the behavior of aluminum in diluted solutions. The XRD study of morphology and crystallinity of gibbsite confirmed trends noted by Ershova et al. (1979) for the lateritic-sedimentary bauxite series. In these rocks, bayerite and nordstrandite are typically secondary minerals with respect to gibbsite. In the rocks studied, bayerite and nordstrandite form at the early diagenetic stage that leads to decrease of gibbsite crystallinity. The crystallization model of minerals during the formation of the allophone-gibbsite rocks of the Volga region is proposed.  相似文献   

18.
Concentrations of alkali metals, alkaline earths and halogens were monitored in an Australian weathering profile and in Brazilian soils and bauxite. The materials analysed are considered to represent a range of chemical weathering histories, which are distinguished with respect to their degree of leaching by the dominant aluminosilicate assemblages. During initial weathering concentrations of alkalis and alkaline earths are similar or enriched relative to average crustal abundances. As weathering proceeds depletion is attenuated by the capacity of a particular element to participate in adsorption and ion-exchange processes. Strong depletion of alkalis and alkaline earths is common as weathering advances, and clay minerals are replaced by Al-oxide phases (e.g., gibbsite), with much lower capacities for exchanging and incorporating ions. Halogen concentration trends are more variable. F retention during weathering is likely due to substitution in mineral phases for hydroxyl groups. Cl and I are commonly observed to accumulate as weathering advances and some of these accumulations may be due to atmospheric additions.  相似文献   

19.
Modern acid and neutral saline lakes in Western Australia are an excellent natural laboratory for testing how pH affects halite, and for developing criteria for distinguishing past acid saline waters from past neutral saline waters in the rock record. This study characterizes and compares physical, chemical and biological features in halite precipitated from acid (pH 1·7 to 4·2) and neutral (pH 6·8 to 7·3) saline lakes in southern Western Australia. Supplemental data include synthetic halite grown from acid and neutral saline solutions, as well as halite deposited in Permian acid lakes. Although physical processes of halite growth are not affected by pH, there are differences in the colour, accessory minerals, fluid inclusions and microfossils between acid and neutral halites. Acid lake halite commonly is yellow or orange in colour; neutral lake halites examined in this study are always snow white. Acid halites tend to contain abundant sulphate and iron oxide minerals, both as solid inclusions and as solids within fluid inclusions; neutral halites contain little, if any, sulphates and no iron oxides. Acid fluid inclusion freezing/melting behaviours include characteristics that differ from neutral fluid inclusion behaviours, such as lower eutectic temperatures, higher and wider temperature range of hydrohalite rims with a definable fuzzy border and more complex metastable phases. Acid halite contains 'hairy blobs', clusters of bacterial/archaeal/fungal remains and sulphate crystals, which are not found in halite from neutral lakes. This distinct assemblage of features characteristic of modern acid lake halites may serve as informal criteria for the recognition of past acid lake evaporites in the rock record.  相似文献   

20.
Models of geochemical controls on elements of concern (EOCs; e.g., As, Se, Mo, Ni) in U tailings are dominated by ferrihydrite. However, the evolution of aqueous concentrations of Al and Mg through the Key Lake (KL) U mill bulk neutralization process indicates that secondary Al and Mg minerals comprise a large portion of the tailings solids. X-ray diffraction, Al K-edge XAS, and TEM elemental mapping of solid samples collected from a pilot-scale continuous-flow synthetic raffinate neutralization system of the KL mill indicate the secondary Al–Mg minerals present include Mg–Al hydrotalcite, amorphous Al(OH)3, and an amorphous hydrobasaluminite-type phase. The ferrihydrite present contains Al and may be more accurately described as Al–Fe(OH)3. In the final combined tailings sample (pH 10.5) collected from the model experiments using raffinate with Al, Mg, and Fe, solid phase EOCs were associated with Al–Fe(OH)3 and Mg–Al hydrotalcite. In model experiments using raffinate devoid of Fe, aqueous EOC concentrations decreased greatly at pH 4.0 (i.e., where ferrihydrite would precipitate) and largely remained in the solid phase when increased to the terminal pH of 10.5; this suggests Al–Mg minerals can control aqueous concentrations of EOCs in the raffinate in the absence of Fe. Maximum adsorption capacities for individual and mixtures of adsorbates by Mg–Al hydrotalcite were determined. A revised model of the geochemical controls in U mill tailings is presented in which Al and Mg minerals co-exist with Fe minerals to control EOC concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号