首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent changes in land use practices, such as increase in orange orchards in central India, has put undue pressure on the groundwater resources. Excess withdrawal from the aquifers has resulted in groundwater table decline. The stage of groundwater development in some watersheds has reached 155.85 %, converting these into overexploited watersheds. In the present research paper, a groundwater flow model has been developed to evaluate the groundwater system in a basaltic terrain with Bazada formation. A conceptual model has been developed and calibrated for steady and transient states and the sensitivity analysis was carried out. Future predictions, for current scenario where present practices are continued and for scenario with 20 % reduction in groundwater draft have been made, to select the best strategy for mitigating the problem. The modeling results show that the decline in groundwater level in basaltic and Bazada unconfined aquifers will result into drying up (water level more than 15 m bgl) of 243 km2 area by 2020. To restore the groundwater level, it is simulated that the groundwater draft rate must be reduced by 20 % for next 10 years. It may be achieved by adopting groundwater management strategies, particularly for irrigation sector.  相似文献   

2.
This study investigated the relationship between near-surface lithology and the spatial variability of As concentrations using sediment grain-size analysis and electromagnetic induction survey in the southeast Bangladesh. It has been observed that the aquifers overlain by finer sediments have higher concentrations of As in groundwater, whereas As concentrations are remarkably low in aquifers having permeable sandy materials or thinner silt/clay layer at the surface. The near-surface lithology acts as a controlling factor for spatial distributions of groundwater As within the very shallow depths (<15 m). Shallow alluvial aquifers can provide low-As drinking water in many areas of the country when tube wells are properly installed after investigation of the overlying near-surface sediment attributes and hydraulic properties.  相似文献   

3.
The wide boron isotopic variations occurring in natural waters mainly are derived from the 20‰ fractionation between dissolved boric acid and borate anions, associated with the preferential removal from the system of 11B depleted borate ions by adsorption and/or minerals formation. Typical adsorbants of boron dissolved in groundwater are clay minerals of the aquifer matrix. Boron (and strontium) isotopes were used in investigating two alluvial aquifers in Tuscany, where boron concentration is often above 1 mg L− 1 and may attain 8 mg L− 1. The isotopic results indicate that, in the first case (Cecina River basin), the boron contamination is anthropogenic and derives from past discharge into streams of boron-rich industrial wastes. In the second case (Cornia Plain), the dissolved boron is released by boron-rich clayey sediments of the aquifer matrix and has, therefore, a natural origin.  相似文献   

4.
It is hypothesized that hydrochemical parameters can be employed to deduce the basaltic trap thickness and that there exist diverse hydrochemical processes within the existing host rocks along the Deccan Volcanic Province (DVP) margin. Chemical imprints of aquifers, in various flows of flood basalt and fissured zones of granites, had been appraised using major ion chemistry of groundwater in a test site of 623 km2 at the southern margin of the DVP in India. The wide ranging hydrochemical processes, obtained from empirical data, describe the predominance of carbonate, dolomite, calcite and anorthite weathering in basalts, and alkali feldspar (albite and orthoclase) in granites. Results showed that the elevated concentrations of alkaline earth elements in basaltic aquifers and alkali rich elements in granitic aquifers were useful in tracing the sources of host rock for dissolved mineral reactants. Further, a digital elevation model using Shuttle Radar Topography Mission (90 m) elevation satellite data aided in deciphering trap thickness, vertical transition zone of trap and granitic basement comprising the well depths and hydrochemistry. The mapping of trap thickness is useful to explore the groundwater resources at the vertical transition zone between the basaltic trap and granitic base. The estimated thickness of the basaltic trap is varied from 4 to 98 m at the DVP southern margin, which is further verified with the help of exploratory well lithologs matched closely.  相似文献   

5.
The continuous abstraction of groundwater from Arusha aquifers in northern Tanzania has resulted in a decline in water levels and subsequent yield reduction in most production wells. The situation is threatening sustainability of the aquifers and concise knowledge on the existing groundwater challenge is of utmost importance. To gain such knowledge, stable isotopes of hydrogen and oxygen, and radiocarbon dating on dissolved inorganic carbon (DIC), were employed to establish groundwater mean residence time and recharge mechanism.14C activity of DIC was measured in groundwater samples and corrected using a δ13C mixing method prior to groundwater age dating. The results indicated that groundwater ranging from 1,400 years BP to modern is being abstracted from deeper aquifers that are under intensive development. This implies that the groundwater system is continuously depleted due to over-pumping, as most of the sampled wells and springs revealed recently recharged groundwater. High 14C activities observed in spring water (98.1?±?7.9 pMC) correspond with modern groundwater in the study area. The presence of modern groundwater suggests that shallow aquifers are actively recharged and respond positively to seasonal variations.  相似文献   

6.
Principal component analysis has been applied for source identification and to assess factors affecting concentration variations. In particular, this study utilizes principal component analysis (PCA) to understand groundwater geochemical characteristics in the central and southern portions of the Gulf Coast aquifer in Texas. PCA, along with exploratory data analysis and correlation analysis is applied to a spatially extensive multivariate dataset in an exploratory mode to conceptualize the geochemical evolution of groundwater. A general trend was observed in all formations of the target aquifers with over 75 % of the observed variance explained by the first four factors identified by the PCA. The first factor consisted of older water subjected to weathering reactions and was named the ionic strength index. The second factor, named the alkalinity index explained greater variance in the younger formations rather than in the older formations. The third group represented younger waters entering the aquifers from the land surface and was labeled the recharge index. The fourth group which varied between aquifers was either the hardness index or the acidity index depending on whether it represented the influences of carbonate minerals or parameters affecting the dissolution of fluoride minerals, respectively. The PCA approach was also extended to the well scale to determine and identify the geographic influences on geochemical evolution. It was found that wells located in outcrop areas and near rivers and streams had a larger influence on the factors suggesting the importance of surface water–groundwater interactions.  相似文献   

7.
Groundwater is an essential natural resource which has enormous use throughout the world, but with the enhanced population pressure, its quality and quantity gets affected. Consequently, assessment and categorization of groundwater quality is necessary and the availability of safe water for utilization is to be ensured. The present study was based on groundwater samples, collected over 5,324 km2 from the alluvial tract of Bengal plain, India. Ten geochemical parameters viz. arsenic, pH, total dissolved solids, electrical conductivity, iron, total hardness as calcium carbonate, sulphate, nitrite and depth were analysed, and multivariate statistical analyses were performed on the data set. Factor analysis depicted four factors, which explained 66.57 % of total variability of data. Factor 1 represented high positive loadings on total dissolved solids and electrical conductivity. Factor 2 was associated with depth, arsenic and iron and indicated process of reduction in groundwater. Over extraction of groundwater showed probable relationship with arsenic concentration in groundwater. Parameters of Factor 3 and 4 had been related with agricultural activities and local geological conditions. Further, four clusters observed from hierarchical cluster analysis, assisted in grouping groundwater geochemistry of the region. The results coupled with GIS facilitated in categorizing and mapping the groundwater quality.  相似文献   

8.
Although high As groundwater has been observed in shallow groundwater of the Hetao basin, little is known about As distribution in deep groundwater. Quantitative investigations into relationships among chemical properties and among samples in different areas were carried out. Ninety groundwater samples were collected from deep aquifers of the northwest of the basin. Twenty-two physicochemical parameters were obtained for each sample. Statistical methods, including principal component analysis (PCA) and hierarchical cluster analysis (HCA), were used to analyze those data. Results show that As species were highly correlated with Fe species, NH4-N and pH. Furthermore, result of PCA indicates that high As groundwater was controlled by geological, reducing and oxic factors. The samples are classified into three clusters in HCA, which corresponded to the alluvial fans, the distal zone and the flat plain. Moreover, the combination of PCA with HCA shows the different dominant factors in different areas. In the alluvial fans, groundwater is influenced by oxic factors, and low As concentrations are observed. In the distal zone, groundwater is under suboxic conditions, which is dominated by reducing and geological factors. In the flat plain, groundwater is characterized by reducing conditions and high As concentrations, which is dominated by the reducing factor. This investigations indicate that deep groundwater in the alluvial fans mostly contains low As concentrations but high NO3 and U concentrations, and needs to be carefully checked prior to being used for drinking water sources.  相似文献   

9.
The Andean region is characterized by important intramontane alluvial and glacial valleys; a typical example is the Tarqui alluvial plain, Ecuador. Such valley plains are densely populated and/or very attractive for urban and infrastructural development. Their aquifers offer opportunities for the required water resources. Groundwater/surface-water (GW–SW) interaction generally entails recharge to or discharge from the aquifer, dependent on the hydraulic connection between surface water and groundwater. Since GW–SW interaction in Andean catchments has hardly been addressed, the objectives of this study are to investigate GW–SW interaction in the Tarqui alluvial plain and to understand the role of the morphology of the alluvial valley in the hydrological response and in the hydrological connection between hillslopes and the aquifers in the valley floor. This study is based on extensive field measurements, groundwater-flow modelling and the application of temperature as a groundwater tracer. Results show that the morphological conditions of a valley influence GW–SW interaction. Gaining and losing river sections are observed in narrow and wide alluvial valley sections, respectively. Modelling shows a strong hydrological connectivity between the hillslopes and the alluvial valley; up to 92 % of recharge of the alluvial deposits originates from lateral flow from the hillslopes. The alluvial plain forms a buffer or transition zone for the river as it sustains a gradual flow from the hills to the river. Future land-use planning and development should include concepts discussed in this study, such as hydrological connectivity, in order to better evaluate impact assessments on water resources and aquatic ecosystems.  相似文献   

10.
内蒙古河套平原典型高砷区地下水中砷的演化规律   总被引:1,自引:1,他引:0       下载免费PDF全文
通过对高砷地下水典型区完整地质单元不同深度含水层地下水进行监测,分析了与砷释放、迁移和富集有关的敏感因素(水位、Eh、总铁、亚铁等)的时间和空间变化规律,探讨了高砷地下水的形成机理。结果发现,地下水灌溉区和黄河水灌溉区,地下水水位均受人为灌溉活动的影响。地下水砷含量在空间和时间尺度上发生有规律的变化。在空间尺度上,地下水中砷含量随着深度的增加而升高,井深小于10 m的地下水砷含量在1.88~2.58 μg/L;井深在10~15 m之间的地下水中砷含量在18.2~217 μg/L;井深在15~25 m之间的地下水中砷含量在38.3~226 μg/L。受人为灌溉影响,地下水中砷的含量会随着地下水位的抬升而升高。地下水砷含量随时间变化的原因是水位抬升使水位变化造成氧化还原环境改变。地下水系统中含砷铁氧化物矿物的还原性溶解、脱硫酸作用等是控制地下水砷含量的主要水文地球化学过程。  相似文献   

11.
Many cities in developing countries are dependent upon groundwater for water supply. Frequently this groundwater is pumped from semi-confined aquifers in alluvial deposits. These deeper aquifers are often considered to be protected from polluted shallow water by intervening less-permeable layers. However, where groundwater is pumped from a semi-confined aquifer immediately beneath a city, significant induced leakage of contaminated shallow water can occur. This may lead to a serious deterioration of water quality in deeper aquifers in the longer-term. A simple model has been developed which provides insight into the hydraulic controls on water quality in such semi-confined aquifers. The model provides a tool for the initial assessment and prediction of the impact of urbanization on groundwater quality. Also, the model characterizes the key hydrogeological behaviour through a single parameter, here termed the ‘city leakage factor’, which can be used to assess the vulnerability to contamination by leakage. A case study of a city in Thailand illustrates the use of this model.
Résumé Beaucoup de villes des pays en développement dépendent de l’eau souterraine pour leur alimentation en eau. Cette eau souterraine est souvent pompée dans des aquifères alluviaux semi-captifs. Ces aquifères plus profonds sont souvent considérés comme protégés des eaux peu profondes et polluées, grace à des couches intercalaires moins perméables. Cependant, dans le cas où l’eau souterraine est pompée à partir d’un aquifère semi-captif situé directement sous une ville, une drainance importante des eaux peu profondes et polluées peut être induite. Ceci peut entra?ner, à long terme, une détérioration significative de la qualité de l’eau dans les aquifères plus profonds. Un modèle simple a été construit fournissant un aper?u des contr?les hydrauliques agissant sur la qualité de l’eau dans des aquifères semi-captifs. Ce modèle est un outil permettant d’évaluer l’état initial et de prédire l’impact de l’urbanisation sur la qualité de l’eau souterraine. Le modèle caractérise également les comportements hydrogéologiques majeurs à travers un unique paramètre, nommé dans cette étude facteur de drainance de la ville“, et qui peut être utilisé pour évaluer la vulnérabilité de l’aquifère face à une contamination par drainance. L’étude de cas d’une ville en Tha?lande illustre l’utilisation de ce modèle.

Resumen Muchas ciudades de paises en desarrollo dependen del agua subterránea para el abastecimiento de agua. Frecuentemente el agua subterránea se bombea de acuíferos semi-confinados en depósitos aluviales. Estos acuíferos más profundos se protegen frecuentemente de agua somera contaminada mediante la intervencción de capas menos permeables. Sin embargo, donde el agua subterránea se bombea de un acuífero semi-confinado inmediatamente debajo de una ciudad, pueden ocurrir fugas significativas inducidas de agua somera contaminada. Esto puede conducir a un serio deterioro de calidad de agua en acuíferos más profundos en el largo plazo. Se ha desarrollado un modelo simple el cual aporta idea acerca de los controles hidráulicos en la calidad del agua en tales acuíferos semi-confinados. El modelo aporta una herramienta para la evaluación inicial y predicción del impacto de urbanización en la calidad del agua subterránea. El modelo también caracteriza el comportamiento hidrogeológico clave a traves de un solo parámetro, que aquí se denomina ′factor de fuga de la ciudad′el cual puede usarse para evaluar la vulnerabilidad a la contaminación por fuga. El uso de este modelo se ilustra con un estudio de caso de una ciudad en Tailandia.

  相似文献   

12.
The management of groundwater poses challenges in basaltic terrain as its availability is not uniform due to the absence of primary porosity. Indiscriminate excessive withdrawal from shallow as well as deep aquifers for meeting increased demand can be higher than natural recharge, causing imbalance in demand and supply and leading to a scarcity condition. An innovative artificial recharge system has been conceived and implemented to augment the groundwater sources at the villages of Saoli and Sastabad in Wardha district of Maharashtra, India. The scheme involves resectioning of a stream bed to achieve a reverse gradient, building a subsurface dam to arrest subsurface flow, and installation of recharge shafts to recharge the deeper aquifers. The paper focuses on analysis of hydrogeological parameters like porosity, specific yield and transmissivity, and on temporal groundwater status. Results indicate that after the construction of the artificial recharge system, a rise of 0.8–2.8 m was recorded in the pre- and post-monsoon groundwater levels in 12 dug wells in the study area; an increase in the yield was also noticed which solved the drinking water and irrigation problems. Spatial analysis was performed using a geographic information system to demarcate the area of influence of the recharge system due to increase in yields of the wells. The study demonstrates efficacy, technical viability and applicability of an innovative artificial recharge system constructed in an area of basaltic terrain prone to water scarcity.  相似文献   

13.
The groundwater leve in the Tokyo area had declined to about 60 m below the surface because of excess withdrawal of groundwater from various aquifers. Many construction workers died due to oxygen deficiency at construction sites from 1960 to 1980, the period of decreasing groundwater level. The compressed air in pneumatic foundation construction sites passed easily through the aquifer, and the oxygen in it was consumed by ferrous ions oxidizing to ferric ions. During periods of high barometric pressure, atmospheric air penetrates into the strata and it is deoxygenated there. Suffocation occurred not only at construction sites in underground excavations, but also in residences in Tokyo. Such acidents have become less frequent with recovery of the pore-water pressure in aquifers, which has accompanied the recovery of the groundwater level since 1972.With the recovery of the pore-water pressure and the groundwater level in the aquifer, fires and explosions resulting from gushes of methane have occurred in Tokyo lowlands since 1973. These blow-off gases are classified into two types: Kameido and Asakusa.The gas of the Kameido type originates from the Kazusa Group and migrates into upper alluvial deposits or Pleistocene sediments because of the recovery of pore-water pressure in the Kazusa Group. The gas of the Asakusa type formed from the air that penetrated the aquifers during the period of low groundwater level. Methane was produced by the depletion of oxygen accumulated in alluvial deposits and Pleistocene sediments. This gas blows off through wells in alluvial deposits and Pleistocene sediments at times of low barometric pressure. Accidents of the Asakusa type will not happen when the groundwater level and pore-water pressure in alluvial and Pleistocene sediments is restored to previous levels.  相似文献   

14.
Mineral assemblages (heavy and light fractions) and sedimentological characteristics of the Quaternary alluvial aquifers were examined in the central Bengal Basin where As concentrations in groundwater are highly variable in space but generally decrease downward. Chemical compositions of sediment samples from two vertical core profiles (2-150 m below ground level, bgl) were analyzed along with groundwater in moderately As-enriched aquifers in central Bangladesh (Manikganj district), and the As mobilization process in the alluvial aquifer is described. Heavy minerals such as biotite, magnetite, amphibole, apatite and authigenic goethite are abundant at shallow (<100 m below ground level (mbgl)) depths but less abundant at greater depths. It is interpreted that principal As-bearing minerals were derived from multiple sources, primarily from ophiolitic belts in the Indus-Tsangpo suture in the northeastern Himalayan and Indo-Burman Mountain ranges. Authigenic and amorphous Fe-(oxy)hydroxide minerals that are generally formed in river channels in the aerobic environment are the major secondary As-carriers in alluvial sediments. Reductive dissolution (mediated by Fe-reducing bacteria) of Fe-(oxy)hydroxide minerals under anoxic chemical conditions is the primary mechanism responsible for releasing As into groundwater. Authigenic siderite that precipitates under reducing environment at greater depths decreases Fe and possibly As concentrations in groundwater. Presence of Fe(III) minerals in aquifers shows that reduction of these minerals is incomplete and this can release more As if further Fe-reduction takes place with increased supplies of organic matter (reactive C). Absence of authigenic pyrite suggests that SO4 reduction (mediated by SO4-reducing bacteria) in Manikganj groundwater is limited in contrast to the southeastern Bengal Basin where precipitation of arsenian pyrite is thought to sequester As from groundwater.  相似文献   

15.
Alluvial strip aquifers associated with ephemeral rivers are important groundwater supply sources that sustain numerous settlements and ecological systems in arid Namibia. More than 70 % of the population in the nation’s western and southern regions depend on alluvial aquifers associated with ephemeral rivers. Under natural conditions, recharge occurs through infiltration during flood events. Due to the characteristic spatial and temporal variability of rainfall in arid regions, recharge is irregular making the aquifers challenging to manage sustainably and they are often overexploited. This condition is likely to become more acute with increasing water demand and climate change, and artificial recharge has been projected as the apparent means of increasing reliability of supply. The article explores, through a case study and numerical simulation, the processes controlling infiltration, significance of surface water and groundwater losses, and possible artificial recharge options. It is concluded that recharge processes in arid alluvial aquifers differ significantly from those processes in subhumid systems and viability of artificial recharge requires assessment through an understanding of the natural recharge process and losses from the aquifer. It is also established that in arid-region catchments, infiltration through the streambed occurs at rates dependent on factors such as antecedent conditions, flow rate, flow duration, channel morphology, and sediment texture and composition. The study provides an important reference for sustainable management of alluvial aquifer systems in similar regions.  相似文献   

16.
17.
Here new data from field bioremediation experiments and geochemical modeling are reported to illustrate the principal geochemical behavior of As in anaerobic groundwaters. In the field bioremediation experiments, groundwater in Holocene alluvial aquifers in Bangladesh was amended with labile water-soluble organic C (molasses) and MgSO4 to stimulate metabolism of indigenous SO4-reducing bacteria (SRB). In the USA, the groundwater was contaminated by Zn, Cd and SO4, and contained <10 μg/L As under oxidized conditions, and a mixture of sucrose and methanol were injected to stimulate SRB metabolism. In Bangladesh, groundwater was under moderately reducing conditions and contained ∼10 mg/L Fe and ∼100 μg/L As. In the USA experiment, groundwater rapidly became anaerobic, and dissolved Fe and As increased dramatically (As > 1000 μg/L) under geochemical conditions consistent with bacterial Fe-reducing conditions. With time, groundwater became more reducing and biogenic SO4 reduction began, and Cd and Zn were virtually completely removed due to precipitation of sphalerite (ZnS) and other metal sulfide mineral(s). Following precipitation of chalcophile elements Zn and Cd, the concentrations of Fe and As both began to decrease in groundwater, presumably due to formation of As-bearing FeS/FeS2. By the end of the six-month experiment, dissolved As had returned to below background levels. In the initial Bangladesh experiment, As decreased to virtually zero once biogenic SO4 reduction commenced but increased to pre-experiment level once SO4 reduction ended. In the ongoing experiment, both SO4 and Fe(II) were amended to groundwater to evaluate if FeS/FeS2 formation causes longer-lived As removal. Because As-bearing pyrite is the common product of SRB metabolism in Holocene alluvial aquifers in both the USA and Southeast Asia, it was endeavored to derive thermodynamic data for arsenian pyrite to better predict geochemical processes in naturally reducing groundwaters. Including the new data for arsenian pyrite into Geochemist’s Workbench, its stability field completely dominates in reducing Eh–pH space and “displaces” other As-sulfides (orpiment, realgar) that have been implied to be important in previous modeling exercises and reported in rare field conditions.  相似文献   

18.
The recharge and origin of groundwater and its residence time were studied using environmental isotopic measurements in samples from the Heihe River Basin, China. δ18O and δD values of both river water and groundwater were within the same ranges as those found in the alluvial fan zone, and lay slightly above the local meteoric water line (δD=6.87δ18O+3.54). This finding indicated that mountain rivers substantially and rapidly contribute to the water resources in the southern and northern sub-basins. δ18O and δD values of groundwater in the unconfined aquifers of these sub-basins were close to each other. There was evidence of enrichment of heavy isotopes in groundwater due to evaporation. The most pronounced increase in the δ18O value occurred in agricultural areas, reflecting the admixture of irrigation return flow. Tritium results in groundwater samples from the unconfined aquifers gave evidence for ongoing recharge, with mean residence times of: less than 36 years in the alluvial fan zone; about 12–16 years in agricultural areas; and about 26 years in the Ejina oasis. In contrast, groundwater in the confined aquifers had 14C ages between 0 and 10 ka BP.  相似文献   

19.
Optimal Groundwater Development in Coastal Aquifers Near Beihai, China   总被引:1,自引:0,他引:1  
INTRODUCTIONThe city of Beihai,located on the south coast ofGuangxi,China,relies heavily on groundwater for its potablewater supply and agricultural irrigation.With rapid increasein population (for instance,from 134 0 0 0 in 1987to 47930 0in1995 ) and in developm ent program s,the demand for freshwater has been growing. Approxim ately 170 0 0 0 m3/ d ofgroundwater has been pumped from the productive coastalaquifers in recent years.Contamination of the fresh water inthe coastal aquifers b…  相似文献   

20.
呼和浩特盆地地下水流系统变异机制及其资源效应   总被引:1,自引:1,他引:0       下载免费PDF全文
几十年的高强度开采致使呼和浩特盆地地下水流系统发生了很大变化。在对含水系统结构特征分析的基础上,结合地下水流场及水位动态特征,对地下水流系统演化模式进行了分析总结,基本可归纳为3个演化阶段,地下水人工开采及沟谷水利工程的修建是地下流系统变异的主要驱动因子。采用均衡法对现状条件下地下水均衡情况进行了定量计算,通过与历史时期均衡情况对比分析,发现在不同水流系统演化阶段,各含水层地下水补排量差异较大,从而导致地下水资源量发生变化,与历史时期相比,潜水含水层资源量明显减小,承压含水层资源量有所增加,但总资源量一定程度减小,地下流系统变异的资源效应明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号