首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In eastern Thailand the Klaeng fault zone includes a high-grade metamorphic rock assemblage, named Nong Yai Gneiss, which extends about 30 km in a NW–SE direction along the fault zone. The rocks of this brittle-fault strand consist of amphibolite to granulite grade gneissic rocks. Structural analysis indicates that the rocks in this area experienced three distinct episodes of deformation (D1–D3). The first (D1) formed large-scale NW–SE-trending isoclinal folds (F1) that were reworked by small-scale tight to open folds (F2) during the second deformation (D2). D1 and D2 resulted from NE–SW shortening during the Triassic Indosinian orogeny before being cross-cut by leucogranites. D1 and D2 fabrics were then reworked by D3 sinistral shearing, including shear planes (S3) and mineral stretching lineations (L3). LA–MC–ICP–MS U–Pb zircon dating suggested that the leucogranite intrusion and the magmatic crystallization took place at 78.6 ± 0.7 Ma followed by a second crystallization at 67 ± 1 to 72.1 ± 0.6 Ma. Both crystallizations occurred in the Late Cretaceous and, it is suggested, were tectonically influenced by SE Asian region effects of the West Burma and Shan-Thai/Sibumasu collision or development of an Andean-type margin. The sinistral ductile movement of D3 was coeval with the peak metamorphism that occurred in the Eocene during the early phases of the India–Asia collision.  相似文献   

2.
The Elu Link connecting the Neoarchean Hope Bay and Elu granite-greenstone belts in the Bathurst block of the northeast Slave craton consists of volcano-sedimentary and gabbro–granite rocks. Laser ablation ICP-MS zircon and titanite U-Pb dating was combined with mineral 40Ar-39Ar age data to date the Elu Link rocks and D1–D3 tectono-metamorphic events, as well as characterize the response to the Thelon Orogeny in the area. The volcanic rocks are correlated with the ca. 2716 Ma Flake Lake suite in the adjacent Hope Bay belt, whereas the sedimentary units have a minimum depositional age of 2684 ± 11 Ma nearly coinciding with the onset of D1 deformation. Most gabbro–granite bodies were emplaced between 2651 ± 14 Ma and 2577 ± 13 Ma coeval with the D2 deformation whose accompanying metamorphism culminated at 2632 ± 7 Ma. Older ages (up to 3042 ± 22 Ma) retained by either the gabbro–granite or their hosts are indicative of crustal contamination. A few gabbro–granites were also emplaced during the 2577 ± 13 Ma to 2494 ± 21 Ma D3 deformation event. However, the 2494 ± 21 Ma intrusions are unusual and mark the Archean–Paleoproterozoic transition. The D3 deformation was followed by erosional exhumation and localized thermal pulses associated with the emplacement of diabase dikes at 2228 ± 8 Ma, 2128 ± 11 Ma, and 802 ± 75 Ma. The Thelon Orogeny imprint, inferred from the 2054 ± 11 Ma to 1919 ± 5 Ma biotite ages, corresponds to nearly isobaric, low-temperature (< 350 °C) metamorphic re-equilibration.  相似文献   

3.
The Jiangnan Orogen, the eastern part of which comprises the oceanic Huaiyu terrane to the northeast and the continental Jiuling terrane to the southwest, marks the collision zone of the Yangtze and the Cathaysia Blocks in South China. Here, zircon U–Pb geochronological and Lu–Hf isotopic results from typical basement and cover meta-sedimentary/sedimentary rock units in the eastern Jiangnan Orogen are presented. The basement sequences in southwestern Huaiyu terrane are mainly composed of marine volcaniclastic turbidite, ophiolite suite and tuffaceous phyllite, whereas those in the northeastern Huaiyu consist of littoral face pebbly feldspathic sandstones and greywacke interbedded with intermediate-basic volcanic rocks. Combined with previous studies, the present data show that the basement sequences exhibit arc affinities. Zircons from the basement phyllite in the southwestern margin of the Huaiyu terrane, representing a Neoproterozoic back-arc basin, yield a single age population of 800–900 Ma. The basement greywacke from northeastern Huaiyu terrane, representing fore-arc basin, is also characterized by zircons that preserve a single tectono-thermal event during 800–940 Ma. However, the late Neoproterozoic cover sequence preserves zircons from multiple sources with age populations of 750–890 Ma, 1670–2070 Ma and 2385–2550 Ma. Moreover, Hf isotopic data further reveal that most detrital zircons from the basement sequences yield positive εHf(t) values and late Mesoproterozoic model ages, while those of the cover sequence mostly show negative εHf(t) values. The Hf isotopic data therefore suggest that the basement sequences are soured from a Neoproterozoic arc produced by reworking of subducted late Mesoproterozoic materials. The geochronological and Hf isotopic data presented in this study suggest ca. 800 Ma for the assembly of the Huaiyu and Jiuling terranes, implying that the amalgamation of the Yangtze and Cathaysia Blocks in the eastern part occurred at ca. 800 Ma.  相似文献   

4.
South-East Greenland forms part of the North Atlantic Craton and is characterized by migmatitic orthogneisses, narrow bands of mafic granulite, ultramafic and possible meta-sedimentary rocks, and alkaline-carbonatitic intrusive rocks. Mafic granulite, meta-sedimentary and ultramafic rocks form the basement for the emplacement of granitic intrusions at ca. 2865 Ma that lasted episodically until ca. 2790 Ma and continuously during 2750–2700 Ma. The area is structurally complex with evidence of at least seven deformation events including reclined and mushroom-like fold interference patterns. An older (> 2790 Ma) foliation formed in granitic rocks and the basement during the Timmiarmiut Orogeny (DT). Deformation associated with the ca. 2790–2700 Ma Skjoldungen Orogeny folded this early foliation, and is associated with a penetrative foliation that is refolded progressively in a northeast–southwest oriented stress field. The orientation of the stress field progressively rotated into a northnorthwest–southsoutheast orientation during the last stages of the orogeny. The orogeny is also characterized by syn-deformational anatexis at granulite-facies (at approximately 800 °C and 5–8 kbar, ca. 2790–2740 Ma), which decreased to the amphibolite-facies at ca. 2730 Ma.The late- to post-tectonic granite and alkaline rocks assigned to the Skjoldungen Alkaline Province intruded the central-northern part around 2710 Ma. This was followed by north–south extensional deformation during the Singertat Stage forming discrete shear-zones at greenschist-facies grades, which is coeval with the emplacement of pegmatite, ijolite, and carbonatite emplacement during ca. 2680–2650 Ma.Similar lithology and tectonic processes in the Tasiusarsuaq Terrane of southern West Greenland and the Lewisian Complex in Scotland suggest a possibly large Archaean terrane at that time, which, taking the present size, at least covered around 500–600 km in an east–west direction and approximately 200 km in a north–south direction.  相似文献   

5.
Almora Nappe in Uttarakhand, India, is a Lesser Himalayan representative of the Himalayan Metamorphic Belt that was tectonically transported over the Main Central Thrust (MCT) from Higher Himalaya. The Basal Shear zone of Almora Nappe shows complicated structural pattern of polyphase deformation and metamorphism. The rocks exposed along the northern and southern margins of this nappe are highly mylonitized while the degree of mylonitization decreases towards the central part where the rocks eventually grade into unmylonitized metamorphics.Mylonitized rocks near the roof of the Basal Shear zone show dynamic metamorphism (M2) reaching upto greenschist facies (~450 °C/4 kbar). In the central part of nappe the unmylonitized schists and gneisses are affected by regional metamorphism (M1) reaching upper amphibolite facies (~4.0–7.9 kbar and ~500–709 °C). Four zones of regional metamorphism progressing from chlorite–biotite to sillimanite–K-feldspar zone demarcated by specific reaction isograds have been identified. These metamorphic zones show a repetition suggesting that the zones are involved in tight F2 – folding which has affected the metamorphics. South of the Almora town, the regionally metamorphosed rocks have been intruded by Almora Granite (560 ± 20 Ma) resulting in contact metamorphism. The contact metamorphic signatures overprint the regional S2 foliation. It is inferred that the dominant regional metamorphism in Almora Nappe is highly likely to be of pre-Himalayan (Precambrian!) age.  相似文献   

6.
We performed zircon U–Pb dating and analyses of major and trace elements, and Sr–Nd–Pb isotopes for granitoids in the Bengbu area, central China, with the aim of constraining the magma sources and tectonic evolution of the eastern North China Craton (NCC). The analyzed zircons show typical fine-scale oscillatory zoning, indicating a magmatic origin. Zircon U–Pb dating reveals granitoids of two ages: Late Jurassic and Early Cretaceous (206Pb/238U ages of 160 Ma and 130–110 Ma, respectively). The Late Jurassic rocks (Jingshan intrusion) consist of biotite-syenogranite, whereas the Early Cretaceous rocks (Huaiguang, Xilushan, Nushan, and Caoshan intrusions) are granodiorite, syenogranite, and monzogranite. The Late Jurassic biotite-syenogranites and Early Cretaceous granitoids have the following common geochemical characteristics: SiO2 = 70.35–74.56 wt.%, K2O/Na2O = 0.66–1.27 (mainly < 1.0), and A/CNK = 0.96–1.06, similar to I-type granite. The examined rocks are characterized by enrichment in light rare earth elements, large ion lithophile elements, and U; depletion in heavy rare earth elements, Nb, and Ta; and high initial 87Sr/86Sr ratios (0.7081–0.7110) and low εNd (t) values (? 14.40 to ? 22.77), indicating a crustal origin.The occurrence of Neoproterozoic magmatic zircons (850 Ma) and inherited early Mesozoic (208–228 Ma) metamorphic zircons within the Late Jurassic biotite-syenogranites, together with the occurrence of Neoproterozoic magmatic zircons (657 and 759 Ma) and inherited early Mesozoic (206–231 Ma) metamorphic zircons within the Early Cretaceous Nushan and Xilushan granitoids, suggests that the primary magmas were derived from partial melting of the Yangtze Craton (YC) basement. In contrast, the occurrence of Paleoproterozoic and Paleoarchean inherited zircons within the Huaiguang granitoids indicates that their primary magmas mainly originated from partial melting of the NCC basement. The occurrence of YC basement within the lower continental crust of the eastern NCC indicates that the YC was subducted to the northwest beneath the NCC, along the Tan-Lu fault zone, during the early Mesozoic.  相似文献   

7.
《Gondwana Research》2013,23(3-4):956-973
The configuration and the timing of assembly and break-up of Columbia are still matter of debate. In order to improve our knowledge about the Mesoproterozoic evolution of Columbia, a paleomagnetic study was carried out on the 1420 Ma Indiavaí mafic intrusive rocks that crosscut the polycyclic Proterozoic basement of the SW Amazonian Craton, in southwestern Mato Grosso State (Brazil). Alternating field and thermal demagnetization revealed south/southwest ChRM directions with downward inclinations for sixteen analyzed sites. These directions are probably carried by SD/PSD magnetite with high coercivities and high unblocking temperatures as indicated by additional rock magnetic tests, including thermomagnetic data, hysteresis data and the progressive acquisition of isothermal remanent magnetization. Different stable magnetization components isolated in host rocks from the basement 10 km NW away to the Indiavaí intrusion, further support the primary origin of the ChRM. A mean of the site mean directions was calculated at Dm = 209.8°, Im = 50.7° (α95 = 8.0°, K = 22.1), which yielded a paleomagnetic pole located at 249.7°E, 57.0°S (A95 = 8.6°). The similarity of this pole with the recently published 1420 Ma pole from the Nova Guarita dykes in northern Mato Grosso State suggests a similar tectonic framework for these two sites located 600 km apart, implying the bulk rigidity of the Rondonian-San Ignacio crust at that time. Furthermore these data provide new insights on the tectonic significance of the 1100–1000 Ma Nova Brasilândia belt—a major EW feature that cuts across the basement rocks of this province, which can now be interpreted as intracratonic, in contrast to previous interpretation. From a global perspective, a new Mesoproterozoic paleogeography of Columbia has been proposed based on comparison of these 1420 Ma poles and a 1780 Ma pole from Amazonia with other paleomagnetic poles of similar age from Baltica and Laurentia, a reconstruction in agreement with geological correlations.  相似文献   

8.
The Trans-North China Orogen (TNCO), a Paleoproterozoic suture that amalgamates the Western and Eastern Blocks of the North China Craton (NCC), witnessed extensive magmatism and metallogeny during Mesozoic, associated with intraplate tectonics and differential destruction of the cratonic lithosphere. Here we investigate a suite of porphyry dykes surrounding the Mapeng batholith in the Fuping Complex within the TNCO in relation to the Mesozoic gold and molybdenum mineralization. The major element chemistry of these dykes show a range of SiO2 (57.92 to 69.47 wt.%), Na2O (3.20 to 4.77 wt.%), K2O (3.12 to 4.60 wt.%) and MgO (0.51 to 3.67 wt.%), together with high concentration of LREE and LILE, and relatively low contents of HREE and HFSE. The rocks display (La/Yb)N = 13.53–48.11, negative Nb, Ta, Th, U and Zr anomalies, and distinctly positive Ba, K and Sm anomalies. The mineralogy and geochemistry of the porphyry dykes indicate the rocks to be high-K calc-alkaline, and I-type, with adakitic features similar to those of the adjacent Mapeng batholith. The source magma for these rocks was derived from a mixture of reworked ancient continent crust and juvenile mantle materials. The zircon U–Pb data from these rocks show ages in the range of 124 to 129 Ma, broadly coinciding with the emplacement age of the Mapeng intrusion. The inherited zircons of ca. 2.5, 2.0 and 1.8 Ga in the dykes represent capture from the basement rocks during melting. The zircon Lu–Hf isotopic compositions show negative εHf(t) values varying from − 27.8 to − 11.3, with Hf depleted model ages (tDM) ranging from 1228 Ma to 1918 Ma and Hf crustal model ages (tDMC) of 1905 Ma to 2938 Ma, suggesting that the Mesozoic magmatism and associated metallogeny involved substantial recycling of ancient basement rocks of the NCC. We present an integrated model to evaluate the genesis of the porphyry systems and their relation to mineralization. We envisage that these dykes probably acted as stoppers (impermeable barriers) that prevented the leakage and run-off of the ore-bearing fluids, and played a key role in concentrating the gold and molybdenum mineralization.  相似文献   

9.
The metamorphic belt in the Basongco area, the eastern segment of Lhasa terrane, south Tibet, occurs as the tectonic blocks in Paleozoic sedimentary rocks. The Basongco metamorphic rocks are mainly composed of paragneiss and schist, with minor marble and orthogneiss, and considered previously to be the Precambrian basement of the Lhasa terrane. This study shows that the Basongco metamorphic belt experienced medium-pressure amphibolite-facies metamorphism under the conditions of T = 640–705 °C and P = 6.0–8.0 kbar. The inherited detrital zircon of the metasedimentary rocks yielded widely variable 206Pb/238U ages ranging from 3105 Ma to 500 Ma, with two main age populations at 1150 Ma and 580 Ma. The magmatic cores of zircons from the orthogneiss constrain the protolith age as ca. 203 Ma. The metamorphic zircons from all rocks yielded the consistent metamorphic ages of 192–204 Ma. The magmatic cores of zircons in the orthogneiss yielded old Hf model ages (TDM2 = 1.5–2.1 Ga). The magmatic zircons from the mylonitized granite yielded a crystallization age of ca. 198 Ma. These results indicate that the high-grade metamorphic rocks from the Basongco area were formed at early Jurassic and associated with coeval magmatism derived from the thickening crust. The Basongco metamorphic belt, together with the western and coeval Sumdo and Nyainqentanglha metamorphic belts, formed a 400-km-long tectonic unit, indicating that the central segment of the Lhasa terrane experienced the late Paleozoic to early Mesozoic collisional orogeny.  相似文献   

10.
Metamorphic basement and its Neoproterozoic to Cambrian cover exposed in the Sierra de Pie de Palo, a basement block of the Sierras Pampeanas in Argentina, lie within the Cuyania terrane. Detrital zircon analysis of the cover sequence which includes, in ascending order, the El Quemado, La Paz, El Desecho, and Angacos Formations of the Caucete Group indicate a Laurentian origin for the Cuyania terrane. The lower section represented by the El Quemado and La Paz Formations is interpreted as having an igneous source related to a rift setting similar to that envisioned for the southern and eastern margins of Laurentia at approximately 550 Ma. The younger strata of the El Desecho Formation are correlative with the Cerro Totora Formation of the Precordillera, and both are products of rift sedimentation. Finally, the Angacos Formation and the correlative La Laja Formation of the Precordillera were deposited on the passive margin developed on the Cuyania terrane. The maximum depositional ages for the Caucete Group include ca. 550 Ma for the El Quemado Formation and ca. 531 Ma for the El Desecho Formation. Four different sediment sources areas were interpreted in the provenance analysis. The main source is crystalline basement dominated by early Mesoproterozoic igneous rocks related to the Granite-Rhyolite province of central and eastern Laurentia. Possible source areas for 1600 Ma metamorphic detrital zircons of the Caucete Group include the Yavapai-Mazatzal province (ca. 1800–1600 Ma) of south-central to southwestern Laurentia. Younger Mesoproterozoic zircon is likely derived from Grenville-age medium- to high-grade metamorphic rocks and subordinate igneous rocks that form the basement of Cuyania as well as the southern Grenville province of Laurentia itself. Finally, Neoproterozoic igneous zircon in the Caucete Group records different magmatic pulses along the southern Laurentian margin during opening of Iapetus and break-up of Rodinia. Northwestern Cuyania terrane includes a small basement component derived from the Granite-Rhyolite province of Laurentia, which was the source for detrital zircons found in the middle Cambrian passive margin sediments of Cuyania.  相似文献   

11.
The Yangtze and Cathaysia blocks in South China are separated by the ca. 1500 km long Jiangnan Orogen. The Lianyunshan complex, located in the central segment of Jiangnan Orogen, includes wide exposures of late Mesozoic granites. Here we report geological, geochronological and geochemical data from the Lianyunshan late Mesozoic granites and their Neoproterozoic host rocks belonging to the Lengjiaxi Group. Detrital zircon U–Pb ages reveal a single prominent peak at ca. 840 Ma in the metamorphosed and deformed Lengjiaxi Group samples. Ten of the youngest zircon grains in these rocks have a weighted mean age of 828.8 ± 7.1 Ma, which is tentatively interpreted as the maximum depositional age of the Lengjiaxi Group. Two stages of late Mesozoic S-type granites are dated at ca. 150 Ma and ca. 140 Ma from the Lianyunshan domain. From early to late, these rocks show decreasing MgO, CaO, Fe2O3T, TiO2 contents and increasing SiO2, K2O, Eu/Eu*, Rb/Sr ratios and differentiation index, suggesting continuous magmatic evolution dominated by fractional crystallization. The εHf(t) values of zircons with late Mesozoic ages are all negative, with their two-stage model ages mainly ranging from 1.9 to 1.4 Ga, which is significantly different from the model age of the host rocks belonging to the Lengjiaxi Group. These results indicate that the late Mesozoic granites were mainly derived from the partial melting of Paleo-Mesoproterozoic basement rocks that are older than Lengjiaxi Group. Major and trace element features suggest that the protoliths of these early stage granites in Lianyunshan are probably mixed greywacke and shale. The arc-like trace elements signature of all the late Mesozoic granites were possibly inherited through crustal contamination during the magma genesis caused by slab rollback associated with Paleo-Pacific subduction during 150- to 140 Ma beneath the central Jiangnan belt.  相似文献   

12.
High-pressure (HP) rocks at Tehuitzingo, on the western margin of the HP belt within the Paleozoic Acatlán Complex (southern México), occur in a klippe that was thrust over low-grade clastic rocks. The youngest detrital zircon cluster in the low-grade rocks yielded U-Pb ages of 481 ± 16 Ma, which provide an older limit for deposition. The HP rocks are composed of metabasites, serpentinite, granite (482 ± 3 Ma) and mica schist (youngest concordant detrital zircon: 433 ± 3 Ma). The schist and granite are inferred to be high-grade equivalents of lower Paleozoic, low-grade rocks exposed elsewhere in the Acatlán Complex, from which they are inferred to have been removed by subduction erosion. Mineral analyses indicate that the subducted rocks underwent HP metamorphism and polyphase deformation at depths of ~ 50 km (~ 16 kbar and 750 °C: eclogite facies). Subsequent retrogression passed through epidote-amphibolite to greenschist facies, which was synchronous with W-vergent thrusting over the low-grade clastic rocks. Deposition of the low-grade rocks and thrusting are bracketed between either 481–329 Ma (Ordovician-Mississippian), and was followed by F3 synformal folding. Cooling through ca. 385 °C is indicated by 329 ± 1 and 316–317 ± 2 Ma, 40Ar/39Ar muscovite plateau ages in HP rocks, which are 5–17 my younger than those of the adjacent Piaxtla eclogites suggesting younger exhumation. The petrology, P-T conditions and ages of the Piaxtla Suite is consistent with an extrusion channel within the Acatlán Complex along the active western margin of Pangea during the Carboniferous. Detrital zircon populations in the low-grade psammite (ca. 481, 520–650, 720, 750, 815, 890, 1050 and 2750 Ma) and the HP schist (ca. 457–480, 534, 908, 954–1150, 1265, 1845 and 2035 Ma) indicate derivation from the Ordovician Acatlán granitoids, Neoproterozoic Brasiliano orogens, 900–750 Ma Goiás arc (Amazonia), 1–1.3 Ma Oaxaquia, and more ancient sources in Oaxaquia/Amazonia.  相似文献   

13.
《Gondwana Research》2009,15(4):644-662
The integration of new and published geochronologic data with structural, magmatic/anatectic and pressure–temperature (P–T) process information allow the recognition of high-grade polymetamorphic granulites and associated high-grade shear zones in the Central Zone (CZ) of the Limpopo high-grade terrain in South Africa. Together, these two important features reflect a major high-grade D3/M3 event at ~ 2.02 Ga that overprinted the > 2.63 Ga high-grade Neoarchaean D2/M2 event, characterized by SW-plunging sheath folds. These major D2/M2 folds developed before ~ 2.63 Ga based on U–Pb zircon age data for precursors to leucocratic anatectic gneisses that cut the high-grade gneissic fabric. The D3/M3 shear event is accurately dated by U–Pb monazite (2017.1 ± 2.8 Ma) and PbSL garnet (2023 ± 11 Ma) age data obtained from syntectonic anatectic material, and from sheared metapelitic gneisses that were completely reworked during the high-grade shear event. The shear event was preceded by isobaric heating (P = ~ 6 kbar and T = ~ 670–780 °C), which resulted in the widespread formation of polymetamorphic granulites. Many efforts to date high-grade gneisses from the CZ using PbSL garnet dating resulted in a large spread of ages (~ 2.0–2.6 Ga) that reflect the polymetamorphic nature of these complexly deformed high-grade rocks.  相似文献   

14.
《Gondwana Research》2016,29(4):1516-1529
Voluminous Proterozoic (~ 1700 Ma) rapakivi granites occur in several cratons, especially in the northern hemisphere. Similar Proterozoic rapakivi granites have recently been recognized in the Paleozoic North Qaidam orogen, western segment of the China Central Orogenic System (CCOS). SHRIMP zircon U–Pb dating of these granites yielded ages of 1778 ± 17 and 1778 ± 12 Ma. These granites exhibit typical rapakivi textures. They are ferroan, alkalic to alkalic-calc, metaluminous to peraluminous and characterized by high Ga/Al ratios, Na2O + K2O and rare earth elements (apart from Eu) contents, but low MgO, CaO and Sr contents. These are typical A-type granite features. Whole-rock εNd(t) values of the granites range from − 6.09 to − 5.74 with Nd model ages of 2762 to 2733 Ma, and their zircon εHf(t) values are from − 8.3 to − 5.2 with two-stage Hf model ages of 2944 to 2800 Ma, suggesting that these rocks were derived from old continental crust. The ages, rapakivi texture and geochemical features suggest that these granites are very close to typical Proterozoic (~ 1700 Ma) rapakivi granites within the North China Craton (NCC) and belong to the group of Proterozoic rapakivi granites of the northern hemisphere. These indicate that part of the basement of the North Qaidam orogen in the western CCOS is similar to that of the NCC or was probably derived from it, and then became involved in the CCOS. This provides new data to solve the dispute on the basement origin in this orogen.  相似文献   

15.
The Palaeozoic to Mesozoic igneous and metamorphic basement rocks exposed in the Mérida Andes of Venezuela and the Santander Massif of Colombia are generally considered to define allochthonous terranes that accreted to the margin of Gondwana during the Ordovician and the Carboniferous. However, terrane sutures have not been identified and there are no published isotopic data that support the existence of separate crustal domains. A general paucity of geochronological data led to published tectonic reconstructions for the evolution of the northwestern corner of Gondwana that do not account for the magmatic and metamorphic histories of the basement rocks of the Mérida Andes and the Santander Massif. We present new zircon U–Pb (ICP-MS) data from 52 igneous and metamorphic rocks, which we combine with whole rock geochemical and Pb isotopic data to constrain the tectonic history of the Precambrian to Mesozoic basement of the Mérida Andes and the Santander Massif. These data show that the basement rocks of these massifs are autochthonous to Gondwana and share a similar tectono-magmatic history with the Gondwanan margin of Peru, Chile and Argentina, which evolved during the subduction of oceanic lithosphere of the Iapetus Ocean. The oldest Palaeozoic arc magmatism is recorded at ~ 500 Ma, and was followed shortly by Barrovian metamorphism. Peak metamorphic conditions at upper amphibolite facies are recorded by anatexis at ~ 477 Ma and the intrusion of synkinematic granitoids until ~ 472 Ma. Subsequent retrogression resulted from localised back-arc or intra-arc extension at ~ 453 Ma, when volcanic tuffs and interfingered sedimentary rocks were deposited over the amphibolite facies basement. Continental arc magmatism dwindled after ~ 430 Ma and terminated at ~ 415 Ma, coevally with most of the western margin of Gondwana. After Pangaea amalgamation in the Late Carboniferous to Early Permian, a magmatic arc developed on its western margin at ~ 294 Ma as a result of subduction of oceanic crust of the palaeo-Pacific ocean. Intermittent arc magmatism recorded between ~ 294 and ~ 225 Ma was followed by the onset of the Andean subduction cycle at ~ 213 Ma, in an extensional regime. Extension was accompanied by slab roll-back which led to the migration of the arc axis into the Central Cordillera of Colombia in the Early Jurassic.  相似文献   

16.
Strongly deformed volcaniclastic metasediments and ophiolitic slices hosting the Sukari gold mineralization display evidence of a complex structural evolution involving three main ductile deformational events (D1–D3). D1 produced ENE-trending folds associated with NNW-propagating thrust slices and intrusion of the Sukari granite (689 ± 3 Ma). D2 formed a moderately to steeply dipping, NNW-trending S2 foliation curved to NE and developed arcuate structure constituting the Kurdeman shear zone (≤ 595 Ma) and East Sukari imbricate thrust belt. Major NE-trending F2 folds, NW-dipping high-angle thrusts, shallow and steeply plunging mineral lineation and shear indicators recorded both subhorizontal and subvertical transport direction during D2. D3 (560–540 Ma) formed NNE-trending S3 crenulation cleavage, tight F3 folds, Sukari Thrust and West Sukari imbricate thrust. The system of NW-trending sinistral Kurdeman shear zone (lateral ramps and tear faults) and imbricate thrusts (frontal ramps) forming the actuate structure developed during SE-directed thrusting, whereas the prevailing pattern of NNE-trending dextral Sukari shear zone and imbricate thrusts forming Sukari thrust duplex developed during NE-directed tectonic shearing. Sukari granite intruded in different pluses between 689 and 540 Ma and associated with at least four phases of quartz veins with different geometry and orientation. Structural analysis of the shear fabrics indicates that the geometry of the mineralized quartz veins and alteration patterns are controlled by the regional NNW- and NE-trending conjugate zones of transpression. Gold-bearing quartz veins are located within NNW-oriented sinistral shear zones in Kurdeman gold mine area, within steeply dipping NW- and SE dipping thrusts and NE- and NS-oriented dextral and sinistral shear zones around Sukari mine area, and along E-dipping backthrusts and NW-SE and N-S fractures in Sukari granite. The high grade of gold mineralization in Sukari is mainly controlled by SE-dipping back-thrusts branched from the major NW-dipping Sukari Thrust. The gold mineralization in Sukari gold mine and neighboring areas in the Central Eastern Desert of Egypt is mainly controlled by the conjugate shear zones of the Najd Fault System and related to E-W directed shortening associated with oblique convergence between East and West Gondwana.  相似文献   

17.
The Massif Central, like the southern part of the Massif Armoricain, belongs to the north Gondwana margin. The Massif Central consists of a stack of nappes resulting from six main tectonic-metamorphic events. The first, D0, is coeval with a Late Silurian (ca 415 Ma) high-pressure (HP) (or ultra high-pressure) metamorphism for which the associated structures are poorly documented. The Early Devonian D1 event, responsible for top-to-the-southwest nappe displacement, is coeval with migmatization and the exhumation of HP rocks around 385–380 Ma. In the northern part of the Massif Central, metamorphic rocks with retrogressed eclogites are covered by Late Devonian undeformed sedimentary rocks. The Late Devonian-Early Carboniferous D2 event involves top-to-the-northwest shearing, coeval with an intermediate pressure-temperature metamorphism dated around 360–350 Ma. The Visean D3 event is a top-to-the-south ductile shearing, which is widespread in the southern Massif Central. Coevally, in the northern Massif Central, the D3 event corresponds to the onset of synorogenic extension. The next two events, D4 and D5, of Early and Late Carboniferous age, correspond to the syn- and late orogenic extensional tectonic regimes, respectively. The former is controlled by NW–SE stretching whereas the latter is accommodated by NNE–SSW stretching. These structural and metamorphic events are reconsidered in a geodynamic evolution model. The possibilities of one or two cycles involving microcontinent drifting, rewelding and collision are discussed.  相似文献   

18.
This paper reports new whole-rock geochemical, Sr–Nd–Pb isotopic, and zircon U–Pb and Hf isotopic data for Early Cretaceous intrusive rocks in the Sanmenxia–Houma area of central China, and uses these data to constrain the petrogenesis of low-Mg adakitic rocks (LMAR) and the spatial extent of the influence of the deeply subducted Yangtze slab during the Triassic evolution of this region. New zircon laser-ablation inductivity coupled plasma mass spectrometry (LA-ICP-MS) U–Pb data indicate that the early- and late-stage southern Quli, Qiligou, and Gaomiao porphyritic quartz diorites, the Canfang granodiorite, and the northern Wangmao porphyritic quartz monzodiorite were emplaced during the Early Cretaceous (~ 130 Ma) and the late Early Cretaceous (~ 116 Ma). These rocks are characterized by high Na2O/K2O, Sr/Y, and (La/Yb)n ratios as well as high Sr concentrations, low Mg# [molar 100 × Mg/(Mg + Fe2 +tot)] values, and low heavy rare earth element and Y concentrations, all of which indicate an LMAR affinity. The samples have relatively high initial 87Sr/86Sr ratios (0.7054–0.7095), and low εNd(t) (− 11.90 to − 22.20) and εHf(t) (− 16.7 to − 32.7) values, indicative of a lower continental crust origin. The presence of Neoproterozoic (754–542 Ma) and inherited Late Triassic (220 Ma) metamorphic zircons within the late Early Cretaceous LMAR and the relatively high 206Pb/204Pb ratios of these rocks suggest that they formed from primary magmas derived from partial melting of Yangtze Craton (YC) basement material that had undergone ultrahigh-pressure metamorphism. In contrast, the presence of Paleoproterozoic and Archean inherited zircons within early Early Cretaceous LMAR in this area and the relatively low 206Pb/204Pb ratios of these rocks are indicative of derivation from primary magmas generated by partial melting of the thickened lower continental crust of the North China Craton (NCC). These rocks may have formed in an extensional environment associated with the upwelling of asthenospheric mantle material. The presence of YC basement material within the NCC in the Sanmenxia–Houma area suggests that the deeply subducted Yangtze slab influenced an area of ~ 100 km in lateral extent within the southern margin of the central NCC during the Triassic.  相似文献   

19.
The Pan-African Lufilian orogenic belt hosts world-class Cu deposits. In the Congolese Copperbelt (DRC), Cu(–Co) deposits, are mostly hosted within evaporitic and siliciclastic Neoproterozoic metasedimentary rocks (Mines Subgroup) and are interpreted as syn- to late-diagenetic deposits. In this paper, we present new data on Cu(–U) deposit hosted in metamorphic rocks of the internal zone of the Lufilian belt known as the Western Zambian Copperbelt in which a primary Cu mineralization is overprinted by a second syn-metamorphic Cu mineralizing event. This mineralizing event is synchronous with the Pan-African metamorphism affecting both the pre-Katanga basement and the Katanga metasedimentary sequence. Cu(–U) occurrences in the Western Zambian Copperbelt are hosted by kyanite-micaschists metamorphosed in the upper amphibolite facies.Mineral inclusions of graphite, micas and sulfides in kyanite porphyroblasts of the Cu-bearing kyanite-micaschists in the Lumwana Cu deposit point to a sedimentary protolith with relics of an inherited Cu stock. Based on petrologic, microstructural and geochronological evidence, we propose that this initial Cu-stock was remobilized during the Pan-African orogeny. Graphite, micas and sulfides preserved in a first generation of kyanite poikiloblasts (Ky1) define an inherited S0/1 foliation developed during the prograde part of the PT path (D1 deformation-metamorphic stage) reaching HP–MT metamorphic conditions.Remobilization during the retrograde part of the PT path is evidenced by chalcopyrite–pyrrhotite and chalcopyrite–bornite delineating a steep-dipping S2 schistosity and by chalcopyrite and bornite delineating a shallow-dipping S3 schistosity associated with top to the south kinematic criteria. This retrograde path is coeval with ductile deformation in the kyanite field as evidenced by a second generation of synkinematic kyanite porphyroblasts (Ky2) transposed in the S3 schistosity (Ky2–3), and is marked by progressive cooling from ca. 620 °C down to 580 °C (rutile geothermometry). Syn-S2–3 metamorphic monazite grains yield U–Th–Pb ages ranging from ca. 540 to 500 Ma.Final retrogression and remobilization of Cu is marked by recrystallization of the sulfides in top to the north C3 shear bands associated with rutile crystals yielding temperatures from ca. 610 to 540 °C. This final remobilization is younger than ca. 500 Ma (youngest U–Th–Pb age on syn-S3 recrystallized monazite). These data are consistent with successive Cu remobilization for more than 40 Ma during Pan-African reworking of sediment-hosted deposits either from the basement of the Katanga sedimentary sequence or from the Katanga sequence itself marked by burial (D1), syn-orogenic exhumation (D2), and post-orogenic exhumation during gravitational collapse (D3).  相似文献   

20.
The widespread occurrence of late Mesozoic volcanic rocks in the Gan-Hang Belt in South China is associated with similarly widespread mineralization, but many important questions surrounding these volcanic rocks have not been clearly answered. The Tianhuashan basin located in the northern Wuyi Mountain volcanic belt is one of the most important volcanic basins in the Gan-Hang Belt, and it is primarily composed of the Daguding and Ehuling Formations and their intrusive counterparts. LA-ICP-MS zircon U–Pb dating shows that the Daguding Formation erupted in the Late Jurassic (152–160 Ma), whereas the Ehuling Formation erupted in the Early Cretaceous (131–139 Ma) in the Tianhuashan basin. Volcanic rocks are rhyolite and share similar trace and rare earth element patterns with an enrichment of LREEs and a depletion in Sr, Ba, Nb, Ta, P, Eu and Ti. They are also characterized by negative whole rock εNd(t) and zircon εHf(t) values with Paleoproterozoic t2DM ages, suggesting that they were derived primarily from the remelting of ancient crustal materials. Daguding volcanic rocks are strongly peraluminous and show a higher Mg# than pure crustal melts, implying that they were likely derived from Paleoproterozoic metasedimentary basement materials. However, Ehuling volcanic rocks are weakly peraluminous and have a pronounced A2-type geochemical signature. Detailed elemental and isotopic data suggest that they were formed by the partial melting of the Paleoproterozoic metamorphic basement (including metasedimentary and metaigneous rocks) at a high temperature (~ 840 °C), followed by fractional crystallization. These results imply that during the Late Jurassic, South China on the Gan-Hang Belt was a continental arc coupled with the subduction of the Paleo-Pacific plate. Since the beginning of the Early Cretaceous, an intra-arc rift has formed along the Gan-Hang Belt as a consequence of slab rollback. These results also indicate that the extension in the Gan-Hang Belt began later than the southwestern part of the Shi-Hang Zone and lasted from 139 Ma to 122 Ma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号