首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dissolved and particulate Zn and Ni concentrations were determined at 76 locations along the Yangtze River basin from the headwaters to the estuary during flood and dry seasons. Spatial and temporal variations of Zn and Ni were investigated and six major source zones were identified. The Three Gorges Dam (TGD) blocked most of the suspended loads and extremely low concentration of Zn and Ni were observed downstream of the dam. Dissolved (ranging from 0.062 to 8.0 μg L−1) and particulate (ranging from 12 to 110 mg kg−1) Ni showed similar levels of concentrations during flood and dry seasons, whereas dissolved (ranging from 0.43 to 49 μg L−1) and particulate (ranging from 54 to 1100 mg kg−1) Zn were slightly and much lower in the flood season than dry season, respectively. This was attributed to the increased water discharge during the flood season causing a dilution effect and sediment resuspension. In the flood season, average concentrations of Zn and Ni were higher in the main channel than in tributaries, due to soil erosion and mining activities providing the dominant inputs. The situation was opposite in the dry season, attributed to the contribution of municipal sewage, industrial activities, and waste disposal. During the flood season, dissolved Zn and Ni concentrations were negatively correlated with pH. Water and suspended particulate matter (SPM) from the upper reaches, middle reaches, and lower reaches of the Yangtze River were characterized by their Zn and Ni concentrations. The Panzhihua, Nanling and Tongling mining areas were considered as the most important source zones of particulate Zn and Ni. The Chongqing region, Wuhan region and the Yangtze River Delta provided most of the dissolved Zn and Ni inputs into the river. Annual net flux of Zn (10–72 × 105 kg a−1) and Ni (5.0–19 × 105 kg a−1) in each source zone were estimated according to their respective influent and effluent fluxes. Contributions of the source zones to Zn and Ni transport decreased from the upper reaches to the lower reaches.  相似文献   

2.
3.
Boom Clay is studied as a potential host formation for the disposal of high-and intermediate level long-lived radioactive waste in Belgium. In such a geological repository, generation of gases (mainly H2 from anaerobic corrosion) will be unavoidable. In order to make a good evaluation of the balance between gas generation vs. gas dissipation for a particular waste form and/or disposal concept, good estimates for gas diffusion coefficients of dissolved gases are essential. In order to obtain an accurate diffusion coefficient for dissolved hydrogen in saturated Boom Clay, diffusion experiments were performed with a recently developed through-diffusion set-up for dissolved gases. Due to microbial activity in the test set-up, conversion of hydrogen into methane was observed within several experiments. A complex sterilisation procedure was therefore developed in order to eliminate microbiological disturbances. Only by a combination of heat sterilisation, gamma irradiation and the use of a microbial inhibitor, reliable, reproducible and accurate H2(g) diffusion coefficients (measured at 21 °C) for samples oriented parallel (Deff = 7.25 × 10−10 m2/s and Deff = 5.51 × 10−10 m2/s) and perpendicular (Deff = 2.64 × 10−10 m2/s) to the bedding plane were obtained.  相似文献   

4.
A field experiment is being carried out at the Diavik diamond mine in northern Canada to investigate the influence of unsaturated flow behavior on the quality of drainage from mine waste rock piles in a region of continuous permafrost. This paper is part of a series describing processes affecting the weathering of waste rock and transport of reaction products at this site; here the focus is on unsaturated water flow and its role in mass loading. Two 15 m-high instrumented test piles have been built on 60 m by 50 m collection systems, each consisting of lysimeters and a large impermeable high-density polyethylene (HDPE) liner. Collection lysimeters are installed nearby to investigate infiltration in the upper 2 m of the waste rock. Porosity, water retention curves, and hydraulic conductivity functions are estimated from field measurements and for samples ranging in size from 200 cm3 to 16 m3. Net infiltration in 2007 is estimated to have been 37% of the rainfall for mean annual rainfall conditions. Early-season infiltration freezes and is remobilized as the waste rock thaws. Wetting fronts migrate at rates of 0.2–0.4 m d−1 in response to common rainfall events and up to 5 m d−1 in response to intense rainfall. Pore water and non-reactive solutes travel at rates of <10−2 to 3 × 10−2 m d−1 in response to common rainfall events and up to 0.7 m d−1 in response to intense rainfall. Time-varying SO4 mass loading from the base of the test piles is dictated primarily by the flow behavior, rather than by changes in solute concentrations.  相似文献   

5.
We report the presence of coenzyme factor 430 (F430), a prosthetic group of methyl coenzyme M reductase for archaeal methanogenesis, in the deep sub-seafloor biosphere. At 106.7 m depth in sediment collected off Shimokita Peninsula, northwestern Pacific, its concentration was estimated to be at least 40 fmol g sediment−1 (i.e. 36 pg g−1 wet sediment). This is about three orders of magnitude lower than typical concentrations of archaeal intact polar lipids in similar sub-seafloor sediments. On the basis of the concentration of F430 in methanogens and conversion to biomass composed of typical sub-seafloor microbial cells, we estimated that ca. 2 × 106 cells g−1 could be methanogens in the deeply buried marine sediment.  相似文献   

6.
The polymetallic Mykonos vein system in the Cyclades, Greece, consists of 15 tension-gashes filled with barite, quartz, pyrite, sphalerite, chalcopyrite and galena in ca. 13.5 Ma, I-type, Mykonos monzogranite. Zones of silica and chlorite–muscovite alteration are associated with the veins and overprint pervasive silicification, phyllic and argillic alteration that affected large parts of the monzogranite. The mineralization cements breccias and consists of an early barite–silica–pyrite–sphalerite–chalcopyrite assemblage followed by later argentiferous galena. A combination of fluid inclusion and stable isotope data suggests that the barite and associated mineralization were deposited from fluids containing 2 to 17 wt.% NaCl equivalent, at temperatures of ~ 225° to 370 °C, under a hydrostatic pressure of ≤ 100 bars. The mineralizing fluids boiled and were saturated in H2S and SO2.Calculated δ18OH2O and δDH2O, initial 87Sr/86Sr isotope compositions and the trace and REEs elements contents are consistent with a model in which the mineralizing fluids were derived during alteration of the Mykonos intrusion and subsequently mixed with Miocene seawater. Heterogeneities in the calculated δ34SSO4 2 and δ34SH2S compositions of the ore fluids indicate two distinct sources for sulfur, namely of magmatic and seawater origin, and precipitation due to reduction of the SO4 2 during fluid mixing. The physicochemical conditions of the fluids were pH = 5.0 to 6.2, logfS2 =  13.8 to − 12.5, logfO2 =  31.9 to − 30.9, logfH2S(g) =  1.9 to − 1.7, logfTe2 =  7.9 and logα(SO4 2(aq)/H2S(aq)) = + 2.6 to + 5.5. We propose that retrograde mesothermal hydrothermal alteration of the Mykonos monzogranite released barium and silica from the alkali feldspars. Barite was precipitated due to mixing of SO4 2-rich Miocene seawater with the ascending Ba-rich magmatic fluid venting upwards in the pluton.  相似文献   

7.
A new high sulfidation epithermal Cu–Au occurrence (Nadun) has been discovered adjacent to the Cretaceous Duolong porphyry Cu–Au deposit within the Bangong–Nujiang metallogenic belt, central Tibet. The Nadun Cu–Au mineralization is hosted in a tectonic–hydrothermal breccia with advanced argillic alteration, which occurs above sandstone, associated with quartz–pyrite veins. The granodiorite porphyry with strong argillic alteration yields a zircon U–Pb age of 119.1 ± 1.3 Ma, whereas the weakly argillic granodiorite porphyry intruded into the breccia has a younger age of 116.1 ± 1.3 Ma. This indicates that Cu–Au epithermal mineralization likely occurred between ~ 116 Ma and ~ 119 Ma, consistent with the duration of magmatic–hydrothermal activity at Duolong (~ 115–118 Ma), and providing evidence that Nadun and Duolong were formed during the same event. Moreover, the Nadun and Duolong porphyries have similar Hf isotopic compositions (εHf(t) values ranging from − 8.8 to 8.1; mean = 5.0 ± 1.1, n = 32), likely indicating that the deposits are comagmatic. In addition, boiling assemblages in vapor-rich inclusions coexisting with brines occur in early stage quartz–pyrite veins, and likely record phase separation at a temperature of > 550–300 °C and pressure of 700–110 bars. Most liquid-rich fluid inclusions formed at the breccia stage show similar salinity (1.7–19.3 wt.% NaCl equiv) to vapor-rich inclusions from the underlying quartz–pyrite veins, likely indicating vapor contraction during cooling at elevated presssure. This suggests that quartz–pyrite veins may act as conduits for ore-forming fluid traveling from the porphyry to the epithermal hydrothermal system. O and H isotopic compositions (δ18Ofluid = 0.42–9.71‰ and δD =  102 to − 66‰) suggest that ore-forming fluids are dominantly from a magmatic source with a minor addition of meteoric water at a later stage. The S and Fe isotope compositions of sulfides (δ34S =  5.9 to 0.5‰ and δ57Fe =  2.15 to 0.17‰) decrease from the quartz–pyrite vein to breccia ore, indicating that ore-forming fluids gradually become SO42-enriched and relatively oxidized. This body of evidence suggests that the Nadun Cu–Au mineralization may represent the root of a high sulfidation epithermal deposit.  相似文献   

8.
Dissolution rates of pressure solution (PS) for quartz aggregates in 0.002 M NaHCO3 solution were experimentally determined under low effective stress conditions of 0.42–0.61 MPa, and low temperatures of 25–45 °C. At temperatures of 25 °C, 35 °C, and 45 °C, the resultant silicon dissolution rates are 4.2 ± 1.2 × 10−15, 6.0 ± 1.0 × 10−15 and 7.8 ± 1.9 × 10−15 mol/cm2/s, respectively. Ratios between these dissolution rates and those of quartz sand at zero effective stress are 4.1 ± 1.2 at 25 °C, 3.0 ± 0.5 at 35 °C, and 2.4 ± 0.6 at 45 °C. As the uniaxial pressure was increased, the dissolution rate of PS also increased, though gradually decreased when the effective stress was kept constant. After the removal of stress, the dissolution rate was observed to increase once again. The activation energy of our PS experiments was determined to be approximately 24 kJ/mol, lower than the amount required for quartz sand dissolution to commence at zero effective stress. Our results clearly show that, even at such low temperature and effective stress, Si released into solution as a result of PS can be detected. This implies that experimental compaction of quartz aggregates can be measured even under such condition.  相似文献   

9.
The Carris orebody consists of two partially exploited W–Mo–Sn quartz veins formed during successive shear stages and multipulse fluid fillings. They cut the Variscan post-D3 Gerês I-type granite. The most important ore minerals are wolframite, scheelite, molybdenite and cassiterite. There are two generations of wolframite. The earlier generation of wolframite is rare and has the highest WO4Mn content (91 mol%) and the most common wolframite contains 26–57 mol% WO4Mn. Re–Os dating of molybdenite from the ore quartz veins and surrounding granite yields ages of 279 ± 1.2 Ma and 280.3 ± 1.2 Ma, respectively which are in very good agreement with the previous ID-TIMS U–Pb zircon age for the Carris granite (280 ± 5 Ma).3He/4He ratio of pyrite ranging between 0.73 and 2.71 Ra (1 Ra = 1.39 × 10 6) and high 3He/36Ar (0.8–5 × 10 3) indicate a mixture of a crustal radiogenic helium fluid with a mantle derived-fluid.The fluid inclusion studies on quartz intergrown with wolframite and scheelite, beryl and fluorite reveal that two distinct fluid types were involved in the genesis of this deposit. The first was a low to medium salinity aqueous carbonic fluid (CO2 between 4 and 14 mol%) with less than 1.95 mol% N2, which was only found in quartz associated with wolframite. The other was a low salinity aqueous fluid found in all the four minerals. The homogenization temperatures indicate minimum entrapment temperatures of 226–310 °C (average 280 °C) for the H2O–CO2–N2–NaCl fluid and average temperatures of 266 °C for scheelite and 242 °C, 190 °C and 160 °C for the last generations of beryl, fluorite and quartz, respectively. It was estimated that wolframite was deposited ~ 7 km depth, assuming a lithostatic pressure, probably due to strong pressure fluctuation caused by seismic events triggered by brittle tectonics during the exhumation event. Precipitation of scheelite and sulphides took place later, at the same depth, but under a hydrostatic or suprahydrostatic pressure regime, and probably caused by mixing between the magmatic–hydrothermal fluid and meteoric waters that deeply penetrated the basement during post-Variscan decompression.  相似文献   

10.
The large low-grade Piaotang W–Sn deposit in the southern Jiangxi tungsten district of the eastern Nanling Range, South China, is related to a hidden granite pluton of Jurassic age. The magmatic-hydrothermal system displays a zonation from an inner greisen zone to quartz veins and to peripheral veinlets/stringers (Five-floor zonation model). Most mineralization is in quartz veins with wolframite > cassiterite. The hidden granite pluton in underground exposures comprises three intrusive units, i.e. biotite granite, two-mica granite and muscovite granite. The latter unit is spatially associated with the W–Sn deposit.Combined LA-MC-ICP-MS U–Pb dating of igneous zircon and LA-ICP-MS U–Pb dating of hydrothermal cassiterite are used to constrain the timing of granitic magmatism and hydrothermal mineralization. Zircon from the three granite units has a weighted average 206Pb/238U age of 159.8 ± 0.3 Ma (2 σ, MSWD = 0.3). The cathodoluminescence (CL) textures indicate that some of the cassiterite crystals from the wolframite-cassiterite quartz vein system have growth zonations, i.e. zone I in the core and zone II in the rim. Dating on cassiterite (zone II) yields a weighted average 206Pb/238U age of 159.5 ± 1.5 Ma (2 σ, MSWD = 0.4), i.e. the magmatic and hydrothermal systems are synchronous. This confirms the classical model of granite-related tin–tungsten mineralization, and is against the view of a broader time gap of >6 Myr between granite magmatism and W–Sn mineralization which has been previously proposed for the southern Jiangxi tungsten district. The elevated trace element concentrations of Zr, U, Nb, Ta, W and Ti suggest that cassiterite (zone II) formed in a high-temperature quartz vein system related to the Piaotang granite pluton.  相似文献   

11.
The effect of fluorine on the solubilities of Mn-columbite (MnNb2O6), Mn-tantalite (MnTa2O6), zircon (ZrSiO4) and hafnon (HfSiO4) were determined in highly fluxed, water-saturated haplogranitic melts at 800 to 1000 °C and 2 kbar. The melt composition corresponds to the intersection of the granite minimum with the albite–orthoclase tieline (Ab72Or28) in the quartz–albite–orthoclase system (Q–Ab–Or), which is representative of a highly fluxed melt, from which high field strength element minerals may crystallize. The melt contains 1.7 wt.% P2O5, 1.05 wt.% Li2O and 1.83 wt.% B2O3. The main purpose of this study is to examine the effect of F on columbite, tantalite, zircon and hafnon solubility for a melt with this composition. Up to 6 wt.% fluorine was added as AgF in order to keep the aluminum saturation index (ASI, molar Al/[Na + K]) of the melt constant. In an additional experiment F was added as AlF3 to make a glass peraluminous. The nominal ASI of the melts are close to 1 for the minimum composition and approximately 1.32 in peraluminous glasses, but if Li is considered as an alkali, the molar ratio Al/[Na + K + Li] of the melts are alkaline (0.87) and subaluminous (1.09), respectively.The molar solubility products [MnO] 1 [Nb2O5] and [MnO] 1 [Ta2O5] are nearly independent of the F content of the melt, at approximately 18.19 ± 1.2 and 43.65 ± 2.5 × 10 4 (mol2/kg2), respectively for the minimum composition. By contrast, there is a positive dependence of zircon and hafnon solubilities on the fluorine content in the minimum composition, which increases from 2.03 ± 0.03 × 10 4 (mol/kg) ZrO2 and 4.04 ± 0.2 × 10 4 (mol/kg) HfO2 for melts with 0 wt.% F to 3.81 ± 0.3 × 10 4 (mol/kg) ZrO2 and 6.18 ± 0.04 × 10 4 (mol/kg) HfO2 for melts with 8 wt.% F. Comparison of the data from this work and previous studies indicates that ASI of the melt seems to have a stronger effect than the contents of fluxing elements in the melt and the overall conclusion is that fluorine is less important (relative to melt compositions) than previously thought for the control on the behavior of high field strength elements in highly evolved granitic melts. Moreover, this study confirms that although Nb, Ta, Zr and Hf are all high field strength elements, Nb–Ta and Zr–Hf are complexed differently in the melt.  相似文献   

12.
The radioactive isotope 36Cl, with a half-life of 301 ka, is a valuable chronometer for estimation of groundwater residence time up to 2 millions of years. Aerial thermonuclear fission bomb tests, performed during the late 1950s, injected a massive amount of this isotope into the atmosphere, which exceeded the natural fallout signal. Since this bomb pulse, atmospheric 36Cl deposition tends to return to natural fallout rate. The monitoring of this attenuation can provide a good opportunity to extend the use of this chronometer to shorter time spans. Venice’s lagoon alimentation zone shows groundwaters with residence times distributed over last fifty years. This permits the estimation of a continuous 36Cl deposition curve, free from latitudinal and seasonal variations of the signal. Three old groundwater samples, with residence times comprised in the range −900 to −8000 BP, allow the estimation of a mean natural deposition of 49 at m−2 s−1 and are in good agreement with 36Cl fallout observed for the last 40,000 years by (Plummer et al., 1997). For the bomb pulse period, a fallout of 5300 at m−2 s−1 was calculated. This was followed by a strong attenuation period, taking place until the 1980s, during which the fallout reached values ranging between 167 and 354 at m−2 s−1. The attenuation reached then a plateau: it experienced a slower lowering until the actual deposition, with fallout values calculated between 124 and 252 at m−2 s−1. This persistence of high deposition rate was classically attributed to biological and atmospherical recycling processes or underestimation of the natural atmospheric production of the 36Cl. Additional source of 36Cl production has been envisaged through the activation of chlorine radicals from stratospherical CFCs, leading to a 36Cl production rate comparable with that of Ar spallation from the first approximation. Lastly, the latitudinal factor of the attenuation of the fallout rate is discussed and the impact of the jet streams is proposed as an explanation for the discrepancies in the attenuation rate.  相似文献   

13.
The Koru and Tesbihdere mining districts in Biga Peninsula, Northwestern Turkey, consist of twelve deposits covering approximately 12 km2. The epithermal Au-Ag enriched base metal veins and associated low-grade breccia and stockwork at Koru and Tesbihdere are hosted by Oligocene subaerial and calc-alkaline volcanic rocks including basaltic andesite lavas, dacitic lava-tuffs, rhyolitic lava-domes and tuffs. NW- to N-trending strike-slip faults and E- and NE-trending faults constitute the most important ore-controlling structures in the Koru and Tesbihdere districts respectively. In the Koru mining district, galena is the dominant ore mineral in barite-quartz veins containing sphalerite, chalcopyrite, pyrite, bornite, enargite and tennantite. According to base metal content, the Tesbihdere mining district can be subdivided into sphalerite-galena dominated Tesbihdere mineralization and chalcopyrite-pyrite dominated Bakır and Kuyu Zones mineralization. Gold is present in small quantities with maximum 3.14 g/t Au values either as free grains in quartz or as micro inclusions in pyrite and galena. The most widespread silver minerals are polybasite, pearceite, argentite and native silver which commonly occur as replacements of galena, sphalerite and pyrite, and other sulfides, or as fillings of microfractures in sulfides and quartz.Microthermometric measurements of primary liquid-rich fluid inclusions in sphalerite, barite and quartz in Koru indicate that the veins were formed at temperatures between 407 and 146 °C from fluids with salinities between 0.7 and 12.5 wt.% equiv. NaCl. Barite from the Tahtalıkuyu, Kuyutaşı and 5th Viraj mineralization show the highest homogenization temperatures. Fluid inclusion data for ore-stage quartz and sphalerite from the Tesbihdere mining district, indicate that these minerals were deposited at temperatures between 387 and 232 °C from more diluted fluids with moderate salinities between 0.2 and 10.6 wt.% NaCl equiv. Tahtalıkuyu and 5th Viraj mineralization show only boiling trends while Kuyutaşı, Tesbihdere, Bakır and Kuyu Zones mineralization show both boiling and isothermal mixing trends. The O and H isotope compositions of ore fluids from the Tahtalıkuyu (δ18O =  1.40 to 0.25‰; δD =  72.49 to − 52.68‰) and Kuyutaşı (δ18O =  2.29 to 3.59‰; δD =  90.70 to − 70.93‰) mineralization indicate that there was a major contribution from a magmatic component to ore genesis. Based on 9 quartz samples associated with orebodies at the Tesbihdere mining district, the relatively higher δ18O and lower δD isotope compositions from hydrothermal fluids could be attributed to a relatively dilute fluid derived by the mixing with meteoric water. The Pb isotope compositions also reveal that most of the lead in both mining districts is derived from the Oligocene-Miocene magmatic rocks, possibly with smaller contributions from the Eocene magmatic rocks.  相似文献   

14.
Rock magnetic properties have been measured in a loess–paleosol sequence in the Gorina Quarry, which previously have been suggested to contain records of the Brunhes and part of the Matuyama polarity chrons. Lowest susceptibility values (below 50 × 10−8 m3/kg) are generally related to intensive weathered horizons, whereas highest values are obtained in loess layers (250 × 10−8 m3/kg) as a result of the greater ferromagnetic content in the parent material. The frequency-dependent part of susceptibility ranges between 0.5% and 6.8%; the higher value was obtained in B horizons of paleosols, which can be attributed to superparamagnetic contributions. Hysteresis loops indicate that the differences in ferrimagnetic and paramagnetic content in the sequence reflect the degree of pedogenesis. The same conclusion can be drawn with isothermal remanent magnetization. This point is relevant for determining past climatic changes because the wind-blown titanomagnetites from Cordillera de Los Andes during glacial periods were altered during interglacial periods. The mode of pedogenesis appears not only to control such alterations but also to produce other magnetic minerals.  相似文献   

15.
《Quaternary Research》2014,81(3):531-537
We investigate the changes at nine glaciers in the Ningchan and Shuiguan river source, eastern Qilian Mountains, between 1972 and 2010. According to analysis of topographic maps and multispectral satellite data, all nine glaciers in the study area have retreated, by a maximum of 250 ± 57.4 m and a minimum of 91 ± 57.4 m. The total glacier area decreased by 1.20 km2, corresponding to 9.9% of the glacierized area in 1972. Comparing the two DEMs generated from the topographic maps and Real-Time Kinematic GPS data, the mean glacier thinning rate was 0.64 m yr 1 between 1972 and 2010. The most significant thinning generally occurred on the termini. The ice-volume loss was about 106.8 ± 46.7 × 10 3 km3 (equal to 90.8 ± 39.7 × 10 3 km3 w.e.), which suggested a mean water discharge of 0.1 ± 0.05 m3/s during 1972–2010. Based on analysis of meteorological data, the summer temperature (June–August) tends to increase over a similar time period. The consistency of temperature increase and glacier shrinkage allows us to suggest that air temperature plays an important role in glacier changes in this region.  相似文献   

16.
The Lanping–Simao Basin (LSB) is a Mesozoic–Cenozoic continental margin rift basin in Western China. It formed during the opening and closing of the Tethys Ocean. This basin is also known as a “metal belt” as it hosts several metal deposits, besides, the Mengye potash deposit. However, the exact dates of the formation either in the Paleocene or the Cretaceous, and thus the origins of the marine, continental or mixed origins of the Mengye deposits, remain disputed. Based on the basin's evolution, materials of marine origin and/or remnant seawater should be present, but instead the salt layers of the Mengye potash deposit present typically continental lithological features. This study examines and reviews evaporative minerals, Br/Cl and I/Cl molar ratios, and isotopes of S, B, and Sr·I and I/Cl data for this area has not been previously reported. The basin's evaporative minerals are dominated by halite and sylvite. The amounts of anhydrite, chlorocalcite, langbeinite, glaserite, tachyhydrite and glauberite are small. All of these form in both marine and continental environments. The values of I and the I/Cl molar ratios of halite and sylvite are from 0.07 to 0.27 ppm, and from 0.03 to 0.11 × 10 6, respectively, dependent on organic substances. Br and molar Br/Cl values are from 89.08 to 555.45 ppm and from 0.06 × 10 3 to 0.38 × 10 3, respectively. All of the Br/Cl molar ratios are lower than those of seawater, and most of them are < 0.1, suggesting continental or mixed origin. Previously published δ34S, δ11B and 87Sr/86Sr values for evaporative minerals indicate a continental origin for the Mengye potash deposit. However, materials of hydrothermal origin are widely distributed in the basin and may have played an active role for the formation of the potash deposit. Thus the Mengye potash deposit could be of continental origin, with a remnant seawater trace.  相似文献   

17.
《Applied Geochemistry》2004,19(8):1255-1293
In order to investigate the mechanism of As release to anoxic ground water in alluvial aquifers, the authors sampled ground waters from 3 piezometer nests, 79 shallow (<45 m) wells, and 6 deep (>80 m) wells, in an area 750 m by 450 m, just north of Barasat, near Kolkata (Calcutta), in southern West Bengal. High concentrations of As (200–1180 μg L−1) are accompanied by high concentrations of Fe (3–13.7 mg L−1) and PO4 (1–6.5 mg L−1). Ground water that is rich in Mn (1–5.3 mg L−1) contains <50 μg L−1 of As. The composition of shallow ground water varies at the 100-m scale laterally and the metre-scale vertically, with vertical gradients in As concentration reaching 200 μg L−1 m−1. The As is supplied by reductive dissolution of FeOOH and release of the sorbed As to solution. The process is driven by natural organic matter in peaty strata both within the aquifer sands and in the overlying confining unit. In well waters, thermo-tolerant coliforms, a proxy for faecal contamination, are not present in high numbers (<10 cfu/100 ml in 85% of wells) showing that faecally-derived organic matter does not enter the aquifer, does not drive reduction of FeOOH, and so does not release As to ground water.Arsenic concentrations are high (≫50 μg L−1) where reduction of FeOOH is complete and its entire load of sorbed As is released to solution, at which point the aquifer sediments become grey in colour as FeOOH vanishes. Where reduction is incomplete, the sediments are brown in colour and resorption of As to residual FeOOH keeps As concentrations below 10 μg L−1 in the presence of dissolved Fe. Sorbed As released by reduction of Mn oxides does not increase As in ground water because the As resorbs to FeOOH. High concentrations of As are common in alluvial aquifers of the Bengal Basin arise because Himalayan erosion supplies immature sediments, with low surface-loadings of FeOOH on mineral grains, to a depositional environment that is rich in organic mater so that complete reduction of FeOOH is common.  相似文献   

18.
《Applied Geochemistry》2005,20(3):639-659
The oxidation of sulfide minerals from mine wastes results in the release of oxidation products to groundwater and surface water. The abandoned high-sulfide Camp tailings impoundment at Sherridon, Manitoba, wherein the tailings have undergone oxidation for more than 70 a, was investigated by hydrogeological, geochemical, and mineralogical techniques. Mineralogical analysis indicates that the unoxidized tailings contain nearly equal proportions of pyrite and pyrrhotite, which make up to 60 wt% of the total tailings, and which are accompanied by minor amounts of chalcopyrite and sphalerite, and minute amounts of galena and arsenopyrite. Extensive oxidation in the upper 50 cm of the tailings has resulted in extremely high concentrations of dissolved SO4 and metals and As in the tailings pore water (pH < 1, 129,000 mg L−1 Fe, 280,000 mg L−1 SO4, 55,000 mg L−1 Zn, 7200 mg L−1 Al, 1600 mg L−1 Cu, 260 mg L−1 Mn, 110 mg L−1 Co, 97 mg L−1 Cd, 40 mg L−1 As, 15 mg L−1 Ni, 8 mg L−1 Pb, and 3 mg L−1 Cr). The acid released from sulfide oxidation has been extensive enough to deplete carbonate minerals to 6 m depth and to partly deplete Al-silicate minerals to a 1 m depth. Below 1 m, sulfide oxidation has resulted in the formation of a continuous hardpan layer that is >1 m thick. Geochemical modeling and mineralogical analysis indicate that the hardpan layer consists of secondary melanterite, rozenite, gypsum, jarosite, and goethite. The minerals indicated mainly control the dissolved concentrations of SO4, Fe, Ca and K. The highest concentrations of dissolved metals are observed directly above and within the massive hardpan layer. Near the water table at a depth of 4 m, most metals and SO4 sharply decline in concentration. Although dissolved concentrations of metals and SO4 decrease below the water table, these concentrations remain elevated throughout the tailings, with up to 60,600 mg L−1 Fe and 91,600 mg L−1 SO4 observed in the deeper groundwater. During precipitation events, surface seeps develop along the flanks of the impoundment and discharge pore water with a geochemical composition that is similar to the composition of water directly above the hardpan. These results suggest that shallow lateral flow of water from a transient perched water table is resulting in higher contaminant loadings than would be predicted if it were assumed that discharge is derived solely from the deeper primary water table. The abundance of residual sulfide minerals, the depletion of aluminosilicate minerals in the upper meter of the tailings and the presence of a significant mass of residual sulfide minerals in this zone after 70 a of oxidation suggest that sulfide oxidation will continue to release acid, metals, and SO4 to the environment for decades to centuries.  相似文献   

19.
The Shapinggou porphyry Mo deposit, one of the largest Mo deposits in Asia, is located in the Dabie Orogen, Central China. Hydrothermal alteration and mineralization at Shapinggou can be divided into four stages, i.e., stage 1 ore-barren quartz veins with intense silicification, followed by stage 2 quartz-molybdenite veins associated with potassic alteration, stage 3 quartz-polymetallic sulfide veins related to phyllic alteration, and stage 4 ore-barren quartz ± calcite ± pyrite veins with weak propylitization. Hydrothermal quartz mainly contains three types of fluid inclusions, namely, two-phase liquid-rich (type I), two- or three-phase gas-rich CO2-bearing (type II) and halite-bearing (type III) inclusions. The last two types of fluid inclusions are absent in stages 1 and 4. Type I inclusions in the silicic zone (stage 1) display homogenization temperatures of 340 to 550 °C, with salinities of 7.9–16.9 wt.% NaCl equivalent. Type II and coexisting type III inclusions in the potassic zone (stage 2), which hosts the main Mo orebodies, have homogenization temperatures of 240–440 °C and 240–450 °C, with salinities of 34.1–50.9 and 0.1–7.4 wt.% NaCl equivalent, respectively. Type II and coexisting type III inclusions in the phyllic zone (stage 3) display homogenization temperatures of 250–345 °C and 220–315 °C, with salinities of 0.2–6.5 and 32.9–39.3 wt.% NaCl equivalent, respectively. Type I inclusions in the propylitization zone (stage 4) display homogenization temperatures of 170 to 330 °C, with salinities lower than 6.5 wt.% NaCl equivalent. The abundant CO2-rich and coexisting halite-bearing fluid inclusion assemblages in the potassic and phyllic zones highlight the significance of intensive fluid boiling of a NaCl–CO2–H2O system in deep environments (up to 2.3 kbar) for giant porphyry Mo mineralization. Hydrogen and oxygen isotopic compositions indicate that ore-fluids were gradually evolved from magmatic to meteoric in origin. Sulfur and lead isotopes suggest that the ore-forming materials at Shapinggou are magmatic in origin. Re–Os dating of molybdenite gives a well-defined 187Re/187Os isochron with an age of 112.7 ± 1.8 Ma, suggesting a post-collisional setting.  相似文献   

20.
The isotopic composition of water and dissolved Sr as well as other geochemical parameters at the 2516 m deep Outokumpu Deep Drill Hole, Finland were determined. The drill hole is hosted by Palaeoproterozoic turbiditic metasediments, ophiolite-derived altered ultramafic rocks and pegmatitic granitoids. Sodium–Ca–Cl and Ca–Na–Cl-rich waters (total dissolved solids up to ca. 70 g L−1) containing significant amounts of gas, mainly CH4 (up to 32 mmol L−1), N2 (up to 10 mmol L−1), H2 (up to 3.1 mmol L−1) and He (up to 1.1 mmol L−1) discharge from fracture zones into the drill hole. This water is distinct from the shallow fresh groundwater of the area, and has an isotopic composition typical of shield brines that have been modified during long-term water–rock interaction. Based on water stable isotopes and geochemistry, the drill hole water profile can be divided into five water types, each discharging from separate fracture systems and affected by the surrounding rocks. The δ2H varies from −90‰ to −56‰ (VSMOW) and δ18O from −13.5‰ to −10.4‰ (VSMOW), plotting clearly above the Global and Local Meteoric Water Lines on a δ2H vs. δ18O diagram. The 87Sr/86Sr ratios range between 0.72423 and 0.73668. Simple two-component mixing between 2H and 18O rich end-member brine and meteoric water cannot explain the water stable isotopic composition and trends observed. Instead, hydration of silicates by ancient groundwaters recharged under different climatic conditions, warmer than at present, is the most likely mechanism to have caused the variation of the δ2H and δ18O values. Water types correlate with changes in microbial communities implying that different ecosystems occur at different depths. The different water types and microbial populations have remained isolated from each other and from the surface for long periods of time, probably tens of millions of years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号