首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dual isotopic analysis of nitrate (15N/14N and 18O/16O) is increasingly used to investigate the environmental impacts of human-induced elevated atmospheric nitrate deposition. In forested ecosystems, the nitrate found in surface water and groundwater can originate from two sources: (1) atmospheric deposition, and (2) nitrate produced from nitrification in forest soils (microbial nitrate). Application of the dual nitrate isotope technique for determining the relative importance of nitrate sources in forested catchments requires knowledge of the isotopic composition of microbial nitrate. We excluded precipitation inputs to three zero-tension lysimeters installed below the F-horizon (Oe) at the Turkey Lakes Watershed (TLW) in order to measure the isotopic composition of microbial nitrate produced in situ. To our knowledge, this is the first in situ study of the isotopic composition of microbial nitrate in forest soils. Over a 2-week period, nitrate produced by nitrification was periodically flushed to the lysimeters by watering the area with a nitrogen-free solution. Nitrate produced in the forest floor had δ18O values ranging from +3.1‰ to +10.1‰ with a mean of +5.2‰. These values were only slightly higher than from the expected value of +1.0‰ calculated for chemolithoautotrophic nitrification, which depends on the δ18O of available O2 and H2O. In addition to nitrate, we also collected soil gas to determine if soil respiration and O2 diffusion affected soil gas δ18O-O2, which is typically assumed to be identical to atmospheric O2 (+23.5‰) when calculating microbial nitrate δ18O values. No significant difference in δ18O-O2 from atmospheric O2 was found in forest soils to a depth of 55 cm, and therefore 18O-enrichment of soil gas O2 could not explain the modest enrichment of nitrate 18O. Evaporative 18O-enrichment of soil water available to nitrifiers in the forest floor is a plausible mechanism for slightly elevated nitrate δ18O values. However, the observed nitrate δ18O values could also be explained by a minor contribution of nitrate from heterotrophic nitrifiers. The δ15N of nitrate produced ranged from −10.4 to −7.3‰ and, as expected, was depleted in 15N relative to soil organic nitrogen. Microbial nitrate produced in the forest floor was also significantly depleted in 15N relative to microbial nitrate exported in groundwater and headwater streams at the TLW. We hypothesize that 15N-depleted forest floor nitrate is not detected in groundwaters largely because of: (1) the immobilization of forest floor nitrate in the mineral soil and (2) the mixing of the remaining forest floor nitrate with nitrate generated in the mineral soil, which is expected to have higher δ15N values. This study demonstrates that current methods of calculating a priori the δ18O of microbial nitrate provide a reasonable value for nitrate produced by nitrification at the TLW.  相似文献   

2.
<正>The Turpan-Hami Basin in eastern Xinjiang is one of the driest regions on Earth and a premier environment to form and preserve nitrate.A large nitrate ore field in this basin was found recently.It is estimated there are about 2.5 billion tons of resources of nitrate,and the amount is as much as the Atacama Desert super-scale nitrate deposit in Chile.Nitrate is one of a few minerals with mass-independent fractionation(MIF),and the oxygen isotope MIF is an effective method to determine the source of nitrate.Theδ~(17)O,δ~(18)O of nitrate were measured by fluorination and thermal decomposition method.The date indicated that this is the first time that oxygen isotope MIF has been located in inland nitrate minerals.The results obtained by two methods are similar,⊿~(17)=δ~(17)O-0.52×δ~(18)O=12‰-17‰.The experiment and observation data proved that oxygen isotope MIF of nitrate are the result of photochemical reactions in the troposphere and stratosphere.Thus, evidence from MIF oxygen isotopic compositions indicate that long term atmospheric deposition of nitrate aerosol particles produced by photochemical reactions is the source of the deposits.  相似文献   

3.
The stable isotope composition (δ15N and δ18O) of nitrate was measured during Summer 1999 in the anaerobic hypolimnion of eutrophic Lake Lugano (Switzerland). Denitrification was demonstrated by a progressive nitrate depletion coupled to increasing δ15N and δ18O values for residual nitrate. Maximum δ15N and δ18O values amounted to 27.2 and 15.7‰, respectively.15N and 18O enrichment factors for denitrification (ε) were estimated using a closed-system model and a dynamic diffusion-reaction model. Using the Rayleigh equation (closed-system approach), we obtained ε values of −11.2 and −6.6‰ for nitrogen and oxygen, respectively. The average ε values derived using the diffusion-reaction model were determined to be −20.7 ± 3.8 for nitrogen and −11.0 ± 1.7 for oxygen. Both N and O isotope fractionation appeared to be lower when denitrification rates where high, possibly in association with high organic carbon availability. In addition, variations in the isotope effects may be attributed to the variable importance of sedimentary denitrification having only a small isotope effect on the water column. The combined measurement of N and O isotope ratios in nitrate revealed that coupled nitrification-denitrification in the open-water was of minor importance. This is the first study of nitrogen and oxygen isotope effects associated with microbial denitrification in a natural lake. Moreover, this study confirms the high potential of δ18O of nitrate as a valuable biogeochemical tracer in aquatic systems, complementing nitrate δ15N.  相似文献   

4.
《Geochimica et cosmochimica acta》1999,63(11-12):1825-1836
Oxygen isotope data have been obtained for silicate inclusions in diamonds, and similar associated minerals in peridotitic and eclogitic xenoliths from the Finsch kimberlite by laser-fluorination. Oxygen isotope analyses of syngenetic inclusions weighing 20–400 μg have been obtained by laser heating in the presence of ClF3. 18O/16O ratios are determined on oxygen converted to CO2 over hot graphite and, for samples weighing less than 750 μg (producing <12 μmoles O2) enhanced CO production in the graphite reactor causes a systematic shift in both δ13C and δ18O that varies as a function of sample weight. A “pressure effect” correction procedure, based on the magnitude of δ13C (CO2) depletion relative to δ13C (graphite), is used to obtain corrected δ18O values for inclusions with an accuracy estimated to be ±0.3‰ for samples weighing 40 μg.Syngenetic inclusions in host diamonds with similar δ13C values (−8.4‰ to −2.7‰) have oxygen isotope compositions that vary significantly, with a clear distinction between inclusions of peridotitic (+4.6‰ to +5.6‰) and eclogitic paragenesis (+5.7‰ to +8.0‰). The mean δ18O composition of olivine inclusions is indistinguishable from that of typical peridotitic mantle (5.25 ± 0.22‰) whereas syngenetic purple garnet inclusions possess relatively low δ18O values (5.00 ± 0.33‰). Reversed oxygen isotope fractionation between olivine and garnet in both diamond inclusions and diamondiferous peridotite xenoliths suggests that garnet preserves subtle isotopic disequilibrium related to genesis of Cr-rich garnet and/or exchange with the diamond-forming fluid. Garnet in eclogite xenoliths in kimberlite show a range of δ18O values from +2.3‰ to +7.3‰ but garnets in diamondiferous eclogites and as inclusions in diamond all have values >4.7‰.  相似文献   

5.
Isotopic analysis of nitrate and sulfate minerals from the nitrate ore fields of the Atacama Desert in northern Chile has shown anomalous 17O enrichments in both minerals. Δ17O values of 14-21 ‰ in nitrate and 0.4 to 4 ‰ in sulfate are the most positive found in terrestrial minerals to date. Modeling of atmospheric processes indicates that the Δ17O signatures are the result of photochemical reactions in the troposphere and stratosphere. We conclude that the bulk of the nitrate, sulfate and other soluble salts in some parts of the Atacama Desert must be the result of atmospheric deposition of particles produced by gas to particle conversion, with minor but varying amounts from sea spray and local terrestrial sources. Flux calculations indicate that the major salt deposits could have accumulated from atmospheric deposition in a period of 200,000 to 2.0 M years during hyper-arid conditions similar to those currently found in the Atacama Desert. Correlations between Δ17O and δ18O in nitrate salts from the Atacama Desert and Mojave Desert, California, indicate varying fractions of microbial and photochemical end-member sources. The photochemical nitrate isotope signature is well preserved in the driest surficial environments that are almost lifeless, whereas the microbial nitrate isotope signature becomes dominant rapidly with increasing moisture, biologic activity, and nitrogen cycling. These isotopic signatures have important implications for paleoclimate, astrobiology, and N cycling studies.  相似文献   

6.
Recent (<50 years old) freshwater cyanobacterial carbonates from diverse environments (streams, lakes, waterfalls) throughout Britain and Ireland were analysed for their stable carbon and oxygen isotope compositions. The mean δ18O value of ?5–9‰ PDB for river and stream data represents calcite precipitation in equilibrium with the mean oxygen isotopic composition of precipitation in central Britain (?7–5‰SMOW) assuming a mean water temperature of 9°C. The mean δ18O of lake data, ?4–5‰ PDB, is statistically different, reflecting the effects of residence time and/or variations in the oxygen isotopic composition of rainfall. Carbon isotopes have wide variations in both fluviatile and lake data sets (+ 3 to ?12‰ PDB). These variations are principally controlled in the fluviatile samples by contribution of isotopically light ‘soil zone’ carbon relative to isotopically heavier carbon from limestone aquifer rock dissolution. Lake samples have the heaviest carbon isotope values, reflecting a trend toward isotopic equilibrium between atmospheric CO2 and aqueous HCO?3. We infer that isotopic compositions of ancient cyanobacterial carbonates should also record environmental information, although the effects of stabilization and diagenesis on primary δ18O values will need careful consideration. Primary carbon isotope compositions should be well preserved, although in marine samples values will be buffered by the isotopic composition of aqueous marine bicarbonate.  相似文献   

7.
The δ15N-value has often tentatively been used for the assignment of nitrate to its origin. However, the very complex correlations between the different nitrogen pools, mostly accompanied by isotope discriminations, oppose a very limited application of this method. On the other hand, the oxygen isotope abundance should be more indicative, because industrially produced NO3 must nearly exclusively contain oxygen from O2 (δ18O = +23.5%.), while NO3 originating from a nitrification process must have water (δ18O ≅ -10%.) as the main oxygen source.For the proof of this reflection a method for the precise oxygen isotope analysis of NO3 was developed. Its application to the δ-value determination of commercial fertilizers and NO3 formed by nitrification absolutely confirmed the above predictions. Similarly, the isotope abundance of NO3-samples from ground and drinking water of known origin corresponded to the expected values. On the basis of these results and taking into account the known isotope abundance shifts due to isotope effects of nitrification and denitrification, a diagram between δ15N- and δ18O-values for NO3 was developed, which permitted the assignment of NO3 in unknown water samples to its probable source and origin.  相似文献   

8.
The stable isotope nitrogen-15 (15N) is a robust indicator of nitrogen (N) source, and the joint use of δ15N and δ18O–NO3 ? values can provide more useful information about nitrate source discrimination and N cycle process. The δ15N and δ18O–NO3 ? values, as well as major ion tracers, from Taihu Lake in east China were investigated to identify the primary nitrate sources and assess nitrate biogeochemical process in the present study. The results show that the nitrate concentration in West Taihu Lake (WTL) was generally higher than those in East Taihu Lake (ETL) and its upstream inflow rivers. The NO3 ?/Cl? value combined with mapping of δ15N–NO3 ? and NO3 ? concentration suggest that the mixing process should play a major effect in WTL, and denitrification was the dominant N transformation process in WTL. A linear relationship of close to ~1: 2 was observed between δ15N–NO3 ? and δ18O–NO3 ? values in WTL, confirming the occurrence of denitrification in WTL. The δ15N–NO3 ? data imply that sewage and manure were the principal nitrate sources in WTL and its feeder rivers, while the nitrate in ETL might derive from soil organic nitrogen and atmospheric deposition. The δ18O–NO3 ? data indicate most of nitrate from microbial nitrification of organic nitrogen matter possibly make a significant contribution to the lake.  相似文献   

9.
It is often argued that the δ18O value of oceanic water was maintained close to 0‰ for hundreds of millions of years, as a consequence of oxygen isotope exchange between oceanic crust and seawater. However, for several decades, the interpretation of the biosedimentary oxygen isotope record has conflicted with the igneous record because, with increasing age, a general trend of decreasing δ18O values (about 6‰) is observed in most carbonates, cherts and phosphates, especially for the Paleozoic and early Mesozoic. We developed a dynamical model of seawater-crust interaction that computes the δ18O value in these two reservoirs as function of time. This model takes into account the continuous production of crust at oceanic ridges, its expansion rate, the permeability profile with space and time, the mineralogical mode of the crust, and the kinetics of oxygen isotope exchange between rock-forming minerals and seawater. The model indicates that the δ18O value of seawater may vary by ±2‰ with a time response ranging from 5 to 50 Ma for expansion rates of 1 to 10 cm.a−1. The variation of ±2‰ is fixed by both integrated water-rock ratio and closure time of the seawater-crust system by sediments. Variations in the oxygen isotope ratio of seawater through time have important implications for the interpretation of the systematically low δ18O values of pre-Jurassic marine sediments. According to our model, marine paleotemperatures could be up to 10°C lower than those expected when applying the classical hypothesis of an ice-free ocean with a δ18O value of −1‰.  相似文献   

10.
New data are presented on the distribution of oxygen isotopes and conditions of the local isotope equilibrium in high-Al rocks rocks of Khitostrov Island showing abnormally low δ18O values (below–25‰). The temperatures of isotope equilibrium are within 400–475°C. The minimum δ18O values have been registered in the in plagioclase, whereas the same phases in kyanite-bearing rocks lacking corundum demonstrate δ18O values usually 3–5‰ higher. The fluid δ18O value varies from–22 to–16‰ at 475 ± 15°C, from–18 to–23‰ at 425 ± 25°C, and from–17 to–22‰ at 380 ± 15°C. The results obtained do not require abnormal depletion of δ18O values owing to the infiltration of an external fluid under the Svecofennian transformations. The association of corundum-bearing rocks with the basic intrusions, the presence of zircon cores of older ages compared to these rocks, and the peculiarities of rock chemistry may be ascribed to the fact that lower crustal layers of ancient rocks depleted in δ18O before metamorphism were captured by basite melts.  相似文献   

11.
The interpretation of climatic information from stalagmites has traditionally been a complex research problem, with oxygen isotopes playing a particularly important role in global climate change studies. This study investigates the relationship between oxygen isotope composition of the atmospheric in precipitation and cave drip water at Panlong cave in southwest China on seasonal timescales of variability. Time series seasonal variability was derived from Panlong cave in Guilin by collecting daily precipitation samples for stable isotope analysis during 2012. Results indicate that δ18O of precipitation contains a clear seasonal variation whereby higher values are mainly distributed during winter and lower values during summer. Seasonal variations in water sources affect the precipitation δ18O values. Drip water δ18O also displayed a seasonal cycle which is attenuated relative to δ18O of precipitation. Drip water time series display seasonal cycle ranges from 1.5 to 3.5 ‰ relative to Vienna Standard Mean Ocean Water, which mainly follow the precipitation δ18O seasonal cycle. Seasonal variation in drip water δ18O supports interpretations of the stalagmite δ18O record as a paleoclimate proxy sensitive to the local environment. This monitoring experiment revealed that drip water must be transported through the epikarst in approximately 1.5 months during cold periods, and <0.5 months during warm periods. Different residence time percolation is mainly affected by the atmospheric precipitation amount, depending on whether soil moisture reaches saturation.  相似文献   

12.
Stable isotope tracing and analysis play an important role in interpretation of hydrological and ecological processes at the watershed scale and can provide information regarding the flow path, water source, nutrient loss and biogeochemical cycles of a system. In this study, environmental isotopes (δ18O-H2O, δD, δ15N-NO3 ?, δ18O-NO3 ?) and chemical compositions of surface water in Guizhou Province, China, were measured to evaluate the primary sources of nitrate and characterize the processes affecting nitrate as well as its correlation with vegetation cover in karstic areas. The δ15N and δ18O-NO3 ? levels ranged from +1.3 to +9.8 ‰ and +4.7 to +16.9 ‰, respectively, which indicated that nitrate in water from the investigated area primarily originated from nitrification of soil organic matter during the sampling period. There was also a wide range of isotopes in the water and high contents of nitrate in karstic areas with poor vegetation cover, indicating that water and nutrient loss were serious problems hindering plant growth in the study areas. For example, there was a positive relationship between isotopic composition and nitrate content in the natural forest and negative relationship in Libo County nearby, which suggested that the nitrate fate was affected by land use and human disturbance.  相似文献   

13.
《International Geology Review》2012,54(15):1909-1921
This paper reports the carbon and oxygen isotope compositions of lacustrine carbonate sediments from the Palaeogene Shahejie Formation, Qikou depression, Bohaiwan Basin, with the aim of determining the palaeoenvironmental conditions in the region. Results from Es2, the second member of the Shahejie Formation, showed values of δ13C and δ18O from –1.2‰ to +2.4‰ (average +0.6‰) and from –6.8‰ to –4.7‰ (average –5.7‰), respectively, suggesting a relatively hot climate attending deposition. The slightly closed nature of the lake, which contains brackish water, resulted in higher carbonate δ13C and δ18O values than in a meteoric environment. The values of δ13C and δ18O preserved within the carbonates of the overlying lower Shahejie I (Es1) varied between +1.3‰ and +4.9‰ (average +3.2‰) and from ?4.4‰ to ?1.8‰ (average ?3.1‰), respectively, indicating that the climate became colder at that time. Subsequently, a marine transgression caused the salinity of the lake water to increase. The values of δ13C and δ18O were controlled by salinity. The high δ13C values were also influenced by the rapid burial of the lake organisms and by algal photosynthesis. Values of δ13C and δ18O from carbonates in upper Es1 ranged from ?8.0‰ to +11.0‰ (average +10.1‰) and from ?5.0‰ to ?1.5‰ (average ?3.4‰), respectively, indicating a slight increase in the temperature over time. In the closed and reducing environment, extremes in δ13C values resulted from biochemical fermentation. The positive δ13C excursion recorded in the carbonates of the Shahejie Formation in the Qikou depression indicates that the palaeoclimate underwent a significant transformation during the Eocene and the Oligocene.  相似文献   

14.
The extent of denitrification in a small agricultural area near a river in Yangpyeong, South Korea, was determined using multiple isotopes, groundwater age, and physicochemical data for groundwater. The shallow groundwater at one monitoring site had high concentrations of NO3-N (74–83 mg L?1). The δ15N-NO3 values for groundwater in the study area ranged between +9.1 and +24.6‰ in June 2014 and +12.2 to +21.6‰ in October 2014. High δ15N-NO3 values (+10.7 to +12.5‰) in both sampling periods indicated that the high concentrations of nitrate in the groundwater originated from application of organic fertilizers and manure. In the northern part of the study area, some groundwater samples showed elevated δ15N-NO3 and δ18O-NO3 values, which suggest that nitrate was removed from the groundwater via denitrification, with N isotope enrichment factors ranging between ?4.8 and ?7.9‰ and O isotope enrichment factors varying between ?3.8 and ?4.9‰. Similar δD and δ18O values of the surface water and groundwater in the south appear to indicate that groundwater in that area was affected by surface-water infiltration. The mean residence times (MRTs) of groundwater showed younger ages in the south (10–20 years) than in the north (20–30 years). Hence, it was concluded that denitrification processes under anaerobic conditions with longer groundwater MRT in the northern part of the study area removed considerable amounts of nitrate. This study demonstrates that multi-isotope data combined with physicochemical data and age-dating information can be effectively applied to characterize nitrate contaminant sources and attenuation processes.  相似文献   

15.

Sideritic ironstones in Tertiary lacustrine oil shale from the Lowmead and Duaringa Basins in Queensland, contain two distinctive types of siderite in the ironstone bands: sphaerosiderite in the mudstone and coal, and finely crystalline siderite in the lamosite. The petrological evidence indicates that the siderite in the ironstone bands formed eogenetically by growing displacively within the soft sediment. Chemically the siderite is very pure though the sphaerosiderite sometimes shows compositional zoning. Stable oxygen and carbon isotope analyses of the siderite show a wide range of values from ‐12.8‰ to ‐2.4 %0 δ18O (PDB) and ‐5.5‰ to +12.9‰ δ13C (PDB) for the Lowmead Basin; and ‐9.6‰ to ‐1.2‰ δ18O (PDB) and ‐18.6‰ to +16.4‰ δ13C (PDB) for the Duaringa Basin. The oxygen isotope data indicate that the siderite formed in freshwater environments but not in isotopic equilibrium with the formation waters. Kinetic factors offer the most plausible explanation for the anomalously light δ18O values of many of the siderites. The carbon isotope data show that the carbonate for the formation of the siderite originated predominantly from methanogenic fermentation processes but there was also the varying influence of bacterial oxidation processes. The different petrological and isotopic characteristics of the ironstones broadly reflect variations in their depositional environments and the variable eogenetic conditions in which the siderite formed. There is no suitable single model to explain the genesis of all the different types of ironstones other than that a synsedimentary iron‐enrichment process is involved.  相似文献   

16.
《Geochimica et cosmochimica acta》1999,63(13-14):1981-1989
In order to better understand environmental factors controlling oxygen isotope shifts in autochthonous lacustrine carbonate sequences, we undertook an extensive one-year study (March, 1995 to February, 1996) of water-column chemistry and daily sediment trap material from a small lake in Central Switzerland. Comparisons between calculated equilibrium isotope values, using the fractionation equation of Friedman and O’Neil, (1977) and measured oxygen isotope ratios of calcite in the sediment-traps reveal that oxygen isotopic values of autochthonous calcite (δ18O) are in isotopic equilibrium with ambient water during most of the spring and summer, when the majority of the calcite precipitates. In contrast, small amounts of calcite precipitated in early-spring and again in late-autumn are isotopically depleted in 18O relative to the calculated equilibrium values, by as much as 0.8‰. This seasonally occurring apparent isotopic nonequilibrium is associated with times of high phosphorous concentrations, elevated pH (∼8.6) and increased [CO32−] (∼50 μmol/l) in the surface waters. The resulting weighted average δ18O value for the studied period is −9.6‰, compared with a calculated equilibrium δ18O value of −9.4‰. These data convincingly demonstrate that δ18O of calcite are, for the most part, a very reliable proxy for temperature and δ18O of the water.  相似文献   

17.
江西德兴铜厂铜矿水-岩体系氢氧同位素演化   总被引:4,自引:0,他引:4       下载免费PDF全文
 江西铜厂铜矿床露天采场岩石76个全岩氧同位素组成表明,该超大型铜矿的形成与具有5个水-岩交换成矿体系汇集在一起有关。水-岩体系计算表明,成矿流体储库形成是大气降水与千枚岩和花岗闪长斑岩在300℃以及W/R比值为0.5左右条件下形成,而后上升进入矿化沉积体系时温度降低,W/R比值超过10.0,计算的最少水量达1.9×1010t以上。  相似文献   

18.
Bosten Lake is a mid-latitude lake with water mainly supplied by melting ice and snow in the Tianshan Mountains. The depositional environment of the lake is spatially not uniform due to the proximity of the major inlet and the single outlet in the western part of the lake. The analytical results show that the carbon and oxygen isotopic composition of recent lake sediments is related to this specific lacustrine depositional environment and to the resulting carbonate mineralogy. In the southwestern lake region between the Kaidu River inlet and the Kongqi River outlet, carbon isotope composition (δ13C) values of the carbonate sediment (?1‰ to ?2‰) have no relation to the oxygen isotope composition of the carbonate (δ18O) values (?7‰ to ?8‰), with both isotopes showing a low variability. The carbonate content is low (<20%). Carbonate minerals analyzed by X-ray diffraction are mainly composed of calcite, while aragonite was not recorded. The salinity of the lake water is low in the estuary region as a result of the Kaidu River inflow. In comparison, the carbon and oxygen isotope values are higher in the middle and eastern parts of the lake, with δ13C values between approximately +0.5‰ and +3‰, and δ18O values between ?1‰ and ?5‰. There is a moderate correlation between the stable oxygen and carbon isotopes, with a coefficient of correlation r of approximately 0.63. This implies that the lake water has a relatively short residence time. Carbonate minerals constitute calcite and aragonite in the middle and eastern region of the lake. Aragonite and Mg–calcite are formed at higher lake water salinity and temperatures, and larger evaporation effects. More saline lake water in the middle and eastern region of the lake and the enhanced isotopic equilibrium between water and atmospheric CO2 cause the correlating carbon and oxygen isotope values determined for aragonite and Mg–calcite. Evaporation and biological processes are the main reasons for the salinity and carbonate mineralogy influence of the surface-sediment carbonate in Bosten Lake. The lake water residence time and the CO2 exchange between the atmosphere and the water body control the carbon and oxygen isotope composition of the carbonate sediment. In addition, organic matter pollution and decomposition result in the abnormally low carbon isotope values of the lake surface-sediment carbonate.  相似文献   

19.
《Applied Geochemistry》2003,18(3):435-444
Stable C and O isotope ratios were measured in carbonate minerals, growing under concrete structures from two locations in the United States. These locations were under a bridge in Michigan and under an overpass in New York. The δ13C of the carbonate samples ranged from −21.6 to −31.4‰ (with respect to V-PDB) and clearly indicated precipitation under non-equilibrium conditions. Indeed, the values in some cases were more negative than could be accounted for by existing models that invoke 4 stages of kinetic fractionation. There have been suggestions that microbial activity involving C from gasoline and other fossil fuel sources might be responsible for the relatively low C isotope ratios measured in these carbonates. To explore this possibility, 14C measurements were made in some of the samples. All samples measured for 14C contained bomb C. The range of 14C concentrations suggested a non-uniform growth rate, although possible fossil fuel-derived carbon in the system needs future investigation. The δ18O values of the carbonates analyzed from Michigan range from 12.5 to 15.7‰ (with respect to V-SMOW), with a mean value of 13.7‰. The δ18O values of the NY samples range from 11.8 to 15.2‰, with a mean value of 13.1‰. The nearly identical mean values at both locations favors incorporation of O from atmospheric CO2 in carbonate precipitation. Additionally, the 210Pb radiometric technique was also attempted to explore the applicability of this technique in dating concrete derived carbonates as well as recent carbonates forming in a wide variety of environments. The results gave ages between 64 and 3.8 a and are consistent when compared with the date the bridge was constructed.  相似文献   

20.
《Precambrian Research》2002,113(1-2):43-63
Carbon, oxygen and strontium isotope compositions of carbonate rocks of the Proterozoic Vindhyan Supergroup, central India suggest that they can be correlated with the isotope evolution curves of marine carbonates during the latter Proterozoic. The carbonate rocks of the Lower Vindhyan Supergroup from eastern Son Valley and central Vindhyan sections show δ13C values of ∼0‰ (V-PDB) and those from Rajasthan section are enriched up to +2.8‰. In contrast, the carbonate rocks of the Upper Vindhyan succession record both positive and negative shifts in δ13C compositions. In the central Vindhyan section, the carbonates exhibit positive δ13C values up to +5.7‰ and those from Rajasthan show negative values down to –5.2‰. The δ18O values of most of the carbonate rocks from the Vindhyan Supergroup show a narrow range between –10 and –5‰ (V-PDB) and are similar to the ‘best preserved’ 18O compositions of the Proterozoic carbonate rocks. In the central Vindhyan and eastern Son Valley sections, carbonates from the Lower Vindhyan exhibit best-preserved 87Sr/86Sr compositions of 0.7059±6, which are lower compared to those from Rajasthan (0.7068±4). The carbonates with positive δ13C values from Upper Vindhyan are characterized by lower 87Sr/86Sr values (0.7068±2) than those with negative δ13C values (0.7082±6). A comparison of C and Sr isotope data of carbonate rocks of the Vindhyan Supergroup with isotope evolution curves of the latter Proterozoic along with available geochronological data suggest that the Lower Vindhyan sediments were deposited during the Mesoproterozoic Eon and those from the Upper Vindhyan represent a Neoproterozoic interval of deposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号