首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 545 毫秒
1.
Four trends of joint sets (WNW–ESE, NW–SE, NNW–SSE and NE–SW) are found in upper Turonian carbonate rocks within the Neqarot syncline of south-central Israel. The two most predominant sets strike parallel to the trend of maximum compressive stress directions (SH) associated with the plate-related Syrian Arc stress field (SAS; WNW–ESE) active during the Cretaceous to present and the perturbed regional stress field (NNW–SSE) related to stress accumulation on the Dead Sea Transform during the Miocene to the present. Eighty-two percent of the beds in this study contain joints parallel with the latter trend, whereas 42% contain joints parallel to the former trend. All beds with layer thickness to spacing ratio (FSR)>1.5 have NNW–SSE joint sets compatible with the Dead Sea Transform stress field (DSS), whereas all joints sets that are not compatible with the DSS stress field fall beneath this value for FSR. Considering lithology, joints in five of six chalky limestone beds and all marly limestone beds are compatible with the DSS, whereas joints compatible with the SAS do not develop in these marly and chalky limestone beds. In the study area, the joint sets lack a consistent formation sequence where more than one set is found in a single bed. We use these observations to conclude that all studied joints are Miocene or younger, that the regional stress field from the Miocene to the present fluctuated, between DSS and SAS states, and that the higher FSRs correspond to a greater amount of joint-normal strain in response to the DSS.  相似文献   

2.
The current contribution presents aspects of the structural style and fault kinematics of the Rus Formation that expose at Jabal Hafit, Al Ain, United Arab Emirates. Although the major structure of Jabal Hafit is an anticlinal fold, fractures (joints and faults) are the prominent structure of the study area. The fractures can be interpreted as the distributed effect of deep-seated basement fault reactivation or to be as reactivation of deep-seated basement faults. These fractures were created during two main tectonic stress regimes. The first is a WNW–ESE S Hmax strike-slip stress regime, responsible for producing E–W to ESE–WNW joints and E–W dextral strike-slip and NNE–SSW reverse faults. This stress is interpreted to be post-Early Eocene in age and related to the second phase of thrusting in the Oman Mountains in the Miocene. The second stress regime is a NNE–SSW S Hmax transtensional (strike-slip extensive) stress regime that was responsible for N–S to NNE–SSW striking joints and NE–SW sinistral strike-slip and N–S normal faults. This regime is interpreted to be post-Middle Eocene in age. This stress was the response to the collision of the Arabian–Eurasian Plates which began during the Late Eocene and continues to the present day.  相似文献   

3.
Intracratonic South Rewa Gondwana Basin occupies the northern part of NW–SE trending Son–Mahanadi rift basin of India. The new gravity data acquired over the northern part of the basin depicts WNW–ESE and ENE–WSW anomaly trends in the southern and northern part of the study area respectively. 3D inversion of residual gravity anomalies has brought out undulations in the basement delineating two major depressions (i) near Tihki in the north and (ii) near Shahdol in the south, which divided into two sub-basins by an ENE–WSW trending basement ridge near Sidi. Maximum depth to the basement is about 5.5 km within the northern depression. The new magnetic data acquired over the basin has brought out ENE–WSW to E–W trending short wavelength magnetic anomalies which are attributed to volcanic dykes and intrusive having remanent magnetization corresponding to upper normal and reverse polarity (29N and 29R) of the Deccan basalt magnetostratigrahy. Analysis of remote sensing and geological data also reveals the predominance of ENE–WSW structural faults. Integration of remote sensing, geological and potential field data suggest reactivation of ENE–WSW trending basement faults during Deccan volcanism through emplacement of mafic dykes and sills. Therefore, it is suggested that South Rewa Gondwana basin has witnessed post rift tectonic event due to Deccan volcanism.  相似文献   

4.
The Thakkhola–Mustang graben is located at the northern side of the Dhaulagiri and Annapurna ranges in North Central Nepal. The structural pattern is mainly characterised by the N020–040° Thakkhola Fault system responsible for the development of the half-graben. A detailed study of the substrate and the sedimentary fill in several outcrops indicates polyphased faulting:-pre-sedimentation faulting (Miocene), with a mainly NNW–SSE to N–S compressional stress expressed in the substratum by N020–040° and N180–N010° sinistral and N130–140° dextral conjugate strike-slip faults;-syn-sedimentation faulting (Pliocene–Pleistocene), characterised by a W–E to WNW–ESE extensional stress and tectonic subsidence of the half-graben during the Tetang period (Pliocene probably), followed by a doming of the Tetang deposits and a short period of erosion (cf. Pliocene planation surface and unconformity between the Tetang and Thakkhola Formations); the Thakkhola period (Pleistocene) is characterized by a W–E to WNW–ESE extensional stress and a major subsidence of the half graben;-post-sedimentation recurrent extensional faulting and N–S and NE–SW normal faults in the late Quaternary terrace formations.Geodynamic interpretation of the faulting is discussed in relation to the following:
  • 1.the geographic situation of the Thakkhola–Mustang half-graben in the southern part of Tibet and its setting in the Tethyan series above the South Tibetan Detachment System (STDS);
  • 2.the geodynamic conditions of the convergence between India and Eurasia and the dextral east–west shearing between the High Himalayas and south Tibet;
  • 3.the possible relations between the sinistral Thakkhola and the dextral Karakorum strike-slip faults in a N–S compressional stress regime during the Miocene.
  相似文献   

5.
Palaeostress results derived from brittle mesoscopic structures on Deception Island (Bransfield Trough, Western Antarctica) show a recent stress field characterized by an extensional regime, with local compressional stress states. The maximum horizontal stress (σy) shows NW–SE and NNE–SSW to NE–SW orientations and horizontal extension (σ3) in NE–SW and WNW–ESE to NW–SE directions. Alignments of mesofractures show a maximum of NNE–SSW orientation and several relative maxima striking N030-050E, N060-080E, N110-120E, and N160-170E. Subaerial and submarine macrofaults of Deception Island show six main systems controlling the morphology of the island: N–S, NNE–SSW, NE–SW, ENE–WSW to E–W, WNW–ESE, and NNW–SSE. Geochemical patterns related to submarine hydrothermally influenced fault and fissure pathways also share the same trends. The orientation of these fault systems is compared to Riedel shear fractures. Following this model, we propose two evolutionary stages from geometrical relationships between the location and orientation of joints and faults. These stages imply a counter-clockwise rotation of Deception Island, which may be linked to a regional left-lateral strike-slip. In addition, the simple shear zone could be a response to oblique convergence between the Antarctic and Pacific plates. This stress direction is consistent with the present-day movements between the Antarctic, Scotia, and Pacific plates. Nevertheless, present basalt-andesitic volcanism and deep earthquake focal mechanisms may indicate rollback of the former Phoenix subducted slab, which is presently amalgamated with the Pacific plate. We postulate that both mechanisms could occur simultaneously.  相似文献   

6.
Paleostress orientations from mechanically twinned calcite in carbonate rocks and veins in the neighborhood of large faults were investigated to comment on the nature of weak upper crustal stresses affecting sedimentary successions within the Proterozoic Cuddapah basin, India. Application of Turner's P–B–T method and Spang's Numerical dynamic analysis on Cuddapah samples provided paleostress orientations comparable to those derived from fault-slip inversion. Results from the neighborhood of E–W faults cutting through the Paleoproterozoic Papaghni and Chitravati groups and the Neoproterozoic Kurnool Group in the western Cuddapah basin, reveal existence of multiple deformation events − (1) NE–SW σ3 in strike-slip to extensional regime along with an additional event having NW–SE σ3, for lower Cuddapah samples; (2) compressional/transpressional event with ESE–WNW or NNE–SSW σ1 mainly from younger Kurnool samples.Integrating results from calcite twin data inversion, fault-slip analysis and regional geology we propose that late Mesoproterozoic crustal extension led to initial opening of the Kurnool sub-basin, subsequently influenced by weak compressional deformation. The dynamic analysis of calcite twins thus constrains the stress regimes influencing basin initiation in the southern Indian cratonic interior and subsequent basin inversion in relation to craton margin mobile belts and plausible global tectonic events in the Proterozoic.  相似文献   

7.
The Kutai Basin formed in the middle Eocene as a result of extension linked to the opening of the Makassar Straits and Philippine Sea. Seismic profiles across the northern margin of the Kutai Basin show inverted middle Eocene half-graben oriented NNE–SSW and N–S. Field observations, geophysical data and computer modelling elucidate the evolution of one such inversion fold. NW–SE and NE–SW trending fractures and vein sets in the Cretaceous basement have been reactivated during the Tertiary. Offset of middle Eocene carbonate horizons and rapid syn-tectonic thickening of Upper Oligocene sediments on seismic sections indicate Late Oligocene extension on NW–SE trending en-echelon extensional faults. Early middle Miocene (N7–N8) inversion was concentrated on east-facing half-graben and asymmetric inversion anticlines are found on both northern and southern margins of the basin. Slicken-fibre measurements indicate a shortening direction oriented 290°–310°. NE–SW faults were reactivated with a dominantly dextral transpressional sense of displacement. Faults oriented NW–SE were reactivated with both sinistral and dextral senses of movement, leading to the offset of fold axes above basement faults. The presence of dominantly WNW vergent thrusts indicates likely compression from the ESE. Initial extension during the middle Eocene was accommodated on NNE–SSW, N–S and NE–SW trending faults. Renewed extension on NW–SE trending faults during the late Oligocene occurred under a different kinematic regime, indicating a rotation of the extension direction by between 45° and 90°. Miocene collisions with the margins of northern and eastern Sundaland triggered the punctuated inversion of the basin. Inversion was concentrated in the weak continental crust underlying both the Kutai Basin and various Tertiary basins in Sulawesi whereas the stronger oceanic crust, or attenuated continental crust, underlying the Makassar Straits, acted as a passive conduit for compressional stresses.  相似文献   

8.
The Magadi area, located in the southern part of the Kenya Rift, is a seismically active region where rifting is still in progress. The recent tectonic activity has been investigated through a seismological survey and the study of neotectonic joints found in Lake Magadi sediments, which were deposited some 5000 years ago. The structural analysis of these open fractures was combined with a quantitative analysis of the orientation and size characteristics of imagery faults. The gathered data demonstrate (1) that the majority of the systematic joints have straight and parallel trajectories with a common en echelon mode of propagation displayed through a rich variety of patterns, and (2) that there is a self-similarity in fault and joint principal directions recognised at the different telescopic scales. SPOT image (1:125,000), aerial photos (1:76,000), and outcrop fieldwork reveal two important structural orientations which are N015°E and N015°W. The N015°E regional direction is consistent with the orientation of the southern segment of the Kenya Rift. Structural analysis is supported by results of a joint microseismic investigation in the Lake Magadi area. Obtained focal mechanism solutions indicate an E–W to ESE–WNW normal faulting extension direction.  相似文献   

9.
Al Jabal Al Akhdar is a NE/SW- to ENE/WSW-trending mobile part in Northern Cyrenaica province and is considered a large sedimentary belt in northeast Libya. Ras Al Hilal-Al Athrun area is situated in the northern part of this belt and is covered by Upper Cretaceous–Tertiary sedimentary successions with small outcrops of Quaternary deposits. Unmappable and very restricted thin layers of Palaeocene rocks are also encountered, but still under debate whether they are formed in situ or represent allochthonous remnants of Palaeocene age. The Upper Cretaceous rocks form low-lying to unmappable exposures and occupy the core of a major WSW-plunging anticline. To the west, south, and southeast, they are flanked by high-relief Eocene, Oligocene, and Lower Miocene rocks. Detailed structural analyses indicated structural inversion during Late Cretaceous–Miocene times in response to a right lateral compressional shear. The structural pattern is themed by the development of an E–W major shear zone that confines inside a system of wrench tectonics proceeded elsewhere by transpression. The deformation within this system revealed three phases of consistent ductile and brittle structures (D1, D2, and D3) conformable with three main tectonic stages during Late Cretaceous, Eocene, and Oligocene–Early Miocene times. Quaternary deposits, however, showed at a local scale some of brittle structures accommodated with such deformation and thus reflect the continuity of wrenching post-the Miocene. D1 deformation is manifested, in Late Cretaceous, via pure wrenching to convergent wrenching and formation of common E- to ENE-plunging folds. These folds are minor, tight, overturned, upright, and recumbent. They are accompanied with WNW–ESE to E–W dextral and N–S sinistral strike-slip faults, reverse to thrust faults and pop-up or flower structures. D2 deformation initiated at the end of Lutetian (Middle Eocene) by wrenching and elsewhere transpression then enhanced by the development of minor ENE–WSW to E–W asymmetric, close, and, rarely, recumbent folds as well as rejuvenation of the Late Cretaceous strike-slip faults and formation of minor NNW–SSE normal faults. At the end of Eocene, D2 led to localization of the movement within E–W major shear zone, formation of the early stage of the WSW-plunging Ras Al Hilal major anticline, preservation of the contemporaneity (at a major scale) between the synthetic WNW–ESE to E–W and ENE–WSW strike-slip faults and antithetic N–S strike-slip faults, and continuity of the NW–SE normal faults. D3 deformation is continued, during the Oligocene-Early Miocene, with the appearance of a spectacular feature of the major anticline and reactivation along the E–W shear zone and the preexisting faults. Estimating stress directions assumed an acted principal horizontal stress from the NNW (N33°W) direction.  相似文献   

10.
The Strzelin Massif in SW Poland (Central European Variscides) records a protracted igneous evolution, with three main magmatic stages: (1) tonalitic I, (2) granodioritic and (3) tonalitic II/granitic. In the northern part of this Massif, the Strzelin intrusion proper comprises three successively emplaced rock types: a medium-grained biotite granite (303 ± 2 Ma), a fine-grained biotite granite (283 ± 8 Ma) and a fine-grained biotite-muscovite granite; based on field evidence, the third variety postdates both types of the biotite granites. The structural data from the three granites, including their parallel, approximately E–W striking and steeply dipping lithological contacts and ENE–WSW trending subhorizontal magmatic lineations, suggest that the emplacement of all three successive granite varieties was controlled by an active, long-lived strike-slip fault, striking ESE–WNW, with a dextral sense of movement. After the emplacement of the youngest biotite-muscovite granite, the intrusion underwent brittle extension which produced “Q joints” striking NNW–SSE to N–S and dipping at 55–70° WSW to W, and showing evidence of broadly N–S directed sinistral displacements. The structural observations, supported by new geochronological data, indicate that the internal structure of the composite granitoid intrusion, including the faint magmatic foliation and lineation, formed in a long-lived strike-slip setting, different from the subsequent, post-emplacement extensional tectonics that controlled the development of brittle structures.  相似文献   

11.
The Alboran Sea constitutes a Neogene–Quaternary basin of the Betic–Rif Cordillera, which has been deformed since the Late Miocene during the collision between the Eurasian and African plates in the westernmost Mediterranean. NNE–SSW sinistral and WNW–ESE dextral conjugate fault sets forming a 75° angle surround a rigid basement spur of the African plate, and are the origin of most of the shallow seismicity of the central Alboran Sea. Northward, the faults decrease their transcurrent slip, becoming normal close to the tip point, while NNW–SSE normal and sparse ENE–WSW reverse to transcurrent faults are developed. The uplifting of the Alboran Ridge ENE–WSW antiform above a detachment level was favoured by the crustal layering. Despite the recent anticlockwise rotation of the Eurasian–African convergence trend in the westernmost Mediterranean, these recent deformations—consistent with indenter tectonics characterised by a N164°E trend of maximum compression—entail the highest seismic hazard of the Alboran Sea.  相似文献   

12.
The pre-Neogene Tauride fold-and-thrust belt, comprising Cretaceous ophiolites and metamorphic rocks and non-metamorphic carbonate thrust slices in southern Turkey, is flanked and overlain by Neogene sedimentary basins. These include poorly studied intra-montane basins including the Yalvaç Basin. In this paper, we study the stratigraphy, sedimentology and structure of the Yalvaç Basin, which has a Middle Miocene and younger stratigraphy. Our results show that the basin formed as a result of multi-directional extension, with NE–SW to E–W extension dominating over subordinate NW–SE to N–S extension. We show that faults bounding the modern basin also governed basin formation, with proximal facies close to the basin margins grading upwards and basinwards into lacustrine deposits representing the local depocentre. The Yalvac Basin was a local basin, but a similar, contemporaneous history recently reconstructed from the Alt?napa Basin, ~100 km to the south, shows that multi-directional extension dominated by E–W extension was a regional phenomenon. Extension is still active today, and we conclude that this tectonic regime in the study area has prevailed since Middle Miocene times. Previously documented E–W shortening in the Isparta Angle along the Aksu Thrust, ~100 km to the southwest of our study area, is synchronous with the extensional history documented here, and E–W extension to its east shows that Anatolian westwards push is likely not the cause. Synchronous E–W shortening in the heart and E–W extension in the east of the Isparta Angle may be explained by an eastwards-dipping subduction zone previously documented with seismic tomography and earthquake hypocentres. We suggest that this slab surfaces along the Aksu thrust and creates E–W overriding plate extension in the east of the Isparta Angle. Neogene and modern Anatolian geodynamics may thus have been driven by an Aegean, Antalya and Cyprus slab segment that each had their own specific evolution.  相似文献   

13.
http://www.sciencedirect.com/science/article/pii/S1674987113000029   总被引:1,自引:0,他引:1  
The Preandean geological configuration of the eastern North Patagonian Massif is established through the use of geological and geophysical analysis.The positive gravity anomalies located near the Atlantic coast are due to 535 and 540 Ma old rocks belonging to the Pampean Orogeny (Precambrian-middle Cambrian),which are widely recognized in central and northern Argentina.The Famatinian Cycle (Ordovician-Devonian) is represented by a Silurian-Devonian marine basin equivalent to those of eastern-central Argentina and South Africa,and which was deformed at the end of the Devonian byan~E-W to WNW-ESE compressional event,part of the Famatinian Orogeny.Containing strong gravity gradients,the NW-SE belt is coincident with fault zones which were originated during the Gondwanide Orogeny.This event also produced NW-SE overthrusting of the Silurian-Devonian sequences and strike-slip faults that displaced blocks in the same direction.This deformation event belongs to the Gondwanide Orogeny that includes movements related to a counterclockwise rotation of blocks in northern Patagonia.The strong negative anomalies located in the western part of the area stem from the presence of rocks of the Jurassic Ca(n)adón Asfalto basin interbedded in the Marifil Complex.These volcaniclastic sequences show mild deformation of accommodation zones in a pre-Jurassic paleorelief.  相似文献   

14.
Subsurface structural trends and tectonics affecting the offshore Nile Delta area, Egypt, have been studied through the interpretations of gravity and magnetic data. Reduced to the pole, regional–residual separation, Tilt derivative and Euler deconvolution techniques are applied for the processing and interpretations of the magnetic and gravity data. The average depth of the sedimentary cover, estimated from the two-dimensional power spectrum technique ranges between 8 km and 13 km. The interpretation of the gravity and magnetic data indicates that the study area is affected by many subsurface structural trends. The NW–SE is the major trend related to El-Temsah and Misfaq-Bardwil trend. The NE–SW direction is the second dominant trend, related to the Rosetta trend. Other trends defined through the interpretation of gravity and magnetic data include: the N–S direction, related to the Baltim fault trend, the E–W direction, related to the Neogene hinge line and the NNE–SSW related to the Gulf of Aqaba. Accessory trends include the ENE–WSW, WNW–ESE and finally the NNW–SSW.  相似文献   

15.
The NW–SE shortening between the African and the Eurasian plates is accommodated in the eastern Betic Cordillera along a broad area that includes large N‐vergent folds and kilometric NE–SW sinistral faults with related seismicity. We have selected the best exposed small‐scale tectonic structures located in the western Huércal‐Overa Basin (Betic Cordillera) to discuss the seismotectonic implications of such structures usually developed in seismogenic zones. Subvertical ESE–WNW pure dextral faults and E–W to ENE–ESW dextral‐reverse faults and folds deform the Quaternary sediments. The La Molata structure is the most impressive example, including dextral ESE–WNW Neogene faults, active southward‐dipping reverse faults and associated ENE–WSW folds. A molar M1 assigned to Mimomys savini allows for precise dating of the folded sediments (0.95–0.83 Ma). Strain rates calculated across this structure give ~0.006 mm a?1 horizontal shortening from the Middle Pleistocene up until now. The widespread active deformations on small‐scale structures contribute to elastic energy dissipation around the large seismogenic zones of the eastern Betics, decreasing the seismic hazard of major fault zones. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
The average seismic strain rate is estimated for the seismotectonic zone of the northern/central parts of the Gulf of Suez. The principal strain rate tensor and velocity tensor were derived from a combination of earthquake focal mechanisms data and seismic moment of small-sized earthquakes covering a time span of 13 years (1992–2004). A total of 17 focal mechanism solutions have been used in the calculation of the moment tensor summation. The local magnitudes (MLs) of these events range from 2.8 to 4.7. The analysis indicates that the dominant mode of deformation in the central and northern parts of the Gulf of Suez is extension at a rate of 0.008 mm/year in N28°E direction and a small crustal thinning of 0.0034 mm/year. This low level of strain means that this zone experienced a little seismic deformation. There is also a right lateral shear motion along the ESE–WNW direction. This strain pattern is consistent with the predominant NW–SE normal faulting and ESE–WNW dextral transtensive faults in this zone. Comparing the results obtained from both stress and strain tensors, we find that the orientations of the principal axes of both tensors have the same direction with a small difference between them. Both tensors show a predominantly extensional domain. The nearly good correspondence between principal stress and strain orientations in the area suggests that the tectonic strength is relatively uniform for this crustal volume.  相似文献   

17.
This paper describes the updated stratigraphy, structural framework and evolution, and hydrocarbon prospectivity of the Paleozoic, Mesozoic and Cenozoic basins of Yemen, depicted also on regional stratigraphic charts. The Paleozoic basins include (1) the Rub’ Al-Khali basin (southern flanks), bounded to the south by the Hadramawt arch (oriented approximately W–E) towards which the Paleozoic and Mesozoic sediments pinch out; (2) the San’a basin, encompassing Paleozoic through Upper Jurassic sediments; and (3) the southern offshore Suqatra (island) basin filled with Permo-Triassic sediments correlatable with that of the Karoo rift in Africa. The Mesozoic rift basins formed due to the breakup of Gondwana and separation of India/Madagascar from Africa–Arabia during the Late Jurassic/Early Cretaceous. The five Mesozoic sedimentary rift basins reflect in their orientation an inheritance from deep-seated, reactivated NW–SE trending Infracambrian Najd fault system. These basins formed sequentially from west to east–southeast, sub-parallel with rift orientations—NNW–SSE for the Siham-Ad-Dali’ basin in the west, NW–SE for the Sab’atayn and Balhaf basins and WNW–ESE for the Say’un-Masilah basin in the centre, and almost E–W for the Jiza’–Qamar basin located in the east of Yemen. The Sab’atayn and Say’un–Masilah basins are the only ones producing oil and gas so far. Petroleum reservoirs in both basins have been charged from Upper Jurassic Madbi shale. The main reservoirs in the Sab’atayn basin include sandstone units in the Sab’atayn Formation (Tithonian), the turbiditic sandstones of the Lam Member (Tithonian) and the Proterozoic fractured basement (upthrown fault block), while the main reservoirs in the Say’un–Masilah basin are sandstones of the Qishn Clastics Member (Hauterivian/Barremian) and the Ghayl Member (Berriasian/Valanginian), and Proterozoic fractured basement. The Cenozoic rift basins are related to the separation of Arabia from Africa by the opening of the Red Sea to the west and the Gulf of Aden to the south of Yemen during the Oligocene-Recent. These basins are filled with up to 3,000 m of sediments showing both lateral and vertical facies changes. The Cenozoic rift basins along the Gulf of Aden include the Mukalla–Sayhut, the Hawrah–Ahwar and the Aden–Abyan basins (all trending ENE–WSW), and have both offshore and onshore sectors as extensional faulting and regional subsidence affected the southern margin of Yemen episodically. Seafloor spreading in the Gulf of Aden dates back to the Early Miocene. Many of the offshore wells drilled in the Mukalla–Sayhut basin have encountered oil shows in the Cretaceous through Neogene layers. Sub-commercial discovery was identified in Sharmah-1 well in the fractured Middle Eocene limestone of the Habshiyah Formation. The Tihamah basin along the NNW–SSE trending Red Sea commenced in Late Oligocene, with oceanic crust formation in the earliest Pliocene. The Late Miocene stratigraphy of the Red Sea offshore Yemen is dominated by salt deformation. Oil and gas seeps are found in the Tihamah basin including the As-Salif peninsula and the onshore Tihamah plain; and oil and gas shows encountered in several onshore and offshore wells indicate the presence of proven source rocks in this basin.  相似文献   

18.
The Helena salient is a prominent craton–convex curve in the Cordillera thrust belt of Montana, USA. The Lombard thrust sheet is the primary sheet in the salient. Structural analysis of fold trends, cleavage attitudes, and movement on minor faults is used to better understand both the geometry of the Lombard thrust and the kinematic development of the salient.Early W–E to WNW–ENE shortening directions in the Lombard sheet are indicated by fold trends in the center of the thrust sheet. The same narrow range of shortening directions is inferred from kinematic analysis of movement on minor faults and the orientations of unrotated cleavage planes along the southern lateral ramp boundary of the salient. As the salient developed, the amount and direction of shortening were locally modified as listric detachment faults rotated some tight folds to the NW, and as right-lateral simple shear, caused by lock-up and folding of the Jefferson Canyon fault above the lateral ramp, rotated other folds northeastward. Where the lateral ramp and frontal-oblique ramp intersect, folds were rotated back to the NW. Our interpretation of dominant W–E to WNW–ESE shortening in the Lombard sheet, later altered by local rotations, supports a model of salient formation by primary parallel transport modified by interactions with a lateral ramp.  相似文献   

19.
The trans-Himalayan Ladakh batholith is a result of arc magmatism caused by the northward subduction of the Tethyan oceanic lithosphere below the edge of the Eurasian plate. The batholith dominantly consists of calc-alkaline I-type granitoids which are ferromagnetic in nature with the presence of magnetite as the principal carrier of magnetic susceptibility. The mesoscopic and magnetic fabric are concordant and generally vary from WNW–ESE to ENE–WSW for different intrusions of ferromagnetic granites in different parts of the batholith. Strike of magnetic fabric is roughly parallel with the regional trend of the Ladakh batholith in the present study area and is orthogonal to the direction of India-Eurasia collision. In Khardungla and Changla section, the magnetic fabric is distributed in a sigmoidal manner. It is inferred that this sigmoidal pattern is caused by shearing due to transpression induced by oblique convergence between the two plates. U–Pb zircon geochronology of a rhyolite from the southern parts of the batholith gives a crystallization age of 71.7 ± 0.6 Ma, coeval with ~68 Ma magmatism in the northern parts of the batholith. The central part of the batholith is characterized by S-type two-mica granites, which gives much younger age of magmatism at 35.5 ± 0.5 Ma. The magnetic fabric of these two-mica granites is at a high angle to the regional trend of the batholith. It is proposed that these two-mica granites were emplaced well after the cessation of subduction and arc magmatism, along fractures that developed perpendicular to the regional strike of the batholith due to shearing.  相似文献   

20.
In the present study, the Bouguer, aeromagnetic, and seismological data analysis for Nile Delta including the Greater Cairo region and its surroundings was used to examine and trace the tectonic framework for some deep-seated faults (mostly normal faults with a small strike–slip component) and their orientation, on which most earthquakes have occurred. The new tilt derivative (TDR) geophysical map and Euler deconvolution presented here can be used to trace the structural relationships and their depth investigations across the entire region. Generally, most of the Euler deconvolution results especially from the gravity map were well coincided with the location of contacts derived by TDR particularly NNW to NS, EW, and NE trended structures. The depths to the gravity or magnetic sources, and the locations of the contacts of density contrast were estimated. Results of the Euler deconvolution method suggested that, in the southeastern part of the area, the basement could be observed to be shallow and has become deeper beneath the northern part. Furthermore, the resulting structural map of this study is well correlated with previous geological and seismological data analyses. At least two sets of predominant faults are suspected, faults with a NNW strike (Clysmic trend) which are particularly felt in the southern portion of the Delta, and some of them give it the shape of a “graben like structure.” Another parallel set of faults, having NE–SW strike (Pelusium trend), was also obvious in the southern part between Cairo and Suez cities (at Abu Zabal area). The evaluated trending faults (NNW–SSE or NE–SW) are intersecting with predominant major WNW–ESE to E–W (Tethys trend) striking faults. These intersections may generate more additional seismic pulses and consequently increase the seismic activity for these structures. However, minor NW (Najd Fault System) is obvious in the TDR magnetic map, whereas less attendance NS (East African trend) structural trends are evident in the TDR gravity map. Moreover, it could be said that the southeastern portion of the Nile Delta (especially the eastern portion of Greater Cairo) is affected by highly tectonic fault systems. Finally, a new tectonic map was also evaluated from the resulting structural map, which helps to quantify different structural patterns (faults and/or contacts), and their relations with the regional tectonic trends are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号