首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We present results of optical identifications of six hard X-ray sources from the INTEGRAL and Swift all-sky surveys (IGR J03249+4041, SWIFT J1449.5+8602, SWIFT J1542.0-1410, IGR J17009+3559, IGR J18151-1052, IGR J18538-0102). Our optical observations were performed in 2009–2011 with the 6-m BTA telescope (Special Astrophysical Observatory, Nizhnii Arkhyz, Russia) and the 1.5-m RTT-150 telescope (Turkish National Observatory, Antalya, Turkey). The optical spectra obtained for each of the program sources have allowed us to establish the nature of the objects and to measure their redshifts from the positions of emission and absorption lines. Five sources are shown to be extragalactic—four of them are identified with Seyfert 1 or 2 galaxies and the fifth source belongs to the class of X-ray-bright, optically normal galaxies (XBONGs). The sixth object (IGR J18151-1052) is located in our Galaxy and is an X-ray binary (XRB), a suspected cataclysmic variable. Apart from the optical spectra, we provide the X-ray spectra for five sources in the 0.6–10 keV energy band obtained from XRT/Swift data.  相似文献   

2.
We present the results of our optical identifications of four hard X-ray sources from the Swift all-sky survey. We obtained optical spectra for each of the program objects with the 6-m BTA telescope (Special Astrophysical Observatory, Russian Academy of Sciences, Nizhnii Arkhyz), which allowed their nature to be established. Two sources (SWIFT J2237.2+6324 and SWIFT J2341.0+7645) are shown to belong to the class of cataclysmic variables (suspected polars or intermediate polars). The measured emission line width turns out to be fairly large (FWHM ?? 15?C25 ?), suggesting the presence of extended, rapidly rotating (v ? 400?C600 km s?1) accretion disks in the systems. Apart from line broadening, we have detected a change in the positions of the line centroids for SWIFT J2341.0+7645, which is most likely attributable to the orbital motion of the white dwarf in the binary system. The other two program objects (SWIFT J0003.3+2737 and SWIFT J0113.8+2515) are extragalactic in origin: the first is a Seyfert 2 galaxy and the second is a blazar at redshift z = 1.594. Apart from the optical spectra, we provide the X-ray spectra for all sources in the 0.6?C10 keV energy band obtained from XRT/Swift data.  相似文献   

3.
Details of the observations of a new (second) outburst of the X-ray transientMAXI J1836-194 discovered late in August 2011, a suspected black hole in a low-mass binary system, with the instruments of the SWIFT and INTEGRAL orbiting observatories are presented. The outburst was weaker than the first one; the source had a power-law spectrum in a wide X-ray (0.3–400 keV) energy range without any clear evidence for the presence of a soft (blackbody) component related to the emission from the outer accretion disk regions. This shows that the outburst was a “failed” one: the source did not pass through the sequence of spectral states characteristic of X-ray novae. The observed optical emission from the source whose variability was strongly correlated with its X-ray variability seems to have also been an extension of the power-law spectrum. Spectrum uniformity is, on the whole, unusual for other sources containing a black hole and raises the question about the nature of the emission from MAXI J1836-194 (disk or jet).  相似文献   

4.
We present the results of our optical identifications of several hard X-ray sources from the INTEGRAL all-sky survey obtained over 14 years of observations. Having improved the positions of these objects in the sky with the X-ray telescope (XRT) of the Swift observatory and the XMMNewton observatory, we have identified their counterparts using optical and infrared sky survey data. We have obtained optical spectra for more than half of the objects from our sample with the RTT-150 and AZT-33IK telescopes, which have allowed us to establish the nature of the objects and to measure their redshifts. Six sources are shown to be extragalactic in origin and to belong to Seyfert 1 and 2 galaxies (IGR J01017+6519, IGR J08215-1320, IGR J08321-1808, IGR J16494-1740, IGR J17098-2344, IGR J17422-2108); we have failed to draw definitive conclusions about the nature of four more objects (IGR J11299-6557, IGR J14417-5533, IGR J18141-1823, IGR J18544+0839), but, judging by circumstantial evidence, they are most likely also extragalactic objects. For one more object (IGR J18044-1829) no unequivocal identification has been made.  相似文献   

5.
We present the results of our optical identification of the X-ray source IGR J16547-1916 detected by the INTEGRAL observatory during a deep all-sky survey. Analysis of the spectroscopic data from the SWIFT and INTEGRAL observatories in the X-ray energy band and from the BTA (Special Astrophysical Observatory) telescope in the optical band has shown that the source is most likely an intermediate polar—an accreting white dwarf with the mass ofM WD μ 0.85M binary system. Subsequent studies of the object’s rapid variability with the RTT-150 telescope have confirmed this conclusion by revealing periodic pulsations of its optical emission with a period of ≈550 s.  相似文献   

6.
We present the results of Chandra and XMM-Newton observations for six hard X-ray sources (IGR J12134-6015, IGR J18293-1213, IGR J18219-1347, IGR J17350-2045, IGR J18048-1455, XTE J1901+014) from the INTEGRAL all-sky survey. Based on these observations, we have improved significantly the localization accuracy of the objects and, therefore, have managed to identify their optical counterparts. Using data from the publicly available 2MASS and UKIDSS infrared sky surveys as well as data from the SOFI/NTT telescope (European Southern Observatory), we have determined the magnitudes of the optical counterparts, estimated their types and (in some cases) the distances to the program objects. A triplet of iron lines with energies of 6.4, 6.7, and 6.9 keV has been detected in the X-ray spectrum of IGR J18048-1455; together with the detection of pulsations with a period of ~1440 s from this source, this has allowed it to be classified as a cataclysmic variable, most likely an intermediate polar. In addition, broadband X-ray spectra of IGR J12134-6015 and IGR J17350-2045 in combination with infrared and radio observations suggest an extragalactic nature of these objects. The source IGR J18219-1347 presumably belongs to the class of high-mass X-ray binaries.  相似文献   

7.
We present the results of our optical identifications of a set of X-ray sources from the INTEGRAL and SWIFT all-sky surveys. The optical data have been obtained with the 1.5-m Russian-Turkish Telescope (RTT-150). Nine X-ray sources have been identified with active galactic nuclei (AGNs). Two of them are located in the nearby spiral galaxies MCG-01-05-047 and NGC 973 seen almost edge-on. One source, IGR J16562-3301, is probably a BL Lac object (blazar). The remaining AGNs are observed as the starlike nuclei of spiral galaxies whose spectra exhibit broad emission lines. The relation between the hard X-ray (17–60 keV) luminosity and the [O III] 5007 line luminosity, log L x/L [O III] ≈ 2.1, holds good for most of the AGNs detected in hard X rays. However, the luminosities of some AGNs deviate from this relation. The fraction of such objects can reach ~20%. In particular, the [O III] line flux is lower for two nearby edge-on spiral galaxies. This can be explained by the effect of absorption in the galactic disks.  相似文献   

8.
The results of optical identifications of five hard X-ray sources in the Galactic plane from the INTEGRAL all-sky survey are presented. The X-ray data on one source (IGR J20216+4359) are published for the first time. The optical observations were performed with the 1.5-m RTT-150 telescope (Turkish National Observatory, Antalya, Turkey) and the 6-m BTA telescope (Special Astrophysical Observatory, Nizhny Arkhyz, Russia). A blazar, three Seyfert galaxies, and a high-mass X-ray binary are among the identified sources.  相似文献   

9.
For the first time a quasi-simultaneous multi-wavelength campaign has been performed on an Anomalous X-ray Pulsar from the radio to the hard X-ray band. 4U 0142+61 was an INTEGRAL target for 1 Ms in July 2005. During these observations it was also observed in the X-ray band with Swift and RXTE, in the optical and NIR with Gemini North and in the radio with the WSRT. In this paper we present the source-energy distribution. The spectral results obtained in the individual wave bands do not connect smoothly; apparently components of different origin contribute to the total spectrum. Remarkable is that the INTEGRAL hard X-ray spectrum (power-law index 0.79±0.10) is now measured up to an energy of ~230 keV with no indication of a spectral break. Extrapolation of the INTEGRAL power-law spectrum to lower energies passes orders of magnitude underneath the NIR and optical fluxes, as well as the low ~30 μJy (2σ) upper limit in the radio band.  相似文献   

10.
We report the discovery of low-frequency quasi-periodic oscillations (QPOs) in the power spectrum of the X-ray nova MAXI J1535-571 at the initial stage of its outburst in September 2017. Based on data from the SWIFT and INTEGRAL instruments, we have traced the evolution of the QPO parameters (primarily their frequency) with time and their correlation with changes in the X-ray spectrum of the source (changes in the emission flux and hardness). We place constraints on the theoretical QPO generation models.  相似文献   

11.
The X-ray source IGR J16318-4848 was the first source discovered by INTEGRAL on January 29, 2003. The high energy spectrum exhibits such a high column density that the source is undetectable in X-rays below 2 keV. On February 23–25, 2003 we triggered a Target of Opportunity (ToO) Program using the EMMI and SOFI instruments on the New Technology Telescope of the European Southern Observatory (La Silla) to get optical and near-infrared (NIR) observations. We discovered the optical counterpart, and confirmed the already proposed candidate in the NIR. NIR spectroscopy revealed a large amount of emission lines, including forbidden iron lines and P-Cygni profiles, showing a strong similarity with CI Cam, another strongly absorbed source. Together with the spectral energy distribution (SED), these data point to a high luminosity, high temperature source, with an intrinsic absorption greater than the interstellar absorption, but two orders of magnitude below the X-ray absorption. All these observations show that IGR J16318-4848 is a high mass X-ray binary (HMXB) at a distance between 0.9 and 6.2 kpc, the mass donor being an early-type star, probably a sgB[e] star, surrounded by a dense and absorbing circumstellar material. This would make the second HMXB with a sgB[e] star as the mass donor after CI Cam. Other sources, discovered by INTEGRAL near IGR J16318-4848 in the direction of the Norma arm, present the same characteristics, at least in X-rays. Such sources may represent a different evolutionary state of X-ray binaries previously undetected with the lower energy space telescopes; if it is so, a new class of strongly absorbed X-ray binaries is being unveiled by INTEGRAL. Out of the 15 sources present in this region, only one might be associated with an unidentified EGRET source: IGR J16393-4643. Therefore these obscured INTEGRAL sources do not seem to be powerful high energy (E > 100 MeV) emitters. Based on observations collected at the European Southern Observatory, Chile (proposal ESO N 70.D-0340).  相似文献   

12.
Prosvetov  A. V.  Grebenev  S. A. 《Astronomy Letters》2015,41(10):549-561
Astronomy Letters - Results of the study of the X-ray nova SWIFT J174510.8-262411 by the INTEGRAL, SWIFT, and VLA observatories in September–October 2012 at the early outburst phase are...  相似文献   

13.
Based on data from the SWIFT, INTEGRAL, MAXI/ISS orbital observatories, and the ground-based RTT-150 telescope, we have investigated the broadband (from the optical to the hard X-ray bands) spectrum of the X-ray nova MAXI J1828-249 and its evolution during the outburst of the source in 2013–2014. The optical and infrared emissions from the nova are shown to be largely determined by the extension of the power-law component responsible for the hard X-ray emission. The contribution from the outer cold regions of the accretion disk, even if the X-ray heating of its surface is taken into account, turns out to be moderate during the source’s “high” state (when a soft blackbody emission component is observed in the X-ray spectrum) and is virtually absent during its “low” (“hard”) state. This result suggests that much of the optical and infrared emissions from such systems originates in the same region of main energy release where their hard X-ray emission is formed. This can be the Compton or synchro-Compton radiation from a high-temperature plasma in the central accretion disk region puffed up by instabilities, the synchrotron radiation from a hot corona above the disk, or the synchrotron radiation from its relativistic jets.  相似文献   

14.
HESS J1616−508 is one of the brightest emitters in the TeV sky. Recent observations with the IBIS/ISGRI telescope onboard the INTEGRAL spacecraft have revealed that a young, nearby and energetic pulsar, PSR J1617−5055, is a powerful emitter of soft γ-rays in the 20–100 keV domain. In this paper, we present an analysis of all available data from the INTEGRAL , Swift , BeppoSAX and XMM–Newton telescopes with a view to assessing the most likely counterpart to the High Energy Stereoscopic System (HESS) source. We find that the energy source that fuels the X/γ-ray emissions is derived from the pulsar, both on the basis of the positional morphology, the timing evidence and the energetics of the system. Likewise the 1.2 per cent of the pulsar's spin-down energy loss needed to power the 0.1–10 TeV emission is also fully consistent with other HESS sources known to be associated with pulsars. The relative sizes of the X/γ-ray and very high energy sources are consistent with the expected lifetimes against synchrotron and Compton losses for a single source of parent electrons emitted from the pulsar. We find that no other known object in the vicinity could be reasonably considered as a plausible counterpart to the HESS source. We conclude that there is good evidence to assume that the HESS J1616−508 source is driven by PSR J1617−5055 in which a combination of synchrotron and inverse-Compton processes combine to create the observed morphology of a broad-band emitter from keV to TeV energies.  相似文献   

15.
We present a multiwavelength study of the environment of the unidentified X-ray/γ-ray sources IGR J18027–1455 and IGR J21247 + 5058, recently discovered by the IBIS/ISGRI instrument, onboard the INTEGRAL satellite. The main properties of the sources found inside their position error circles, give us clues about the nature of these high-energy sources.  相似文献   

16.
IGR J18483−0311 was discovered with INTEGRAL in 2003 and later classified as a supergiant fast X-ray transient. It was observed in outburst many times, but its quiescent state is still poorly known. Here, we present the results of XMM–Newton , Swift and Chandra observations of IGR J18483−0311. These data improved the X-ray position of the source, and provided new information on the timing and spectral properties of IGR J18483−0311 in quiescence. We report the detection of pulsations in the quiescent X-ray emission of this source, and give for the first time a measurement of the spin-period derivative of this source. In IGR J18483−0311, the measured spin-period derivative of  −(1.3 ± 0.3) × 10−9 s s−1  likely results from light travel time effects in the binary. We compare the most recent observational results of IGR J18483−0311 and SAX J1818.6−1703, the two supergiant fast X-ray transients for which a similar orbital period has been measured.  相似文献   

17.
The source XTE J1901+014 discovered by the RXTE observatory during an intense outburst of hard radiation and classified as a fast X-ray transient is studied. The source’s spectral characteristics in the quiescent state have been investigated for the first time both in the soft X-ray energy range (3–20 keV) based on ROSAT and RXTE data and in the hard energy range (>20 keV) based on INTEGRAL data. A timing analysis of the source’s properties has revealed weak nonperiodic bursts of activity on time scales of several tens of seconds and two intense (~0.5–1 Crab) outbursts more than several hundred seconds in duration. Certain assumptions about the nature of the object under study are made.  相似文献   

18.
We report on a campaign of X-ray and soft γ-ray observations of the black hole candidate (BHC) H1743−322 (also named IGR J17464-3213), performed with the RXTE , INTEGRAL and Swift satellites. The source was observed during a short outburst between 2008 October 03 and November 16. The evolution of the hardness–intensity diagram throughout the outburst is peculiar, in that it does not follow the canonical pattern through all the spectral states (the so-called q-track pattern) seen during the outburst of black hole transients. On the contrary, the source only makes a transition from the hard state to the hard–intermediate state. After this transition, the source decreases in luminosity and its spectrum hardens again. This behaviour is confirmed by both spectral and timing analyses. This kind of outburst has been rarely observed before in a transient BHC.  相似文献   

19.
PSR J1833−1034 and its associated pulsar wind nebula (PWN) have been investigated in depth through X-ray observations ranging from 0.1 to 200 keV. The low-energy X-ray data from Chandra reveal a complex morphology that is characterized by a bright central plerion, no thermal shell and an extended diffuse halo. The spectral emission from the central plerion softens with radial distance from the pulsar, with the spectral index ranging from  Γ= 1.61  in the central region to  Γ= 2.36  at the edge of the PWN. At higher energy, INTEGRAL detected the source in the 17–200 keV range. The data analysis clearly shows that the main contribution to the spectral emission in the hard X-ray energy range is originated from the PWN, while the pulsar is dominant above 200 keV. Recent High Energy Stereoscopic System (HESS) observations in the high-energy gamma-ray domain show that PSR J1833−1034 is a bright TeV emitter, with a flux corresponding to ∼2 per cent of the Crab in 1–10 TeV range. In addition, the spectral shape in the TeV energy region matches well with that in the hard X-rays observed by INTEGRAL . Based on these findings, we conclude that the emission from the pulsar and its associated PWN can be described in a scenario where hard X-rays are produced through synchrotron light of electrons with Lorentz factor  γ∼ 109  in a magnetic field of ∼10 μG. In this hypothesis, the TeV emission is due to inverse-Compton interaction of the cooled electrons off the cosmic microwave background photons. Search for PSR J1833−1034 X-ray pulsed emission, via RXTE and Swift X-ray observations, resulted in an upper limit that is about 50 per cent.  相似文献   

20.
We have investigated multiband optical photometric variability and stability of the Hα line profile of the transient X-ray binary IGR J01583+6713. We set an upper limit of 0.05 mag on photometric variations in the V band over a time-scale of three months. The Hα line is found to consist of non-Gaussian profile and quite stable for a duration of two months. We have identified the spectral type of the companion star to be B2 IVe while the distance to the source is estimated to be ∼4.0 kpc. Along with the optical observations, we have also carried out analysis of X-ray data from three short observations of the source, two with the Swift –XRT and one with the RXTE –PCA. We have detected a variation in the absorption column density, from a value of  22.0 × 1022 cm−2  immediately after the outburst down to  2.6 × 1022 cm−2  four months afterwards. In the quiescent state, the X-ray absorption is consistent with the optical reddening measurement of   E ( B − V ) = 1.46  mag. From one of the Swift observations, during which the X-ray intensity was higher, we have a possible pulse detection with a period of 469.2 s. For a Be X-ray binary, this indicates an orbital period in the range of 216–561 d for this binary system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号