首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many problems of determining the chemical composition of comets and studying the physical processes in cometary nuclei can only be solved by using observational data in the UV range of the electromagnetic spectrum (115–300 nm). Cometary observations have a number of features in comparison with such studies of other astronomical objects. The World Space ObservatoryUltraviolet mission, planned for launch in 2021, will overcome most of the challenges in these studies and will be able to become an essential tool of cometary UV research in the following decade.  相似文献   

2.
This paper analyzes the capture of comets into Halley-type and Jupiter-family orbits from the nearparabolic flux of the Oort cloud. Two types of capture into Halley-type orbits are found. The first type is the evolution of near-parabolic orbits into short-period orbits (with heliocentric orbital periods P < 200 years) as a result of close encounters with giant planets. This process is followed by a very slow drift of cometary orbits into the inner part of the Solar System. Only those comets may pass from short-period orbits into Halley-type and Jupiter-family orbits, which move in orbits with perihelion distances q < 13 au. In the second type of capture, the perihelion distances of cometary orbits become rather small (< 1.5 au) during the first stage of dynamic evolution under the action of perturbations from the Galaxy, and then their semimajor axes decrease as a result of diffusion. The capture takes place, on average, in 500 revolutions of the comet about the Sun, whereas in the first case, the comet is captured, on average, after 12500 revolutions. The region of initial orbital perihelion distances q > 4 au is found to be at least as important a source of Halley-type comets as the region of perihelion distances q < 4 au. More than half of the Halley-type comets are captured from the nearly parabolic flux with q > 4 au. The analysis of the dynamic evolution of objects moving in short-period orbits shows that the distribution of Centaurs orbits agrees well with the observed distribution corrected for observational selection effects. Hence, the hypothesis associating the origin of Centaurs with the Edgeworth-Kuiper belt and the trans-Neptunian region exclusively should be rejected.  相似文献   

3.
An overview is given of close encounters of nearly parabolic comets (NPCs; with periods of P > 200 years and perihelion distances of q > 0.1 AU; the number of the comets is N = 1041) with planets. The minimum distances Δmin between the cometary and planetary orbits are calculated to select comets whose Δmin are less than the radius of the planet’s sphere of influence. Close encounters of these comets with planets are identified by numerical integration of the comets’ equations of motion over an interval of ±50 years from the time of passing the perihelion. Close encounters of NPCs with Jupiter in 1663–2011 are reported for seven comets. An encounter with Saturn is reported for comet 2004 F2 (in 2001).  相似文献   

4.
On March 6 and 9, 1986, for the first time in the history of science, the Russian spacecraft Vega-1 and -2 approached the nucleus of comet 1P/Halley and flew by at a small distance. A while later, on March 14, 1986, the Giotto spacecraft (European Space Agency (ESA)) followed them. Together with the Japanese spacecraft Suisei (Japan Aerospace Exploration Agency (JAXA)), they obtained spaceborne investigations of cometary nuclei. Direct studies of cometary bodies that bear traces of the Solar System formation were continued in the next missions to comets. Starting from 2014 and up to 2016 September, the Rosetta spacecraft (ESA), being in a low orbit around the nucleus of comet 67P/Churyumov–Gerasimenko, has performed extremely sophisticated investigations of this comet. Here, we compare some results of these missions. The paper is based on the reports presented at the memorial conference dedicated to the 30th anniversary of the Vega mission, which took place at the Space Research Institute of the Russian Academy of Sciences in March, 2016, and does not pretend to comprehensively cover the problems of cometary physics.  相似文献   

5.
The data obtained in the recent Rosetta space mission to comet 67P/Churyumov–Gerasimenko have had a profound impact on the understanding of the nature of comets. In addition to revising the notions on the physical properties and structure of comets, this addresses dynamical aspects of the formation of the observed cometary populations (short- and long-period comets, Centaurs, trans-Neptunian objects, and Oort-cloud objects). In the review, we discuss new problems that have appeared in the theory of dynamical evolution and origin of comets due to the Rosetta mission.  相似文献   

6.
We analyze our earlier data on the numerical integration of the equations of motion for 274 short-period comets (with the period P<200 yr) on a time interval of 6000 yr. As many as 54 comets had no close approaches to planets, 13 comets passed through the Saturnian sphere of action, and one comet passed through the Uranian sphere of action. The orbital elements of these 68 comets changed by no more than ±3 percent in a space of 6000 yr. As many as 206 comets passed close to Jupiter. We confirm Everhart’s conclusion that Jupiter can capture long-period comets with q = 4–6 AU and i < 9° into short-period orbits. We show that nearly parabolic comets cross the solar system mainly in the zone of terrestrial planets. No relationship of nearly parabolic comets and terrestrial planets was found for the epoch of the latest apparition of comets. Guliev’s conjecture about two trans-Plutonian planets is based on the illusory excess of cometary nodes at large heliocentric distances. The existence of cometary nodes at the solar system periphery turns out to be a solely geometrical effect.  相似文献   

7.
We show that plowing of the lunar and mercurian regoliths by dense meteoroid swarms (the remnants of degassed comet nuclei) can be considered as the most probable mechanism of swirl formation. Frequently discussed mechanical and thermal effects of coma gas in cometary encounters with the Moon or Mercury are shown to be negligible as compared to those of the impact of a compact cometary nucleus. The result of such an impact does not differ substantially from that of denser impactors, so impacts of comets with compact nuclei can hardly be the mechanism of swirl formation. On the other hand, the projectile swarm consisting of numerous fragments of previously disrupted cometary nucleus produces many small craters and ejecta in a large area. The particles of the ejecta go through numerous collisions with each other. This may result in formation of the characteristic swirl pattern and dust component of the regolith. This can also decrease surface micro-roughness, which is consistent with photometric observations. Regolith plowing to depths up to a few meters excavates the immature regolith to the surface but cannot noticeably change the initial chemical composition of the upper layers in the area of swarm fall. This is generally in agreement with the results obtained from Clementine spectral data. Swirls are expected to be more numerous on Mercury due to more frequent swarm encounters and more dense clouds of debris in the vicinity of the Sun.  相似文献   

8.
This study analyzes the evolution of 2 × 105 orbits with initial parameters corresponding to the orbits of comets of the Oort cloud under the action of planetary, galactic, and stellar perturbations over 2 × 109 years. The dynamical evolution of comets of the outer (orbital semimajor axes a > 104 AU) and inner (5 × 103 < a (AU) < 104) parts of the comet cloud is analyzed separately. The estimates of the flux of “new” and long-period comets for all perihelion distances q in the planetary region are reported. The flux of comets with a > 104 AU in the interval 15 AU < q < 31 AU is several times higher than the flux of comets in the region q < 15 AU. We point out the increased concentration of the perihelia of orbits of comets from the outer cloud, which have passed several times through the planetary system, in the Saturn-Uranus region. The maxima in the distribution of the perihelia of the orbits of comets of the inner Oort cloud are located in the Uranus-Neptune region. “New” comets moving in orbits with a < 2 × 104 AU and arriving at the outside of the planetary system (q > 25 AU) subsequently have a greater number of returns to the region q < 35 AU. The perihelia of the orbits of these comets gradually drift toward the interior of the Solar System and accumulate beyond the orbit of Saturn. The distribution of the perihelia of long-period comets beyond the orbit of Saturn exhibits a peak. We discuss the problem of replenishing the outer Oort cloud by comets from the inner part and their subsequent dynamical evolution. The annual rate of passages of comets of the inner cloud, which replenish the outer cloud, in the region q < 1 AU in orbits with a > 104 AU (~ 5.0 × 10?14 yr?1) is one order of magnitude lower than the rate of passage of comets from the outer Oort cloud (~ 9.1 × 10?13 yr?1).  相似文献   

9.
The splitting of eh(A+B) into a single product of e h A and e hB results in symplectic integrators when A and B are classical Lie operators. However, at high orders, a single product splitting, with exponentially growing number of operators, is very difficult to derive. This work shows that, if the splitting is generalized to a sum of products, then a simple choice of the basis product reduces the problem to that of extrapolation, with analytically known coefficients and only quadratically growing number of operators. When a multi-product splitting is applied to classical Hamiltonian systems, the resulting algorithm is no longer symplectic but is of the Runge-Kutta-Nyström (RKN) type. Multi-product splitting, in conjunction with a special force-reduction process, explains why at orders p = 4 and 6, RKN integrators only need p ? 1 force evaluations.  相似文献   

10.
We supplement the following result of C. Marchal on the Newtonian N-body problem: A path minimizing the Lagrangian action functional between two given configurations is always a true (collision-free) solution when the dimension d of the physical space \({\mathbb {R}}^d\) satisfies \(d\ge 2\). The focus of this paper is on the fixed-ends problem for the one-dimensional Newtonian N-body problem. We prove that a path minimizing the action functional in the set of paths joining two given configurations and having all the time the same order is always a true (collision-free) solution. Considering the one-dimensional N-body problem with equal masses, we prove that (i) collision instants are isolated for a path minimizing the action functional between two given configurations, (ii) if the particles at two endpoints have the same order, then the path minimizing the action functional is always a true (collision-free) solution and (iii) when the particles at two endpoints have different order, although there must be collisions for any path, we can prove that there are at most \(N! - 1\) collisions for any action-minimizing path.  相似文献   

11.
The strongest absorption features with the lower-level excitation potentials χ low < 1 eV are found to be split in the high-resolution optical spectra of the post-AGB star V354 Lac taken in 2007–2008 with the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences. Main parameters, T eff =5650 K, log g=0.2, ξ t =5.0 km/s, and the abundances of 22 chemical elements in the star’s atmosphere are found. The overabundance of the s-process chemical elements (Ba, La, Ce, Nd) in the star’s atmosphere is partly due to the splitting of strong lines of the ions of thesemetals. The peculiarities of the spectrum in the wavelength interval containing the LiI λ 6707 Å line can be naturally explained only by taking the overabundances of the CeII and SmII heavy-metal ions into account. The best agreement with the synthetic spectrum is achieved assuming ?(LiI)=2.0, ?(CeII)=3.2, and ?(SmII)=2.7. The velocity field both in the atmosphere and in the circumstellar envelope of V354 Lac remained stationary throughout the last 15 years of our observations.  相似文献   

12.
The problem of particle acceleration in collapsing magnetic traps in the solar corona has been solved by taking into account the particle scattering and braking in the high-temperature plasma of solar flares. The Coulomb collisions are shown to be weak in traps with lifetimes t l < 10 s and strong for t l > 100 s. In the approximation of strong collisions, collapsing magnetic traps are capable of confining up to 20% of the injected particles in the corona for a long time. In the collisionless approximation, this value exceeds 90%. The question about the observational manifestations of collisions is examined. For collision times comparable to t l , the electron spectrumat energies above 10 keV is shown to be a double-power-law one. Such spectra were found by the RHESSI satellite in flares.  相似文献   

13.
Paradoxical properties of the KIC 8462852 object discovered in the course the Kepler mission are considered. It has been shown that the assumptions about the nature of the object as a swarm of cometary bodies, fragments resulting from catastrophic collisions of asteroids, or the KIC 8462852b exoplanet meet serious problems and even contradict the Kepler laws, if the eclipsing object is considered as a physical body orbiting a central star. According the energy and other requirements, the hypothetical orbit of KIC 8462852b does not meet the Dyson sphere conception either. In the paper, we used the materials of the study by Boyajian et al. (2015) and the subsequent publications on this theme.  相似文献   

14.
Light curves of six comets, C/1999 S4 (LINEAR), C/2001 Q4 (NEAT), C/2002 T7 (LINEAR), C/2002 V1 (NEAT), C/2004 Q2 (Machholz), and 153P/2002 C1 (Ikeya-Zhang), were built and investigated. The photometric parameters H 0, H 10, and n were calculated for these comets, and they were found to change both before and after perihelion. The shift of light curve peak with respect to perihelion passage moment was determined for each comet. Our white-light curves are compared to the results of polarimetric and electrophotometric observations of the comets C/2002 T7 (LINEAR) and C/2004 Q2 (Machholz).  相似文献   

15.
Splitting of the strongest absorption lines with a lower-level excitation potential χ low < 1 eV has been detected for the first time in the optical spectra of the post-AGB star V354 Lac obtained with a spectral resolution R = 60 000 at the 6-m BTA telescope. Analysis of the kinematics shows that the short-wavelength component of the split line originates in the star’s thick gas-dust envelope. Disregarding the splitting of strong lines when the chemical composition is calculated leads to overestimated overabundances of s-process elements (Ba, La, Ce, Nd) in the stellar atmosphere. The profiles of strong absorption lines have been found to be variable. The available radial-velocity data suggest the absence of any changes in the velocity field in the atmosphere and circumstellar envelope of V354 Lac over 15 years of its observations.  相似文献   

16.
Angular orbital parameters of Kreutz sungrazing comets are considered. Three groups of Kreutz dwarf comets are distinguished based on the positioning of orbit poles, and the motion of fragments from group A is modeled numerically. It is found that Kreutz dwarf comets have a very large parameter А 3 of nongravitational acceleration. This may be associated with sublimation of substances more refractory than water ice at extremely short heliocentric distances. It is demonstrated that the nongravitational acceleration of Kreutz dwarf comets is asymmetric with respect to perihelion, and the perturbing function maximum is observed ~15 min after the perihelion passage.  相似文献   

17.
We examine the potential contamination of cometary nuclei through impacts from asteroidal origin meteoroids. The paper uses a simple model and has the goal of determining whether asteroidal contamination is potentially significant. We assume a meteoroid power law mass distribution with index values in the range from s=1.83 to s=2.09. We used maximum and minimum models which we believe will bracket the true meteoroid mass distribution. We identify those comets which are expected to be most significantly contaminated, and find values of up to 3.6 kg of asteroidal meteoroid impact per square meter of the cometary surface per orbital revolution. This is less than the expected mass loss per perihelion passage for most comets. Therefore any remnant effects of the contamination will depend on the penetration depth of the meteoroids in the cometary nucleus, and possibly on the distribution of active and inactive areas on cometary nuclei. We present a simple model which suggests that even small meteoroids will embed relatively deeply into a cometary nucleus.  相似文献   

18.
Results of astrometric and BVRI photometric observations of the active asteroid (596) Scheila are presented. The observations were carried out at the Zeiss-1000 telescope of the Sanglokh International Astronomical Observatory of the Institute of Astrophysics of the Academy of Sciences of the Republic of Tajikistan on June 16?17 and from July 30 to August 1, 2017. The coordinates of the object and its orbit were determined; and the apparent brightness in four filters, the absolute brightness in the V and R filters, and the color indices were obtained. The light curves suggest that no substantial changes in the asteroid’s brightness occurred during the observations. The absolute brightness of the asteroid in the V and R filters was (9.1 ± 0.05)m and (8.8 ± 0.03)m, respectively. The mean value of the asteroid diameter was (119 ± 2) km. The mean values of the color indices (B?V = (0.72 ± 0.05)m, V?R = (0.29 ± 0.03)m, and R?I = (0.31 ± 0.03)m) agree well with the values for asteroids of the P- and D-types and its averages. The rotation period of the asteroid estimated from photometric observations was 16.1 ± 0.2 h. The analysis of the data has shown that the asteroid continues to exhibit the same values of absolute brightness and other characteristics as those before the collision with a small body in December 2010, though the latter resulted in the outburst event and cometary activity of the asteroid. Most likely, the collision of asteroid (596) Scheila with a small body did not lead to catastrophic changes in the surface of the asteroid or to its compete break-up.  相似文献   

19.
The telescope SBG (D = 0.42 m, F = 0.76 m) at the Kourovka Astronomical Observatory of the Ural Federal University has undergone an upgrade in 2005–2006. A CCD camera (Apogee Alta U32) and a new drive system were installed, and a new system for telescope and observation control was implemented. This upgrade required verifying the astrometric quality of the telescope. The data processing approaches tested when searching for the optimum CCD image processing technique combined TYCHO2 and UCAC2 catalogues with various reduction models and methods for choosing reference stars. Lorentzian and Moffat profiles were used in the measurement of pixel coordinates. It was demonstrated that the accuracy of SBG observations of main-belt asteroids with precisely determined orbits depends on their brightness and varies from 0.06” (11.5 m ) to 0.4” (18.5 m ). Regular SBG observations of comets and asteroids (mostly near-Earth and potentially hazardous ones) have been performed since 2007. Coordinates of 8515 positions of 720 asteroids and more than 1000 positions of 40 comets were obtained. The RMS deviations of observed coordinates from their calculated values are typically smaller than 1”: the average deviations for asteroids are 0.33” (in right ascension) and 0.34” (in declination); the corresponding values for comets are 0.37” (in α) and 0.38” (in δ). The results of observations are sent to the Minor Planet Center and are used to determine orbits more accurately and solve other fundamental and applied problems.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号