首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Authigenic Carbonate Formation in the Ocean   总被引:1,自引:0,他引:1  
Oceanic authigenic carbonates are classified according to the origin of carbonate carbon source using a complex methodology that includes methods of sedimentary petrography, mineralogy, isotope geochemistry, and microbiology. Mg-calcite (proto-dolomite) and aragonite predominate among the authigenic carbonates. All authigenic carbonates are depleted in heavy carbon isotope 13 and enriched in heavy oxygen isotope 18O (in PDB system), indicating biological fractionation of isotopes during the carbonate formation. Results obtained show that authigenic carbonate formation is a biogeochemical (microbial) process, which involves carbon from ancient sedimentary rocks, abiogenic methane, and bicarbonate-ion of hydrothermal fluids into the modern carbon cycle.  相似文献   

2.
We present the results of a study on gabbroic rocks, syenites, pegmatites, carbonatites, and hydrothermal products of the Oshurkovo apatite-bearing massif. The results include Nd and Sr isotope ratios; the isotope compositions of carbon and oxygen in calcite; oxygen in apatite, magnetite, and silicate minerals (phlogopite, titanite, diopside, amphibole, K-feldspar, and quartz); sulfur in barite; and hydrogen in mica. The isotopic data are close to the EM-1 enriched mantle values and confirm a comagmatic relationship between the gabbros and carbonatites. The binary plot ?Nd vs. 87Sr/86Sr demonstrates strong differentiation between silicate rocks and carbonatites, as is the case with the other Late Mesozoic carbonatite occurrences of southwestern Transbaikalia. The oxygen isotope composition of all comagmatic phases also falls within the range of mantle values. A clear trend toward heavier oxygen and lighter carbon isotope compositions is observed in all successively emplaced phases, which is consistent with a trend defined by hydrothermal products formed under the influence of the parent magma chamber. Carbonates formed during the greenstone alteration of gabbroic rocks are enriched in the light oxygen isotope (δ18O from ?2.8 to ?7.3‰), suggesting a contribution of vadose water.  相似文献   

3.
Low grade hydrothermally metamorphosed ophiolitic basic rocks from E. Liguria (Italy), Pindos (Greece) and Troodos (Cyprus) are enriched in O18 relative to the oxygen isotope ratio of fresh basalt (6.0±0.5‰). The maximum observed δO18 value of +13.22‰ corresponds to a positive isotope shift of 7‰ Enrichments in Sr87 relative to Sr86 correlate with hydrothermal alteration. The δC13 values of secondary calcite from E. Liguria are positive, and fall in the range from +0.2% to +3.6‰ Since ophiolitic rocks are considered to be fragments of the oceanic crust and upper mantle, and since the secondary metamorphic assemblages were produced before mechanical emplacement, it is considered that the hydrothermal metamorphism which affected these rocks occurred in the sub-sea-floor environment. The isotope data are directly consistent with the hypothesis that the alteration was produced by interaction of the basaltic material with introduced sea water. Water: rock ratios were sufficiently large to produce the observed isotope shifts. In the Troodos ophiolite sequence δO18 values decrease steadily downwards and change to progressively larger depletions in the Sheeted Intrusive Complex. The trend of δO18 decrease correlates with the original direction of increasing temperature. The O18 depletions, which have also been observed for oceanic “greenstones” (Muehlenbachs and Clayton, 1972b), resulted from water/rock interaction at temperatures greater than the particular temperature range above which whole rock-water fractionations became less than the isotopic difference between fresh basalt and sea water. Since this isotope geochemistry indicates that the water responsible for hydrothermal metamorphism was of sea water origin, the data support the more general hypothesis that convection of sea water within the upper 4–5 kms of the oceanic crust is a massive and active process at oceanic ridges. This process may be completely or partially responsible for (a.i.), the local scatter and low mean value of the conductive heat flux measured near ridges, (a.ii), the transfer of considerable quantities of heat from spreading oceanic ridges, (b) hydrothermal metamorphism, metasomatism and mineralization of oceanic crust, (c), the production of metal enriched, relatively reduced brines during sea water/basalt interaction, d), the high degree of scatter and low mean value of the compressional wave velocities of oceanic basement layer 2 and (e), the low natural remanent magnetization (NRM) intensity of the lower part of layer 2 and upper part of layer 3 of oceanic crust.  相似文献   

4.
Oxygen isotope fractionation in the zinc oxides has been calculated by means of the modified increment method. The results suggest that zincite is slightly enriched in 18O relative to the franklinite of the spinel-type structure but considerably depleted in 18O relative to the franklinite of the inverse spinel-type structure. The zinc oxides are significantly depleted in 18O relative to water under hydrothermal and metamorphic conditions. The oxygen isotope analyses of mineral pairs including the zinc oxides and the common gangue minerals such as calcite and quartz can constitute a sensitive isotope geothermometer. Application of oxygen isotope geothermometry to natural assemblages is attempted for the calcite-zinc ore mineral pairs from the Sterling Hill deposit in USA. The results indicate that the temperature of the zinc mineralization may be in the range from 410° to 630 °C and thus lower than the metamorphic temperatures of granulite facies. A metamorphic fluid could have been involved in the formation of the zinc ore minerals. Franklinite would structurally be an inverse spinel in the infancy of its formation, and thus could have originally evolved from Zn2 + substitution to Fe2 + of magnetite at the high temperatures.  相似文献   

5.
Recent studies on mineralogy, geochronology, fluid inclusion and stable isotope (Pb, Os, S, C, O, Sr) characteristics were reviewed to determine constraints for genetic models of the Chilean manto‐type copper deposits. The Chilean manto‐type deposits are divided into the two geologic categories of the northern areas (Arica–Iquique, Tocopilla–Taltal) and the central areas (Copiapó, La Serena, Santiago). The former is distributed in the coastal range composed of Jurassic andesite‐dominated volcano‐sedimentary piles and younger plutonic intrusions, and yields chalcocite (‐digenite) and bornite as the principal hypogene copper sulfides. The latter is hosted mostly in Lower Cretaceous volcano‐sedimentary sequences, and has chalcopyrite‐rich mineral associations. The fluid inclusion data indicate that the primary copper mineralization was commonly generated in the temperature range 150–360°C under low‐pressure conditions near the boiling curve, mediated with relatively saline brines. Generally, homogeneous Pb and S isotope compositions for primary copper minerals imply direct magma source or leaching of igneous rocks. Pb and Os isotope data published for some deposits, however, suggest that ore‐forming metals were derived mainly from the volcano‐sedimentary host rocks. The noticeably negative isotope ratios of primary sulfide sulfur and hydrothermal calcite carbon of some central area deposits indicate influx of sedimentary rock components, and the high 87Sr/86Sr initial ratios of hydrothermal calcite from the Tocopilla–Taltal area deposits imply contribution of the contemporaneous seawater or marine carbonates. These isotopic constraints imply a formation mechanism in which the Chilean manto‐type copper deposits formed epigenetically in the process of hydrothermal interaction of non‐magmatic surface‐derived brine with the volcano‐sedimentary host rocks, which is inferred to have been induced by a deep‐seated plutonic complex as the possible heat source.  相似文献   

6.
Silicon (Si) isotope variability in Precambrian chert deposits is significant, but proposed explanations for the observed heterogeneity are incomplete in terms of silica provenance and fractionation mechanisms involved. To address these issues we investigated Si isotope systematics, in conjunction with geochemical and mineralogical data, in three well-characterised and approximately contemporaneous, ∼3.5 Ga chert units from the Pilbara greenstone terrane (Western Australia).We show that Si isotope variation in these cherts is large (−2.4‰ to +1.3‰) and was induced by near-surface processes that were controlled by ambient conditions. Cherts that formed by chemical precipitation of silica show the largest spread in δ30Si (−2.4‰ to +0.6‰) and are characterised by positive Eu, La and Y anomalies and overall depletions in lithophile trace elements. Silicon isotope systematics in these orthochemical deposits are explained by (1) mixing between hydrothermal fluids and seawater, and/or (2) fractionation of hydrothermal fluids by subsurface losses of silica due to conductive cooling. Rayleigh-type fractionation of hydrothermal fluids was largely controlled by temperature differences between these fluids and seawater. Lamina-scale Si isotope heterogeneity within individual chemical chert samples up to 2.2‰ is considered to reflect the dynamic nature of hydrothermal activity. Silicified volcanogenic sediments lack diagnostic REE+Y anomalies, are enriched in lithophile elements, and exhibit a much more restricted range of positive δ30Si (+0.1‰ to +1.1‰), which points to seawater as the dominant source of silica.The proposed model for Si isotope variability in the Early Archaean implies that chemical cherts with the most negative δ30Si formed from pristine hydrothermal fluids, whereas silicified or chemical sediments with positive δ30Si are closest to pure seawater deposits. Taking the most positive value found in this study (+1.3‰), and assuming that the Si isotope composition of seawater is governed by input of fractionated hydrothermal fluids, we infer that the temperature of ∼3.5 Ga seawater was below ∼55 °C.  相似文献   

7.
The Bijgan barite deposit, which is located northeast of Delijan in Markazi Province of Iran, occurs as a small lenticular body at the uppermost part of an Eocene volcano-sedimentary rock unit. The presence of fossiliferous and carbonaceous strata suggests that the host rocks were deposited in a quiet marine sedimentary environment. Barite, calcite, iron oxides and carbonaceous clay materials are found as massive patches as well as thin layers in the deposit. Barite is marked by very low concentrations of Sr (1–2%) and total amounts of rare earth elements (REEs) (6.25–17.39?ppm). Chondrite-normalized REE patterns of barite indicate a fractionation of light REEs (LREEs) from La to Sm, similar to those for barite of different origins from elsewhere. The LaCN/LuCN ratios and chondrite-normalized REE patterns reveal that barite in the Bijgan deposit is enriched in LREE relative to heavy rare earth elements (HREEs). The similarity between the Ce/La ratios in the barite samples and those found in deep-sea barite supports a marine origin for barite. Lanthanum and Gd exhibit positive anomalies, which are common features of marine chemical sediments. Cerium shows a negative anomaly in most samples that was inherited from the negative Ce anomaly of hydrothermal fluid that mixed with seawater at the time of barite precipitation. The δ18O values of barites show a narrow range of 9.1–11.4‰, which is close to or slightly lower than that of contemporaneous seawater at the end of the Eocene. This suggests a contribution of oxygen from seawater in the barite-forming solution. The δ34S values of barites (9.5–15.3‰) are lower than that of contemporaneous seawater, which suggests a contribution of magmatic sulfur to the ore-forming solution. The oxygen and sulfur isotope ratios indicate that submarine hydrothermal vent fluids are a good analog for solutions that precipitated barite, due to similarities in the isotopic composition of the sulfates. The available data including tectonic setting, host rock characteristics, REE geochemistry, and oxygen and sulfur isotopic compositions support a submarine hydrothermal origin for the Bijgan barite deposit. At the seafloor, barite deposition occurred where ascending Ba-bearing hydrothermal fluids encountered seawater. Sulfate was derived from the sulfate-bearing marine waters, and, to a lesser extent, by oxidized H2S, which was derived from magmatic hydrothermal fluids.  相似文献   

8.
We present a double-spike isotope dilution MC-ICP-MS technique for the determination of germanium (Ge) isotope fractionation. Using this technique we determined Ge isotope compositions of geothermal spring fluids, a Columbia River Basalt sample, and an in-house diatom standard. Our technique uses a 73Ge/70Ge double spike in combination with hydride generation for Ge extraction from the sample matrix. Fractionation is determined on the 74Ge/72Ge mass ratio. The double spike allows us to effectively correct analytical isotope fractionation. Our external standard reproducibility is 0.4‰ (2 SD) over the course of several months. The minimum quantity of Ge needed for isotope analysis is approximately 2 ng. Consistent with previous work on geothermal fluids, Ge in the geothermal spring samples presented here is enriched over Si as compared to low temperature weathering signatures. This observation is typically interpreted as Ge exclusion during silicate mineral precipitation (e.g., quartz). Our isotope results indicate that the analyzed high temperature fluids fractionate Ge isotopes with a range in δ74Ge between −0.4‰ and −1.4‰ relative to a Columbia River basalt. We cautiously interpret the observed fractionation as preferential removal of heavy Ge isotopes out of solution during cooling of the hydrothermal fluid and subsequent precipitation of quartz.  相似文献   

9.
Submarine metalliferous sedimentary rocks are chemical precipitates resulted from hydrothermal exhalation near mid‐ocean ridge or faults. They record the submarine hydrothermal activity between lithosphere and hydrosphere and are critical for understanding Fe cycling in marine environment. Fe was expelled from the hydrothermal vent systems and was oxidized and precipitated in the ambient seawater, where the precipitation of hydrothermal Fe is largely controlled by oxidation state of seawater and is potentially revealed by its Fe isotope compositions. This hydrothermal process in modern hydrothermal vent systems have been well observed, but that for the ancient ones are still not well known. Umbers, or ferromanganoan sediments, overlying Troodos ophiolite in Cyprus of Mid‐Cretaceous age thus provides an excellent example for understanding the Fe cycles in ancient submarine hydrothermal process. Samples were collected from Margi village in Troodos and are mostly amorphous Fe‐Mn oxy‐hydroxides with very minor quartz, goethite, smectite and silicates such as clinopyroxene derived from the volcanic rocks. There is no terrestrial, detrital component. Samples were analyzed for their whole‐rock element and Fe isotope compositions. The results show that samples are composed mainly of SiO2 (13~80 wt%), Fe2O3 (9~54 wt%) and MnO (1.5~10.4 wt%), with minor Al2O3 (0.7~4.3 wt%). PAAS‐normalized REE patterns are near flat with significantly negative Ce anomalies (Ce/Ce* is from 0.2 to 0.5) and slightly positive Eu anomalies (Eu/Eu* is around 1.1), indicating a source from the oxidized seawater and the high‐temperature hydrothermal fluids. δ56FeIRMM‐014 values of samples are ‐0.32‰ to ‐0.15‰, with an average of ‐0.20‰, which are consistent with those of the hydrothermal fluids previously reported. The narrow Fe isotope compositions of Cyprus umbers that are close to those of submarine hydrothermal fluids indicates near complete oxidation of hydrothermal Fe2+ during its expulsion from the hydrothermal vent.  相似文献   

10.
渤海湾盆地辽河坳陷西部凹陷雷家地区古近系沙河街组四段杜家台油层发现方沸石白云岩及其组合类型。该套岩石具有复杂的矿物组分和沉积构造,以往被认为是一套泥质白云岩和白云质泥岩组合。利用岩石薄片鉴定、X衍射全岩分析、扫描电镜、电子探针等方法,首次发现该套岩石含有大量沉积成因方沸石,其呈纹层状与泥晶白云石混杂沉积,局部可成为方沸石岩。地球化学分析结果表明,该套岩石δ13C值偏正而 δ18O 值偏负,与已报道的热水白云石碳、氧同位素数据非常接近;稀土元素配分曲线特征与其同层位及其下伏房身泡组大套偏碱性玄武岩相似,具有很好的亲缘性。综合上述分析结果认为,方沸石白云岩的形成与房身泡组玄武岩的矿物转变以及湖底热液作用密切相关,为二者共同作用形成的热水沉积岩。  相似文献   

11.
The Ohori ore deposit is one of the Cu–Pb–Zn deposits in the Green Tuff region, NE Japan, and consists of skarn‐type (Kaninomata) and vein‐type (Nakanomata) orebodies. The former has a unique origin because its original calcareous rocks were made by hydrothermal precipitation during Miocene submarine volcanism. Carbon and oxygen isotope ratios of skarn calcite and sulfur isotope ratios of sulfides were measured in and around the deposit. Carbon and oxygen isotope ratios of the skarn calcite are δ13C = ?15.51 to ?5.1‰, δ18O = +3.6 to +22.5‰. δ13C values are slightly lower than those of the Cretaceous skarn deposits in Japan. These isotope ratios of the Kaninomata skarn show that the original calcareous rocks resemble the present submarine hydrothermal carbonates at the CLAM Site, Okinawa Trough, than Cenozoic limestones, even though some isotopic shifts had occurred during later skarnization. δ34S ratios of the sulfide minerals from the Kaninomata and Nakanomata orebodies are mostly in a narrow range of +4.0 to +7.0‰ and they resemble each other, suggesting the same sulfur origin for the both deposits. The magnetite‐series Tertiary Kaninomatasawa granite is distributed just beneath the skarn layer and has δ34S ratios of +7.5 to 8.1‰. The heavy sulfur isotope ratio of the skarn sulfides may have been affected by the Kaninomatasawa granite.  相似文献   

12.
The skeletal oxygen isotope ratio of Porites corals is the most frequently used proxy of past seawater temperature and composition for tropical and subtropical oceans. However, field calibration of the proxy signals is often difficult owing to the dual dependence of skeletal oxygen isotope ratio on temperature and the oxygen isotope composition of water. We conducted tank experiments in which we grew Porites spp. colonies for 142 d in thermostated seawater at five temperature settings between 21°C and 29°C under moderate light intensity of 250 μmol m−2 s−1 with a 12:12 light:dark photoperiod. A skeletal isotope microprofiling technique applied along the major growth axis of each colony revealed that the oxygen isotope ratios of newly deposited skeleton in most colonies remained almost constant during tank incubation, thus providing an ideal situation for precise calibration of oxygen isotope ratio proxy signals. However, the oxygen isotope ratios displayed an unusually large intercolony variability (∼1‰) at each temperature setting although the mean slope (∼0.15‰ °C−1) obtained for the temperature-skeletal oxygen isotope ratio relationship was close to previous results. The intercolony variations in the oxygen isotope ratios were apparently caused by kinetic isotope effects related to variations in the skeletal growth rate rather than by species-specific variability or genetic differences within species. No correlation was found between skeletal carbon isotope ratios and temperature. The carbon isotope ratios showed significantly inverse correlation with linear growth rates, suggesting a kinetic isotope control at low growth rates. Observed intercolony variability in skeletal carbon isotope ratios (∼5‰) can be partly attributed to growth-rate-related kinetic isotope effects.  相似文献   

13.
The importance of oxygen isotope geochemistry in studies of terrestrial and extra-terrestrial silicate rocks was recognized nearly sixtyeight years ago soon after the discovery of O18 and O17. As early as 1934, the significance of oxygen isotope variations in rocks and minerals was stressed by Russian geochemists who also pioneered the discipline of silicate oxygen isotope geochemistry. It is now known that processes involving isotopic interaction between rock and water, magmatic differentiation, and metamorphic recrystallization fractionate oxygen isotopes in the lithosphere. δO18 (the conventional notation for reporting O18/O16 ratios in rocks and minerals) is highest in sedimentary rocks (17 to 35 ‰) and lowest in igneous rocks (4 to 12‰). Metamorphic rocks have intermediate values. δO18 in mafic minerals (1 to 8‰) is lower than in felsic minerals (8 to 16‰). In igneous and metamorphic rocks, quartz is most enriched in O18 (10 to 16‰) and magnetite the least (1 to 2‰). An important application of O18/O16 techniques is in geothermometry, where these are capable of elucidating several petrological processes.  相似文献   

14.
The Cretaceous-Paleogene granites of the Eastern Sikhote Alin volcanic belt (ESAVB) and Late Cretaceous granitoids of the Tatibin Series (Central Sikhote Alin) are subdivided into three groups according to their oxygen isotope composition: group I with δ18O from +5.5 to +6.5‰, group II with δ18O from +7.6 to +10.2‰, and group III with less than +4.5‰. Group I rocks are similar in oxygen isotope composition to that of oceanic basalts and can be derived by melting of basaltic crust. Group II (rocks of the Tatibin Series) have higher δ18O, which suggests that their parental melts were contaminated by sedimentary material. The low 18O composition of group III rocks can be explained by their derivation from 18O-depleted rocks or by subsolidus isotopic exchange with low-18O fluid or meteoric waters. The relatively low δ18O and 87Sr/86Sr in the granitoids of Primorye suggest their derivation from rocks with a short-lived crustal history and can result from the following: (1) melting of sedimentary rocks enriched in young volcanic material that was accumulated in the trench along the transform continental margin (granites of the Tatibin Series) and (2) melting of a mixture of abyssal sediments, ocean floor basalts, and upper mantle in the lithospheric plate that subsided beneath the continent in the subduction zone (granites of the ESAVB).  相似文献   

15.
Hydrogen‐ and oxygen‐isotope analyses of biotite (19), sericite (8), chlorite (2), quartz (27), and total rocks (37) from the Panguna porphyry‐copper deposit on Bougainville Island, place important constraints on the origin of the hydrothermal fluids responsible for mineralization and alteration in the mine region. Early high‐temperature amphibole‐magnetite alteration resulted from magmatic‐hydrothermal fluids. Several lines of evidence indicate 500°C as a realistic average temperature for mineralization, development of quartz veins, and biotitization processes. On the basis of mineral isotope data, responsible fluids could represent either 18O‐shifted ground‐waters or magmatic‐hydrothermal fluids at submagmatic temperatures. Independent evidence, as well as total‐rock 18O data, support the magmatic‐hydrothermal model.

Late‐stage sericitization processes probably resulted from fluids produced by 18O shifting of groundwaters during the evolution of the propylitic zone. Outermost quartz veins and biotitization conceivably resulted from fluids similar to those that caused sericitization, indicating that some interaction between relatively cool, 18O‐poor meteoric waters and the ore fluids occurred near the margins of the deposit. The origin of the chlorite‐sericite alteration cannot be resolved solely by isotope studies.  相似文献   

16.
江西德兴铜厂铜矿水-岩体系氢氧同位素演化   总被引:4,自引:0,他引:4       下载免费PDF全文
 江西铜厂铜矿床露天采场岩石76个全岩氧同位素组成表明,该超大型铜矿的形成与具有5个水-岩交换成矿体系汇集在一起有关。水-岩体系计算表明,成矿流体储库形成是大气降水与千枚岩和花岗闪长斑岩在300℃以及W/R比值为0.5左右条件下形成,而后上升进入矿化沉积体系时温度降低,W/R比值超过10.0,计算的最少水量达1.9×1010t以上。  相似文献   

17.
《International Geology Review》2012,54(10):1300-1310
The Tianbaoshan Pb–Zn deposit, part of the Sichuan–Yunnan–Guizhou (SYG) Pb–Zn metallogenic province, is located in the western Yangtze Block and contains 2.6 million tonnes of 10–15 wt.% Pb + Zn metals. Ore bodies occur as vein or tubular types and are hosted in Sinian (late Proterozoic) carbonate rocks and are structurally controlled by the SN-trending Anninghe tectonic belt and NW-trending concealed fractures. The deposits are simple in mineralogy, with sphalerite, galena, pyrite, chalcopyrite, arsenopyrite, freibergite, and pyrargyrite as ore minerals and dolomite, calcite, and quartz as gangue minerals. These phases occur as massive, brecciated, veinlet, and dissemination in dolostone of the upper Sinian Dengying Formation. Hydrogen and oxygen isotope compositions of hydrothermal fluids range from –47.6 to –51.2‰ and –1.7 to +3.7‰, respectively. These data suggest that H2O in hydrothermal fluids had a mixed origin of metamorphic and meteoric waters. Carbon and oxygen isotope compositions range from –6.5 to –4.9‰ and +19.3 to +20.2‰, respectively. These compositions plot in the field between mantle and marine carbonate rocks with a negative correlation, suggesting that CO2 in the ore-forming fluids had multiple sources, including the Permian Emeishan flood basalts, Sinian-to-Permian marine carbonate rocks, and organic matters in Cambrian-to-Permian sedimentary rocks. Sulphur isotope compositions range from –0.4 to +9.6‰, significantly lower than Cambrian-to-Permian seawater sulphate (+15 to +35‰) and sulphate (+15 to +28‰) from evaporates in Cambrian-to-Permian strata, implicating that the S was derived from host-strata evaporates by thermal–chemical sulphate reduction. 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb ratios range from 18.110 to 18.596, 15.514 to 15.878, and 38.032 to 39.221, respectively, which plot in field of the upper crust Pb evolution curve, unlike those of Proterozoic basement rocks, Sinian dolostone, Devonian-to-Permian carbonate rocks, and the Permian Emeishan flood basalts, implying complex derivation of Pb metal in the ore-forming fluids. Geological and isotopic studies of the Tianbaoshan Pb–Zn deposit reveal that constituents in the hydrothermal fluids were derived from multiple sources and that fluid mixing was a possible metallogenic mechanism. The studied deposit is not distal magmatic–hydrothermal, sedimentary exhalative (SEDEX), or Mississippi Valley (MVT) types, rather, it represents a unique ore deposit type, named in this article the SYG type.  相似文献   

18.
中非(赞比亚―刚果(金))沉积型铜矿以其拥有高品位的大型超大型铜、钴矿床和众多的世界级铜矿山而闻名于世。铜矿类型可分为沉积型铜矿、热液脉型铜矿、变质热液型铜矿三类。沉积型铜矿床形成后,受到深部含矿岩浆热液的侵入形成脉状铜矿,可能还有斑岩型铜钼矿的成矿作用,叠加富集原有的沉积型铜矿床。硫同位素结果显示,硫源主要为成岩硫化物和海水硫酸盐的混合硫,受到深源岩浆或岩浆热液叠加改造。沉积型铜矿成矿年龄880~735Ma,后期岩浆热液型铜钼矿成矿年龄为514~502Ma。这些发现对进一步认识总结中非铜矿带上的矿床成因及成矿规律具有重要意义。  相似文献   

19.
古城地区是塔东探区的重点勘探区块,下奥陶统鹰三段是塔东探区首要的勘探层系。探寻多期热液作用改造后的优质白云岩储层是扩大研究区勘探成果的关键。本文在储层岩石学特征判识的基础上,应用U-Pb同位素定年技术,结合碳氧锶镁同位素和稀土元素分析测试,分析了热液性质,明确了热液作用发生的确切时期及期次,探讨了热液作用对白云岩储层的影响。研究结果表明,古城地区鹰三段白云岩储层发育准同生-浅埋藏海水成因的粉晶-中晶白云岩及热液作用产物。热液作用可划分为二期:第一期为中-晚奥陶世贫镁热液,表现为鞍状白云石充填缝洞及重结晶次生加大的粗晶白云石,U-Pb测定年龄为464±12Ma到473.9±9.1Ma,氧同位素值比早奥陶世正常海相白云石明显偏负,锶同位素比值明显高于早奥陶世海水值,稀土元素Eu正异常,锶、铁、镁元素含量低;第二期为晚奥陶世-早志留世钙质热液,表现为方解石充填缝洞及对先存白云石的溶蚀,U-Pb测定年龄为448±15Ma到457.4±6.6Ma,氧锶同位素组成严重偏离同时期正常海相白云石范围,轻稀土元素明显富集,Eu正异常,锶、钙元素含量高,锰元素含量低。第二期热液作用是白云岩储层溶蚀的关键,同期NNE向断裂带作为其输导系统,是优质储层发育的有利部位,为有利区带预测提供依据。  相似文献   

20.
以地质背景、物质组分和岩石组构分析为基础,对酒泉盆地青西凹陷下沟组湖相热水沉积钠长石—铁白云石岩进行了Sr同位素地球化学研究。结果表明,热水沉积岩87Sr/86Sr比值变化范围为0.712 25~0.717 81,平均值0.715 61,远高于同期海水和下沟组玄武岩,略高于代表早白垩世湖水锶同位素组成的藻灰岩,但低于基底壳源硅铝质岩,反映热流体不可能为单纯的湖水或幔源岩浆水;其中直接化学结晶沉淀的纹层状泥微晶热水沉积岩锶同位素比值变化范围较小,可代表均一化的热卤水池流体锶同位素组成特征;指示不同喷流口位置的“水爆角砾岩”锶同位素组成变化较大,但同一位置的热水角砾与胶结物锶同位素组成基本一致,说明两者应属于具相同成因意义的同期热水喷流沉积产物;综合青西凹陷下沟组湖相热水沉积岩锶同位素地球化学特征,初步推测早白垩世湖底热流体可能为富集硅铝质基底岩石高放射成因Sr的深循环下渗湖水与少量上升幔源岩浆水构成的混合热流体,可为青西凹陷早白垩世湖底热流体性质的确定以及热流体循环动力学模型和热水沉积模式的建立奠定基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号