首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 342 毫秒
1.
我们对采自于加勒比海地区小安德列斯岛弧(Lesser Antilles Arc)Kick’em Jenny(KEJ)海底火山玄武岩中的斜长石斑晶进行了矿物形态和成分分析。利用电子探针(EMPA)和LA-ICP-MS测定了具有环带结构的斜长石斑晶中主量元素的空间分布,同时也利用LA-ICP-MS分析了斜长石中Sr的分布。结果表明,在不同的矿物斑晶中,元素含量均表现出和环带结构相联系的空间分布变化。斜长石斑晶中最主要的结构为韵律环带以及熔蚀结构,所测定的矿物边缘都存在An值从由内向外迅速降低的致密韵律环带,可能反映了快速结晶时的不平衡;而晶体内部的稀疏韵律环带结构是由岩浆填充或对流活动导致的。部分斜长石的熔蚀层An值由内向外升高,反映了高Ca岩浆填充的过程。这说明斜长石斑晶的矿物形态和元素环带可以用来制约俯冲带海底火山岩浆从源区上升到岩浆房再到喷发的复杂过程,包括岩浆演化、熔体多次填充、熔体与结晶矿物之间的反应、以及矿物再熔融等。这对于理解海底火山的喷发以及岛弧岩浆岩的演化有重要意义。  相似文献   

2.
Plagioclase phenocrysts from mafic enclaves and plagioclase from its host granite possess a pat-tern of complex zonation .A plagioclase phenocryst can generally be divided into three parts:an oscillatory, locally patchy zoned core (An47-19),a ring with dusty, more calcic plagioclase (An64-20) and a normally zoned rim composed of sodic plagioclase (An22-3.3). Major discontinuities in zoning coincide with resorption surfaces that are overgrown by the more calcic plagioclase.The cores of large plagioclase phenocrysts from mafic enclaves and host granite show similar zoning patterns and similar compositions, indicating their crystallization under the same conditions .Steep normal zoning of the rims of plagioclases both from host granite and mafic enclaves illustrates a drastic decrease in An content which is considered to have resulted from the continuous differentiation of hybrid magma and efficient heat loss because of the upward emplacement of the residual magma.Wide rims of plagioclases from the host granite against the discrete rims of plagioclases from mafic enclaves indicate that differentiation and cooling lasted much longer in the host granite than in the mafic enclaves.  相似文献   

3.
The Northern Marginal Zone of the Rum Igneous Centre is a remnant of an early caldera and its infill. It is composed of intra-caldera breccias and various small-volume pyroclastic deposits, overlain by prominent rhyodacite ash-flow sheets of up to 100 m thickness. The ash-flows were fed from a feeder system near the caldera ring-fault, and intrusive rhyodacite can locally be seen grading into extrusive deposits. A variety of features suggest that the ash-flows were erupted from a magma chamber that contemporaneously hosted felsic and mafic magmas: (i) chilled basaltic inclusions in rhyodacite; (ii) formerly glassy basaltic to andesitic enclaves with fluid-fluid relationships; (iii) feldspars with thick reaction rims enclosed in the basaltic to andesitic inclusions, yet with cores chemically resembling those of the rhyodacite: (iv) trace element compositions of the rhyodacite and the mafic enclaves form a mixing line between the end-member rhyodacite and basalt compositions. Additionally, textural and chemical features in the rhyodacite feldspar phenocrysts are consistent with magma mixing; (v) feldspars with resorption embayments cutting through internal zonation of the crystals; (vi) complexly zoned crystals with sieve-textured zones that are overgrown with euhedral zones; (vii) oscillatory zonation of feldspar phenocrysts in the rhyodacite, showing sharp increases in anorthite (An 10%) followed by gradual decrease in An-content (An 4%). This evidence points to eruption of ash-flows from a felsic magma chamber that was periodically replenished by injection of mafic magma. Diffusional mixing between the two magmas was permitted by temperature and compositional differences, but was slow due to the contrast in viscosities and densities. The Fe–Ti–P-enriched basic magma that replenished the chamber was degassing on entering the lower temperature environment and soon equilibrated thermally, followed by chemical exchange between the two end-member magmas. This process formed hybrid andesite enclaves enriched in trace elements beyond that caused by simple mixing, implying trace element diffusion in addition to bulk mixing. Eruption was caused by replenishment with, and degassing of, the basic magma and the chamber partially evacuated while the process of hybridisation was underway. The erupted products record magma mixing by chamber replenishment, blending of two magmas and elemental exchange in the magma chamber, and also physical mingling in the eruptive conduit.  相似文献   

4.
The simultaneous eruption in 1996 of andesite from Karymskyvolcano and of basalt from the Academy Nauk vent 6 km away appearsto provide a case of mafic recharge of an andesite reservoirfor which the time of recharge is exactly known and direct samplesof the recharging magma are available. The explosive phreato-magmaticeruption of basalt was terminated in less than 24 h, whereasandesite erupted continuously during the following 4 years.Detailed petrological study of volcanic ash, bombs and lavasof Karymsky andesite erupted during the period 1996–1999provides evidence for basaltic replenishment at the beginningof the eruptive cycle, as well as a record of compositionalvariations within the Karymsky magma reservoir induced by basalticrecharge. Shortly after the beginning of the eruption the compositionof the matrix glass of the Karymsky tephra became more maficand then, within 2 months, gradually returned to its originalstate and remained almost constant for the following 3 years.Further evidence for basaltic replenishment is provided by thepresence of xenocrysts of basaltic origin in the andesite ofKarymsky. A conspicuous portion of the plagioclase phenocrystsin the Karymsky andesite has calcic cores, with compositionsand textures resembling those of plagioclases in the AcademyNauk basalt. Similarly, the earlier portion of the andesiteof the eruption sequence contains rare olivines, which occuras resorbed cores in pyroxenes. The composition of the olivinematches that of olivines in the Academy Nauk basalt. The sequenceof events appears to be: (1) injection of basaltic magma intothe Karymsky chamber with immediate, compensating expulsionof pre-existing chamber magma from the Karymsky central vent;(2) direct mixing of basaltic and andesitic magmas with dispersalof phenocrysts associated with the basalt throughout the andesiteso that newly mixed magma appeared at the vent within 2 months;(3) re-establishment of thermal and chemical equilibrium withinthe reservoir involving crystallization in the new hybrid liquid,which returned the melt composition to ‘normal’,formed rims on inherited calcic plagioclase, and caused theresorption of dispersed olivine xenocrysts. Taken together,these findings indicate that the Karymsky magma reservoir wasrecharged by basalt at the onset of the 1996 eruptive cycle.The rapidity and thoroughness of mixing of the basalt with thepre-existing andesite probably reflects the modest contrastin temperature, viscosity, and density between the two magmas. KEY WORDS: Karymsky; Kamchatka; magma mixing; andesite; volcanic glass; plagioclase  相似文献   

5.
Back-scattered electron (BSE)-derived zoning patterns of plagioclase phenocrysts are used to identify magma processes at Bezymianny Volcano, Kamchatka, based on the 2000–2007 sequence of eruptive products. The erupted magmas are two-pyroxene andesites, which last equilibrated at ~915°C temperature, 77–87 MPa pressure, and a water content of ~1.4 wt%. Textural and compositional zoning of individual plagioclase phenocrysts typically includes a repeated core-to-rim sequence of oscillatory zoning (An50–60) truncated by a dissolution surface followed by an abrupt increase in An content (up to An85), which then gradually decreases rimward. This zoning pattern is interpreted to be the result of frequent replenishments of the magma chamber which cause both thermal and chemical interaction between resident and recharge magmas. The outermost 70- to 150-μm-wide zoning patterns of plagioclase phenocrysts are composed of dissolution surface with a subsequent increase in An and Fe contents. Zoning patterns of the rims exhibit correlation among plagioclase phenocrysts within one eruption. Rims are interpreted as a result of crystallization of a batch of magma in the conduit after recharge event.  相似文献   

6.
The crustal history of volcanic rocks can be inferred from the mineralogy and compositions of their phenocrysts which record episodes of magma mixing as well as the pressures and temperatures when magmas cooled. Submarine lavas erupted on the Hilo Ridge, a rift zone directly east of Mauna Kea volcano, contain olivine, plagioclase, augite ±orthopyroxene phenocrysts. The compositions of these phenocryst phases provide constraints on the magmatic processes beneath Hawaiian rift zones. In these samples, olivine phenocrysts are normally zoned with homogeneous cores ranging from ∼ Fo81 to Fo91. In contrast, plagioclase, augite and orthopyroxene phenocrysts display more than one episode of reverse zoning. Within each sample, plagioclase, augite and orthopyroxene phenocrysts have similar zoning profiles. However, there are significant differences between samples. In three samples these phases exhibit large compositional contrasts, e.g., Mg# [100 × Mg/(Mg+Fe+2)] of augite varies from 71 in cores to 82 in rims. Some submarine lavas from the Puna Ridge (Kilauea volcano) contain phenocrysts with similar reverse zonation. The compositional variations of these phenocrysts can be explained by mixing of a multiphase (plagioclase, augite and orthopyroxene) saturated, evolved magma with more mafic magma saturated only with olivine. The differences in the compositional ranges of plagioclase, augite and orthopyroxene crystals between samples indicate that these samples were derived from isolated magma chambers which had undergone distinct fractionation and mixing histories. The samples containing plagioclase and pyroxene with small compositional variations reflect magmas that were buffered near the olivine + melt ⇒Low-Ca pyroxene + augite + plagioclase reaction point by frequent intrusions of mafic olivine-bearing magmas. Samples containing plagioclase and pyroxene phenocrysts with large compositional ranges reflect magmas that evolved beyond this reaction point when there was no replenishment with olivine-saturated magma. Two of these samples contain augite cores with Mg# of ∼71, corresponding to Mg# of 36–40 in equilibrium melts, and augite in another sample has Mg# of 63–65 which is in equilibrium with a very evolved melt with a Mg# of ∼30. Such highly evolved magmas also exist beneath the Puna Ridge of Kilauea volcano. They are rarely erupted during the shield building stage, but may commonly form in ephemeral magma pockets in the rift zones. The compositions of clinopyroxene phenocryst rims and associated glass rinds indicate that most of the samples were last equilibrated at 2–3 kbar and 1130–1160 °C. However, in one sample, augite and glass rind compositions reflect crystallization at higher pressures (4–5 kbar). This sample provides evidence for magma mixing at relatively high pressures and perhaps transport of magma from the summit conduits to the rift zone along the oceanic crust-mantle boundary. Received: 8 July 1998 / Accepted: 2 January 1999  相似文献   

7.
The Taiwan mountain belt, one of the youngest orogenies in the world, is caused by the collision of the Luzon arc with the Eurasian margin, which leads to post-collisional extension and magmatism in the Northern Taiwan Volcanic Zone (NTVZ). The magma chamber process in this region has not previously been elucidated in detail. In this paper, the textural and compositional features of plagioclase phenocrysts in basalt from the Tatun Volcanic Group (TTVG) were studied to restrict the dynamics of magma system. Results show that the magma melts in TTVG are mainly sourced from the underlying MORB-like mantle wedge but influenced by incorporation of subduction components, causing the elevated Sr/Y and Ba/Y ratios in magma melts. The subduction components are mainly transported in the form of sediment melt. The plagioclase phenocrysts in the TTVG volcanic rocks are generally coarsely core-sieved with a clear rim. The An contents in the rims of plagioclase are much lower than those of cores, and elevated FeO concentrations are detected in the plagioclase rims. We propose there exists a double-layer magma chamber in this region. The core of the plagioclase was crystalized in the deeper quiescent magma chamber (~21 km), which was subsequently partially dissolved during the ascent of magma melt under H2O-undersaturated condition, forming the typical coarsely sieved texture and synneusis. When this crystal-rich melt migrates into the shallower chamber, water saturation is reached and more sodic plagioclase formed as the rim of phenocryst. Due to the considerably higher fO2 in the shallow chamber than in the deeper one, and the distribution of Fe between plagioclase and melt positively correlates with fO2, the FeO content in the plagioclase rim elevates in conjunction with increasing fO2.  相似文献   

8.
The Ghansura Rhyolite Dome of the Bathani volcano-sedimentary sequence in eastern India originated from a subvolcanic felsic magma chamber that was intruded by volatile-rich basaltic magma during its evolution leading to the formation of a porphyritic andesite. The porphyritic andesite consists of rapakivi feldspars, which are characterized by phenocrysts of alkali feldspar mantled by plagioclase rims. Results presented in this work suggest that intimate mixing of the mafic and felsic magmas produced a homogeneous hybrid magma of intermediate composition. The mixing of the hot volatile-rich mafic magma with the relatively colder felsic magma halted undercooling in the subvolcanic felsic system and produced a hybrid magma rich in volatiles. Under such conditions, selective crystals in the hybrid magma underwent textural coarsening or Ostwald ripening. Rapid crystallization of anhydrous phases, like feldspars, increased the melt water content in the hybrid magma. Eventually, volatile saturation in the hybrid magma was reached that led to the sudden release of volatiles. The sudden release of volatiles or devolatilization event led to resorption of alkali feldspar phenocrysts and stabilizing plagioclase, some of which precipitated around the resorbed phenocrysts to produce rapakivi feldspars.  相似文献   

9.
Chemical and structural zoning in plagioclase can develop in response to a number of different magmatic processes. We examine plagioclase zonation formed during the transfer of plagioclase from a granodioritic host to a monzodioritic enclave to understand the development of different zonation patterns caused by this relatively simple magma mixing process. The transferred plagioclase records two stages of evolution: crystallization of oscillatory plagioclase in the host granodioritic magma and crystallization of high An zones and low An rims in the hybrid enclave magma. High An zones (up to An72) are formed only in the hybrid enclaves after plagioclase transfer. Plagioclase from a primitive enclave, showing no or only minimal interaction with the host, is An30–43. The implication is that high An zones crystallize only from the hybrid magma and not from the primitive one, probably because of an increase in water content in the hybrid magma. Complex interactions between the two magmas are also recorded in Sr content in plagioclase, which indicates an initial increase in Sr concentration in the melt upon transfer. This is contrary to what is expected from the mixing of low Sr enclave magma with a high Sr granodiorite one. Such Sr distribution in the plagioclase implies that the transfer of the plagioclase took place before the onset of plagioclase crystallization in the enclave magma. Therefore, the mixing between high Sr granodiorite magma and low Sr enclave magma was recorded only in plagioclase rims and not in the high An zones.  相似文献   

10.
Basaltic andesites are the dominant Tongan magma type, and are characterized by phenocrysts of augite, orthopyroxene (or rarely pigeonite), and calcic plagioclase (modally most abundant phase, and interpreted as the liquidus phase). The plagioclase phenocrysts exhibit slight oscillatory reverse zoning except for abrupt and thin more sodic rims, which are interpreted to develop during eruptive quenching. These rim compositions overlap those of the groundmass plagioclase. The pyroxene phenocrysts also exhibit only slight compositional zoning except for the outermost rim zones; the compositions of these rims, together with the groundmass pyroxenes, vary throughout the compositional range of subcalcic augite to ferroaugite through pigeonite to ferropigeonite, and are interpreted in terms of quench-controlled crystallization. This is supported, for example, by the random distribution of Al solid solution in the groundmass pyroxenes, compared to the more regular behaviour of Al in the phenocryst pyroxenes. The analysed Niua Fo'ou olivine tholeiites are aphyric; groundmass phases are plagioclase (An17–88), olivine (Fa18–63), titanomagnetite (usp. 59–73), and augite-ferroaugite which does not extend to subcalcic compositions; this is interpreted to be due to higher quenching temperatures and lower viscosities of these tholeiites compared to the basaltic andesites.Application of various geothermometers to the basaltic andesites suggest initial eruptive quenching temperatures of 1,008–1,124 ° C, plagioclase liquidus temperatures (1 bar) of 1,210–1,277 ° C, and orthopyroxene-clinopyroxene equilibration of 990–1,150 ° C. These calculated temperatures, together with supporting evidence (e.g. absence of olivine and amphibole, liquidus plagioclase, and plagioclase zoning patterns) are interpreted in terms of phenocryst crystallization from magmas that were either strongly water undersaturated, nearly anhydrous, or at best, water saturated at very low pressures (< 0.5 kb). This interpretation implies that these Tongan basaltic andesites did not originate by any of the currently proposed mechanisms involving hydrous melting within or above the Benioff zone.  相似文献   

11.
研究I型花岗岩中再循环晶的成分和结构特征,对揭示岩浆系统的形成和演化历史以及壳源和幔源岩浆的相互作用具有重要的意义。本文以西秦岭北西段三叠纪过马营复式岩体内的不同造岩矿物为主要研究对象,通过对具有不同结构特征的斜长石"粗晶"和黑云母展开电子探针(EMPA)、LA-ICP-MS微量元素面扫描、原位Sr同位素分析,来探讨含高An斜长石的成因,示踪不同岩浆房端员的属性,约束岩浆演化过程并建立多级岩浆房模型。过马营复式岩体的岩性分为偏铝质花岗岩类和过铝质花岗闪长岩类,两类岩性中均存在An值呈突变的筛状结构斜长石,即高An(72~85)区与低An(20~55)区在同一颗粒中并存,其对应主、微量元素也存在截然变化。与低An区相比,高An区具有高Fe、Mg,高Ba的特征。高钙区斜长石可进一步分为两类,第1类高钙区斜长石(An80-85),和第2类高钙区斜长石(An72-78)。第1类高钙区比第2类高钙斜长石区具有更高的Ca、Al、Fe、Mg、Ba含量。本研究中斜长石晶体存在核高An-边低An与核低An-幔高An-边低An两种不同类型的环带结构,表明其各自的生长过程有所不同。高An区与低An区之间An值跳跃式的变化与对应主、微量元素Fe、Mg、Sr、Ba含量特征均指示斜长石成分差异并非晶内扩散、动力学作用以及物理条件的变化造成的,更可能形成于开放的岩浆系统。本文认为斜长石粗晶为再循环晶,其内部的高An区形成于深部富H2O玄武质岩浆,低An区形成于浅部酸性岩浆房(偏铝质与过铝质)。两种不同高钙区斜长石及其对应的主、微量元素差异指示它们很可能结晶于两批次不同的玄武质岩浆,其中第1类高钙区斜长石的母岩浆相对更富Fe、Mg、Ba。两种玄武质岩浆携带高An斜长石沿岩浆通道向上运移,上升过程熔蚀先前结晶的高An斜长石,将其带入浅部酸性岩浆房后与内部花岗质/花岗闪长质岩浆发生混合。混合之后的岩浆沿高An斜长石残晶边部继续结晶生长,同时高温玄武质岩浆的注入导致浅部岩浆房已结晶的低An斜长石被熔蚀形成筛状结构,随后玄武质岩浆、混合后岩浆依次沿其边部继续生长。我们认为两批次的玄武质岩浆体积较小并未对浅部酸性岩浆房成分造成大的影响。  相似文献   

12.
刘鑫  汤艳杰 《岩石学报》2018,34(11):3315-3326
冀西北姚家庄存在一套晚三叠世的超镁铁岩-正长岩杂岩体,岩体内发育具有环带特征的单斜辉石。辉石的环带有两种:简单环带和复杂环带。简单环带一般为正环带,辉石核部的MgO和Cr2O3含量高,Si O2、Fe O和Na2O含量低;边部的主要氧化物含量与核部刚好相反。简单正环带可以分为两类,其中核边接触带平滑、由核到边化学成分具有渐变特征的正环带辉石可能是岩浆在分离结晶或地壳混染过程中形成。而核边接触带有熔蚀结构、由核到边化学成分突变的正环带辉石可能是早期结晶的辉石颗粒受到晚期低镁岩浆的溶蚀改造而成的。复杂环带具有核-幔-边结构,其中,核部低镁高铁、幔部高镁低铁、边部与核部相似,但其Mg#更低,这些特征暗示了岩浆混合作用的存在,形成辉石核部的母岩浆可能来自富集的岩石圈地幔,幔部高Mg#的特征指示了软流圈地幔物质的贡献,其边部低Mg#的特征则指示了地壳物质的加入。具有韵律环带的复杂辉石是在岩浆多期侵入的过程中形成的。辉石环带的组成特征表明,姚家庄杂岩体是由岩浆多期侵位形成的,后期侵入的岩浆与前期就位的岩浆不断反应,形成了具有多种不同环带特征的辉石,并最终形成了空间上由外到内依次为辉石岩、辉石正长岩和正长岩的环状杂岩体。结合前人的研究成果,推测形成姚家庄岩体的岩浆主要来源于富集的岩石圈地幔,并由少量地壳组分和软流圈物质的贡献。  相似文献   

13.
This study presents major- and trace-element chemistry of plagioclase phenocrysts from the 1980 eruptions of Mount St. Helens volcano. Despite the considerable variation in textures and composition of plagioclase phenocrysts, distinct segments have been cross-correlated between crystals. The variation of Sr and Ba concentration in the melt, as calculated from the concentration in the phenocrysts using partition coefficients, suggests the cores and rims crystallised from compositionally different melts offset by the plagioclase crystallisation vector. In both of these melts Sr and Ba are correlated despite the abundance of plagioclase in the 1980 dacites. We propose that rapid crystallisation of plagioclase upon magma ascent caused a shift in melt composition towards lower Sr and higher Ba, as documented in the rims of the phenocrysts. Although the cores of the phenocrysts crystallised at relatively shallow depths, they preserve the Sr and Ba of the deep-seated melts as they ascended from a deeper region. Further magma ascent resulted in microlite nucleation, which is responsible for a similar shift to even lower Sr concentration as observed in the groundmass of post-18 May 1980 samples. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
Heterogeneous andesitic and dacitic lavas on Cordn El Guadalbear on the general problem of how magmas of differing compositionsand physical properties interact in shallow reservoirs beneathcontinental arc volcanoes. Some of the lavas contain an exceptionallylarge proportion (<40%) of undercooled basaltic andesiticmagma in various states of disaggregation. Under-cooled maficmagma occurs in the silicic lavas as large (<40 cm) basalticandesitic magmatic inclusions, as millimeter-sized crystal-clotsof Mg-rich olivine phenocrysts plus adhering Carich plagioclasemicrophenocrysts (An50–70), and as uniformly distributed,isolated phenocrysts and microphenocrysts. Compositions andtextures of plagioclase phenocrysts indicate that inclusion-formingmagmas are hybrids formed by mixing basaltic and dacitic melts,whereas textural features and compositions of groundmass phasesindicate that the andesitic and dacitic lavas are largely mechanicalmixtures of dacitic magma and crystallized basaltic andesiticmagma. This latter observation is significant because it indicatesthat mechanical blending of undercooled mafic magma and partiallycrystallized silicic magma is a possible mechanism for producingthe common porphyritic texture of many calc-alkaline volcanicrocks. The style of mafic-silicic magma interaction at CordonEl Guadal was strongly dependent upon the relative proportionsof the endmembers. Equally important in the Guadal system, however,was the manner in which the contrasting magmas were juxtaposed.Textural evidence preserved in the plagioclase phenocrysts indicatesthat the transition from liquid-liquid to solid-liquid mixingwas not continuous, but was partitioned into periods of magmachamber recharge and eruption, respectively. Evidently, duringperiods of recharge, basaltic magmas rapidly entrained smallamounts of dacitic magma along the margins of a turbulent injectionfountain. Conversely, during periods of eruption, dacitic magmagradually incorporated small parcels of basaltic andesitic magma.Thus, the coupled physical-chemical transition from mixed inclusionsto commingled lavas is presumably not coincidental. More likely,it probably provides a partial record of the dynamic processesoccurring in shallow magma chambers beneath continental arevolcanoes. KEY WORDS: Chile; commingling; magma mixing; magmatic inclusions *Present address: Department of Earth Sciences, Montana State University, Bozeman, MT 59717, USA  相似文献   

15.
This contribution reports a detailed study on in situ Sr isotope analyses, along with textural and compositional characteristics, of plagioclase phenocrysts occurring in the rhyodacitic dome-lavas and associated mafic enclaves, erupted during the last magmatic activity at Nisyros volcano (Greece). Dome-lavas and enclaves have a paragenesis dominated by plagioclase. We recognize five different types of plagioclase based on their specific textures and composition. Dome-lava plagioclases (Type-1) are mainly large (1–5 mm), subhedral, clear, and poorly zoned crystals with low An content (An25–35). The plagioclase phenocrysts (Type-4 and Type-5) and groundmass microlites crystallizing in the enclaves, and found in dome-lavas as xenocrysts, have high An content (An75–95). In both dome-lavas and enclaves, two other types of plagioclase do also occur: (1) plagioclase phenocrysts with size and core composition similar to those of Type-1 having a dusty sieve zone (DSZ) at the rims (Type-2); (2) plagioclases with a DSZ affecting the entire crystal but a thin rim (Type-3). The drilled plagioclases have 87Sr/86Sr negatively correlated with their An content. Low An cores of Type-1 and Type-2 have quite homogeneous 87Sr/86Sr (0.7044–0.7046), whose values are more radiogenic than their host magmas (0.70403–0.70408) and similar to those of the previous Upper Pumice (UP) rhyolite magma (0.70438–0.70456). The DSZs of Type-2 and Type-3 show lower and scattered 87Sr/86Sr (0.70397–0.70426) with intermediate and variable An content. High An cores of Type-4 and Type-5 have the least radiogenic Sr isotope composition (0.70379) in equilibrium with that measured in the enclaves (0.70384–0.70389). We demonstrate that Type-1 plagioclase crystallizes in the previous UP rhyolitic magmas representing the silica-rich magma from which the dome-lava melts derived by open system evolutionary processes (e.g., mixing, mingling, and crystal migration), caused by successive refilling of mafic enclave-forming magma. The Type-2 plagioclase derives from entrainment of Type-1 into the still molten enclave magma. The DSZs originated in response to the interaction between the low An plagioclase and the enclave mafic melt in which dissolution and re-crystallization acted together as function of the interaction time. Type-1 and Type-2 plagioclases record, therefore, a long-lived timescale of events starting from their crystallization in the UP rhyolite. Instead, the different width of DSZs (Type-2 and Type-3) seems to indicate short different interaction timescales between the single crystals and the enclave melt (from few hours to some 40 days). These microanalytical data contribute to the understanding of the origin of the rhyodacitic dome-lavas at Nisyros volcano and to set robust constraints on the dynamics of mingling/mixing processes in terms of crystal exchange pathways and enclave disaggregation.  相似文献   

16.
Zoning of phosphorus in igneous olivine   总被引:2,自引:2,他引:0  
We describe P zoning in olivines from terrestrial basalts, andesites, dacites, and komatiites and from a martian meteorite. P2O5 contents of olivines vary from below the detection limit (≤0.01 wt%) to 0.2–0.4 wt% over a few microns, with no correlated variations in Fo content. Zoning patterns include P-rich crystal cores with skeletal, hopper, or euhedral shapes; oscillatory zoning; structures suggesting replacement of P-rich zones by P-poor olivine; and sector zoning. Melt inclusions in olivines are usually located near P-rich regions but in direct contact with low-P olivine. Crystallization experiments on basaltic compositions at constant cooling rates (15–30°C/h) reproduce many of these features. We infer that P-rich zones in experimental and natural olivines reflect incorporation of P in excess of equilibrium partitioning during rapid growth, and zoning patterns primarily record crystal-growth-rate variations. Occurrences of high-P phenocryst cores may reflect pulses of rapid crystal growth following delayed nucleation due to undercooling. Most cases of oscillatory zoning in P likely reflect internal factors whereby oscillating growth rates occur without external forcings, but some P zoning in natural olivines may reflect external forcings (e.g., magma mixing events, eruption) that result in variable crystal growth rates and/or P contents in the magma. In experimental and some natural olivines, Al, Cr, and P concentrations are roughly linearly and positively correlated, suggesting coupled substitutions, but in natural phenocrysts, Cr zoning is usually less intense than P zoning, and Al zoning weak to absent. We propose that olivines grow from basic and ultrabasic magmas with correlated zoning in P, Cr, and Al superimposed on normal zoning in Fe/Mg; rapidly diffusing divalent cations homogenize during residence in hot magma; Al and Cr only partially homogenize; and delicate P zoning is preserved because P diffuses very slowly. This interpretation is consistent with the fact that zoning is largely preserved not only in P but also in Al, Cr, and divalent cations in olivines with short residence times at high temperature (e.g., experimentally grown olivines, komatiitic olivines, groundmass olivines, and the rims of olivine phenocrysts grown during eruption). P zoning is widespread in magmatic olivine, revealing details of crystal growth and intra-crystal stratigraphy in what otherwise appear to be relatively featureless crystals. Since it is preserved in early-formed olivines with prolonged residence times in magmas at high temperatures, P zoning has promise as an archive of information about an otherwise largely inaccessible stage of a magma’s history. Study of such features should be a valuable supplement to routine petrographic investigations of basic and ultrabasic rocks, especially because these features can be observed with standard electron microprobe techniques.  相似文献   

17.
K-feldspar megacrysts (Kfm) are used to investigate the magmaticevolution of the 7 Ma Monte Capanne (MC) monzogranite (Elba,Italy). Dissolution and regrowth of Kfm during magma mixingor mingling events produce indented resorption surfaces associatedwith high Ba contents. Diffusion calculations demonstrate thatKfm chemical zoning is primary. Core-to-rim variations in Ba,Rb, Sr, Li and P support magma mixing (i.e. high Ba and P andlow Rb/Sr at rims), but more complex variations require othermechanisms. In particular, we show that disequilibrium growth(related to variations in diffusion rates in the melt) may haveoccurred as a result of thermal disturbance following influxof mafic magma in the magma chamber. Initial 87Sr/86Sr ratios(ISr) (obtained by microdrilling) decrease from core to rim.Inner core analyses define a mixing trend extending towardsa high ISr–Rb/Sr melt component, whereas the outer coresand rims display a more restricted range of ISr, but a largerrange of Rb/Sr. Lower ISr at the rim of one megacryst suggestsmixing with high-K calc-alkaline mantle-derived volcanics ofsimilar age on Capraia. Trace element and isotopic profilessuggest (1) early megacryst growth in magmas contaminated bycrust and refreshed by high ISr silicic melts (as seen in theinner cores) and (2) later recharge with mafic magmas (as seenin the outer cores) followed by (3) crystal fractionation, withpossible interaction with hydrothermal fluids (as seen in therim). The model is compatible with the field occurrence of maficenclaves and xenoliths. KEY WORDS: Elba; monzogranite; K-feldspar megacrysts; zoning; magma mixing; trace element; Sr isotopes; petrogenesis  相似文献   

18.
The volcanics exposed in the northeast Niğde area are characterized by pumiceous pyroclastic rocks present as ash flows and fall deposits and by compositions ranging from dacite to rhyolite. Xenoliths found in the volcanics are basaltic andesite, andesite and dacite in composition. These rocks exhibit linear chemical variations between end‐member compositions and a continuity of trace element behaviour exists through the basaltic andesite–andesite–dacite–rhyolite compositional range. This is consistent with the fractionation of ferromagnesian minerals and plagioclase from a basaltic andesite or andesite parent. These rocks are peraluminous and show typical high‐K calc‐alkaline differentiation trends with total iron content decreasing progressively with increasing silica content. Bulk rock and mineral compositional trends and petrographic data suggest that crustal material was added to the magmas by subducted oceanic crust and is a likely contaminant of the source zone of the Niğde magmas. The chemical variations in these volcanics indicate that crystal liquid fractionation has been a dominant process in controlling the chemistry of the northeast Niğde volcanics. It is also clear, from the petrographic and chemical features, that magma mixing with disequilibrium played a significant role in the evolution of the Niğde volcanic rocks. This is shown by normal and reverse zoning in plagioclase and resorption of most of the observed minerals. The xenoliths found in the Niğde volcanics represent the deeper part of the magma reservoir which equilibrated at the higher pressures. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

19.
Andesite and dacite from Barren and Narcondam volcanic islands of Andaman subduction zone are composed of plagioclase, orthopyroxene, clinopyroxene, olivine, titanomagnetite, magnesio-hornblende and rare quartz grains. In this study, we use the results of mineral chemical analyses of the calc-alkaline rock suite of rocks as proxies for magma mixing and mingling processes. Plagioclase, the most dominant mineral, shows zoning which includes oscillatory, patchy, multiple and repetitive zonation and ‘fritted’ or ‘sieve’ textures. Zoning patterns in plagioclase phenocrysts and abrupt fluctuations in An content record different melt conditions in a dynamic magma chamber. ‘Fritted’ zones (An55) are frequently overgrown by thin calcic (An72) plagioclase rims over well-developed dissolution surfaces. These features have probably resulted from mixing of a more silicic magma with the host andesite. Olivine and orthopyroxene with reaction and overgrowth rims (corona) suggest magma mixing processes. We conclude that hybrid magma formed from the mixing of mafic and felsic magma by two-stage processes – initial intrusion of hotter mafic melt (andesitic) followed by cooler acidic melt at later stage.  相似文献   

20.
The aim of this study is to quantify the crustal differentiation processes and sources responsible for the origin of basaltic to dacitic volcanic rocks present on Cordón El Guadal in the Tatara-San Pedro Complex (TSPC). This suite is important for understanding the origin of evolved magmas in the southern Andes because it exhibits the widest compositional range of any unconformity-bound sequence of lavas in the TSPC. Major element, trace element, and Sr-isotopic data for the Guadal volcanic rocks provide evidence for complex crustal magmatic histories involving up to six differentiation mechanisms. The petrogenetic processes for andesitic and dacitic lavas containing undercooled inclusions of basaltic andesitic and andesitic magma include: (1) assimilation of garnet-bearing, possibly mafic lower continental crust by primary mantle-derived basaltic magmas; (2) fractionation of olivine + clinopyroxene + Ca-rich plagioclase + Fe-oxides in present non-modal proportions from basaltic magmas at ∼4–8 kbar to produce high-Al basalt and basaltic andesitic magmas; (3) vapor-undersaturated (i.e., P H2O<P TOTAL) partial melting of gabbroic crustal rocks at ∼3–7 kbar to produce dacitic magmas; (4) crystallization of plagioclase-rich phenocryst assemblages from dacitic magmas in shallow reservoirs; (5) intrusion of basaltic andesitic magmas into shallow reservoirs containing crystal-rich dacitic magmas and subsequent mixing to produce hybrid basaltic andesitic and andesitic magmas; and (6)␣formation and disaggregation of undercooled basaltic andesitic and andesitic inclusions during eruption from shallow chambers to form commingled, mafic inclusion-bearing andesitic and dacitic lavas flows. Collectively, the geochemical and petrographic features of the Guadal volcanic rocks are interpreted to reflect the development of shallow silicic reservoirs within a region characterized by high crustal temperatures due to focused basaltic activity and high magma supply rates. On the periphery of the silicic system where magma supply rates and crustal temperatures were lower, cooling and crystallization were more important than bulk crustal melting or assimilation. Received: 2 July 1997 / Accepted: 25 November 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号