首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present our observations of the pair of interacting galaxies NGC 6285/86 carried out with the 6-m Special Astrophysical Observatory (SAO) telescope using 1D and 2D spectroscopy. The observations of NGC 6286 with a long-slit spectrograph (UAGS) near the Hα line revealed the rotation of the gaseous disk around an axis offset by 5″–7″ from the photometric center and a luminous gas at a distance up to 9 kpc in a direction perpendicular to the galactic plane. Using a multipupil fiber spectrograph (MPFS), we constructed the velocity fields of the stellar and gaseous components in the central region of this galaxy, which proved to be similar. The close radial velocities of the pair and the wide (5′×5′) field of view of the scanning Fabry-Perot interferometer (IFP) allowed us to simultaneously obtain images in the Hα and [N II]λ6583 lines and in the continuum, as well as to construct the radial velocity fields and to map the distribution of the [N II]λ6583/Hα ratio for both galaxies. Based on all these data, we studied the gas kinematics in the galaxies, constructed their rotation curves, and estimated their masses (2 × 1011M for NGC 6286 and 1.2 × 1010M for NGC 6285). We found no evidence of gas rotation around the major axis of NGC 6286, which argues against the assumption that this galaxy has a forming polar ring. The IFP observations revealed an emission nebula around this galaxy with a structure characteristic of superwind galaxies. The large [N II]λ6583/Hα ratio, which suggests the collisional excitation of its emission, and the high infrared luminosity are additional arguments for the hypothesis of a superwind in the galaxy NGC 6286. A close encounter between the two galaxies was probably responsible for the starburst and the bipolar outflow of hot gas from the central region of the disk.  相似文献   

2.
The most salient features of the barred spiral galaxy NGC 7479 include the unusually strong and long bar, asymmetric spiral structure and peculiar dust lanes. The central, bar-dominated region has been robbed of neutral atomic gas. The neutral hydrogen kinematics of the strong western spiral arm are consistent with substantial non-circular motions. In contrast, the molecular gas is strongly concentrated in the nucleus and along the bar dust lanes. A molecular disc with near-circular motion is found in the nuclear area. Outside this component, the molecular gas has a strong radial velocity component consistent with inflow. The velocity gradients across the bar dust lanes show jumps of a few hundred km s-1. A comparison of the dust/gas lane morphology between the observations and numerical simulations suggests that the corotation radius is at 1.1 times the bar length. I have modelled many of the peculiar morphological and kinematic features in numerical simulations of a minor merger. The predicted position of the merging companion matches the position of a bright clump in the bar with perturbed kinematics. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
We combine Hα and broad-band optical imaging and Hα velocity mapping over the face of the barred galaxy NGC 3359, obtained within the BARS programme on the Canary Island telescopes (Lourenso and Beckman, these proceedings).From the Hα image we have determined the positions, fluxes and diameters of a total of 547 HII regions, and computed their luminosity function whose slope is within the range of those of morphologically similar galaxies found in the literature. We have gone on to quantify other statistical properties, such as the diameter distribution and the flux densities of the regions. Using Fabry-Perot mapping in Hα with the TAURUS II instrument, we have produced maps of velocity and velocity dispersion, and computed the rotation curve out to ∼ 3 scale lengths from the centre of the galaxy. From the map of the residual velocities we detected streaming motions in the gas across the spiral arms and the presence of non-circular motions of order 30–40 km s-1 around the bar: the gas response to the gravitational potential. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
We present high-resolution (R~20,000) spectra in the blue and the far red of circumnuclear star-forming regions (CNSFRs) in three early-type spirals (NGC3351, NGC2903 and NGC3310), which have allowed the study of the kinematics of the stars and the ionized gas in these structures and, for the first time, the derivation of their dynamical masses for the first two. In some cases, these regions, about 100 to 150 pc in size, are composed of several individual star clusters with sizes between 1.5 and 4.9 pc, estimated from Hubble Space Telescope images. The stellar dispersions have been obtained from the Calcium triplet (CaT) lines at λ λ 8494, 8542, 8662 Å, while the gas velocity dispersions have been measured by means of Gaussian fits to the Hβ and [Oiii]λ 5007 Å lines in the high-dispersion spectra. Values of the stellar velocity dispersions are between 30 and 68 km?s?1. We apply the virial theorem to estimate dynamical masses of the clusters, assuming that systems are gravitationally bounded and spherically symmetric, and using previously measured sizes. The measured values of the stellar velocity dispersions yield dynamical masses of the order of 107 to 108 M for the entire CNSFRs. Stellar and gas velocity dispersions are found to differ by about 20 to 30 km?s?1, with the Hβ emission lines being narrower than both the stellar lines and the [Oiii]λ 5007 Å lines. The douby-ionized oxygen, on the other hand, exhibits velocity dispersions comparable to those of the stars or, in some cases, even larger. We have found indications of the presence of two different kinematical components in the ionized gas of the regions. We have mapped the velocity field in the central kpc of the spiral galaxies NGC3351 and NGC2903. For the first object, the radial velocity curve shows deviations from circular motions for the ionized hydrogen consistent with its infall towards the central regions of the galaxy, at a velocity of about 25 km?s?1. For NGC3310, we present preliminary results for the velocity dispersions for one of the two observed slit position angles, two CNSFRs and the nucleus.  相似文献   

5.
We present the results of our subarcsecond resolution interferometricobservations of the 1.3 mm CO J = 21 line in the luminous merger NGC6240. Roughly half of the CO flux is contained in a rotating and highlyturbulent thick disk centered between the two radio and near-infrarednuclei. In this disk the molecular gas has velocity widths which reachFWZP line widths of up to 1000 km s-1. The mass of this gasconcentration makes up between 30%–70% of the dynamical mass in thisregion. NGC 6240 may be in an earlier merging stage than typical ULIRGssuch as Arp 220. We compare these results from NGC 6240 with thoseof other luminous, gas-rich interacting galaxies and mergers.  相似文献   

6.
We have studied the velocity field of the Blue Compact Dwarf galaxy Mrk86 using an Hα Fabry-Perot image and 14 long-slit optical spectra. From the ionized gas velocities measured we have found that Mrk86 follows a solid-body rotation law with a central angular velocity of 34 ± 5 km s-1 kpc-1. The comparison of the modeled rotation curve with our velocity data indicates a clear dominance of the stellar mass component over the dark matter. Related with the galaxy most intense star forming knot, a very strong gradient steeping is observed. Finally, we give kinematic evidence for the Mrk86-C expanding bubble. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
The photometry and kinematics of the interacting galaxy system Arp 118 are presented. Its eastern component, NGC 1144, has a Seyfert 2 nucleus and is dominated by a ring-like structure of giantHii regions, the radial velocities of which vary by more than 1000 km s–1. Kinematical models including a close encounter with the elliptical companion NGC 1143 lead to extremely high values for the rotational velocity, the mass of NGC 1144 and itsM/L ratio.  相似文献   

8.
Multicolor BVRI surface photometry of the low-luminosity (M V ≈?18m) spiral galaxy NGC 4136 is presented. The photometric parameters of its components and the color distribution over the galactic disk are estimated. The color indices and the corresponding effective ages are determined for the brightest star-forming regions. The disk-to-dark halo mass ratio is derived from the measured rotation curve of the galaxy. The disk mass dominates within the optical boundaries of the galaxy, so its disk can be considered as a self-gravitating system.  相似文献   

9.
We present our spectroscopic observations of the galaxy NGC 7468 performed at the 6-m Special Astrophysical Observatory telescope using the UAGS long-slit spectrograph, the MPFS multi-pupil fiber spectrograph, and the IFP scanning Fabry-Perot interferometer. We found no significant deviations from the circular rotation of the galactic disk in the velocity field in the regions of brightness excess along the major axis of the galaxy (the putative polar ring). Thus, these features are either tidal structures or weakly developed spiral arms. However, we detected a gaseous disk at the center of the galaxy whose rotation plane is almost perpendicular to the plane of the galactic disk. The central collision of NGC 7468 with a gas-rich dwarf galaxy and their subsequent merging seem to be responsible for the formation of this disk.  相似文献   

10.
A dynamical model for the extraplanar gas in spiral galaxies   总被引:1,自引:0,他引:1  
Recent H  i observations reveal that the discs of spiral galaxies are surrounded by extended gaseous haloes. This extraplanar gas reaches large distances (several kiloparsecs) from the disc and shows peculiar kinematics (low rotation and inflow). We have modelled the extraplanar gas as a continuous flow of material from the disc of a spiral galaxy into its halo region. The output of our models is pseudo data cubes that can be directly compared to the H  i data. We have applied these models to two spiral galaxies (NGC 891 and NGC 2403) known to have a substantial amount of extraplanar gas. Our models are able to reproduce accurately the vertical distribution of extraplanar gas for an energy input corresponding to a small fraction (<4 per cent) of the energy released by supernovae. However, they fail in two important aspects: (1) they do not reproduce the right gradient in rotation velocity; (2) they predict a general outflow of the extraplanar gas, contrary to what is observed. We show that neither of these difficulties can be removed if clouds are ionized and invisible at 21 cm as they leave the disc but become visible at some point on their orbits. We speculate that these failures indicate the need for accreted material from the intergalactic medium that could provide the low angular momentum and inflow required.  相似文献   

11.
We present the results of spectroscopic observations of three S0-Sa galaxies: NGC 338, NGC 3245, and NGC 5440 at the SAO RAS 6-m BTA telescope. The radial distributions of the line-ofsight velocities and radial velocity dispersions of stars and ionized gas were obtained, and rotation curves of galaxies were computed. We construct the numerical dynamic N-body galaxy models with N ?? 106 points. The models include three components: a ??live?? bulge, a collisionless disk, dynamically evolving to the marginally stable state, and a pseudo-isothermal dark halo. The estimates of radial velocities and velocity dispersions of stars obtained from observations are compared with model estimates, projected onto the line of sight. We show that the disks of NGC 5440 and the outer regions of NGC 338 are dynamically overheated. Taking into account the previously obtained observations, we conclude that the dynamic heating of the disk is present in a large number of early-type disk galaxies, and it seems to ensue from the external effects. The estimates of the disk mass and relative mass of the dark halo are given, as well as the disk mass-to-luminosity ratio for seven galaxies, observed at the BTA.  相似文献   

12.
We analyze the superfine structure of the supermaser H2O emission region in Orion KL over the period 1979–1999. The angular resolution reached 0.1 mas, which corresponds to 0.045 AU at a distance to Orion KL of 450 pc. We determined the velocity of the local standard of rest, VLSR = 7.65 km s?1. The formation of a protostar is accompanied by a structure that consists of an accretion disk, a bipolar outflow, and a surrounding envelope. The disk is at the stage of separation into protoplanetary rings. The disk plane is warped like the brim of a hat. The disk is 27 AU in diameter and ~0.3 AU in thickness. The rings contain ice granules. Radiation and stellar wind sublimate and blow away the water molecules to form halos around the rings, maser rings. The radiation from the rings is concentrated in the azimuthal plane, and its directivity reaches 10?3. The relative velocities of the rings located in the central part of the disk 15 AU in diameter correspond to rigid-body rotation, Vrot = ΩR. The rotation period is T ≈ 170 yr. The injector is surrounded by a toroidal structure 1.2 AU in diameter. The diameter of the injected flow does not exceed 0.05 AU. A highly collimated bipolar outflow with a diameter of ~0.1 AU is observed at a distance as large as 3 AU. Precession of the injector axis with a period of ~10 yr forms a spiral flow structure. The flow velocity is ~10 km s?1. The kinetic energy of the accreting matter and the disk is assumed to be transferred to the bipolar outflow, causing the rotation velocity distribution of the rings to deviate from the Keplerian velocity. The surrounding envelope amplifies the emission from the structure at a velocity of 7.65 km s?1 in a band of ~0.5 km s?1 by more than two orders of magnitude, which determines the supermaser emission.  相似文献   

13.
Bars probably have a great importance in galactic evolution. The barred potential is able to concentrate large quantities of interstellar gas in the vicinity of the nucleus, feeding any nuclear activity, be it central starbursts or black hole accretion discs. The IRAM millimeter interferometer and 30 m telescope have allowed a precise analysis of the molecular gas in the bar and the nucleus of a typical barred spiral galaxy, NGC 1530. In this galaxy, I have detected CO(1→0) along two lanes that trace shocks in the molecular gas. In these lanes, the gas moves toward the centre of the galaxy, with typical in fall velocities of 100 km s-1. I have shown in these shocks an anticorrelation between shear in the gas and star formation efficiency by comparing Hα and CO maps. I have also studied the centre of this galaxy at higher resolution in12CO(1→0), 12CO(2→1),13CO(1→0) and HCN(1→0). In the central region, the gas distribution is a ring or an unresolved spiral, surrounded by two curved arcs. The nuclear ring contains large amounts of dense gas traced by HCN and 13CO, and shows intense star formation, as indicated by the non-thermal centimetre continuum. The arcs, in contrast, are poor in dense gas and form few stars. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
General ideas, as well as experimental and theoretical efforts concerning the prediction and discovery of new structures in the disks of spiral galaxies – giant anticyclones - are reviewed. A crucial point is the development of a new method to restore the full vector velocity field of the galactic gas from the line-of-sight velocity field. This method can be used to get self-consistent solutions for the following problems: 1) determination of non-circular velocities associated with spiral-vortex structure; 2) determination of fundamental parameters of this structure: pattern speed, corotation radius, location of giant anticyclones; 3) refinement of galactic rotation curves taking into account regular non-circular motion in the spiral density wave, which makes it possible to build more accurate models of the mass distribution in the galaxy; 4) refinement of parameters of the rotating gaseous disk: inclination angle, center of rotation and position angle of the major dynamical axis, systematic velocity. The method is demonstrated using the restoration of the velocity field of the galaxy NGC 157 as an example. Results for this and some other spiral galaxies suggest that giant anticyclones are a universal property of galaxies with grand design structure.  相似文献   

15.
We have obtained a two-dimensional velocity map in H of the inner 4 arc min zone of the Scd starburst galaxy NGC 6946 using the TAURUS interferometric spectrometer on the 2.5 m Isaac Newton Telescope. The major axis rotation curve is a cleen kinematic superposition of a central 1 kpc sphere with solid body rotation and a disc with density falling inversely with radius. We show clear evidence of symmetrical radial motions in the plane of the galaxy with velocity up to 100 km s–1 along axes offset from the major axis by up to ±30°. Along the bar at position angle 160° we see outflow out to –2 kpc and significant inflow beyond this radius. These velocity fields give clues to the nature of the starburst process within the central 1 kpc zone of the galaxy.  相似文献   

16.
We analyze new observational data obtained at the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences with the multimode SCORPIO instrument and the Multi-Pupil Fiber Spectrograph for the group of galaxies NGC 7465/64/63. For one of the group members (NGC 7465), the presence of a polar ring has been suspected. We have constructed the large-scale brightness distributions, the ionized-gas velocity and velocity dispersion fields for all three galaxies as well as the line-of-sight velocity curves based on emission and absorption lines and the stellar velocity field in the central region for NGC 7465. As a result of our analysis of the data obtained, we have discovered an inner stellar disk (r ?? 0.5 kpc) and a warped gaseous disk in NGC 7465, in addition to the main stellar disk. Based on a joint study of our photometric and spectroscopic data, we have established that NGC 7464 is an irregular IrrI-type galaxy whose structural and kinematic peculiarities most likely resulted from its gravitational interaction with NGC 7465. The velocity field of the ionized gas in NGC 7463 turns out to be typical of barred spiral galaxies, and the warp of the outer parts of its disk could arise from a close encounter with one of the galaxies of the environment.  相似文献   

17.
An ultraviolet-excess galaxy Markarian 313 (NGC 7465), which consists of a multiple system with NGC 7463 and NGC 7464, is studied using the low- and high-resolution optical spectrum. Emission lines of H, H, [NII], and [OIII] have conspicuous blueward asymmetrical wings or blue slanted profiles in the spectrum of the nuclear region of the galaxy. The width of these emission lines is as broad as 600 km s–1 at the zero-intensity level, and the velocity difference between the narrow and broad components is estimated at around 80 km s–1 from the two-component Gaussian profile fitting. This fact could be an evidence of a large-scale dynamical motion in or surrounding the nuclear region of the galaxy, implying that it bears an intermediate characteristic between a Seyfert and a starburst galaxy.  相似文献   

18.
We present the results of a new H i , optical, and Hα interferometric study of the nearby spiral galaxy NGC 157. Our combined C- and D-array observations with the VLA show a large-scale, ring-like structure in the neutral hydrogen underlying the optical disc, together with an extended, low surface density component going out to nearly twice the Holmberg radius. Beginning just inside the edge of the star-forming disc, the line of nodes in the gas disc commences a 60° warp, while at the same time, the rotation velocity drops by almost half its peak value of 200 km s−1, before levelling off again in the outer parts. While a flat rotation curve in NGC 157 cannot be ruled out, supportive evidence for an abrupt decline comes from the ionized gas kinematics, the optical surface photometry, and the global H i profile. A standard 'maximum-disc' mass model predicts comparable amounts of dark and luminous matter within NGC 157. Alternatively, a model employing a disc truncated at 2 disc scalelengths could equally well account for the unusual form of the rotation curve in NGC 157.  相似文献   

19.
We use a new expanded and partially modified sample of 1501 thin edge-on spiral galaxies from the RFGC catalog to analyze the non-Hubble bulk motions of galaxies on the basis of a generalized multiparameter Tully-Fisher relation. The results obtained have confirmed and refined our previous conclusions (Parnovsky et al. 2001), in particular, the statistical significance of the quadrupole and octupole components of the galaxy bulk velocity field. The quadrupole component, which is probably produced by tidal forces from overdense regions, leads to a difference in the recession velocities of galaxies on scales of 8000–10000 km s?1 up to 6% of their Hubble velocity. On Local Supercluster scales (3000 km s?1), its contribution increases to about 20%. Including the octupole components in the model causes the dipole component to decrease to the 1σ level. In contrast, in the dipole model, the galaxy bulk velocity relative to the frame of reference of the cosmic microwave background is 310±75 km s?1 toward the apex with l=311° and b=12°. We also consider a sample of 1493 galaxies that was drawn using a more stringent galaxy selection criterion. The difference between the results of our data analysis for this sample and for the sample of 1501 galaxies is primarily attributable to a decrease in the dipole velocity component (290±75 km s?1 toward the apex with l=310° and b=12°) and a decrease in σ by about 2%.  相似文献   

20.
The peculiarities of non-Hubble bulk motions of galaxies are studied by analyzing a sample of 1271 thin edge-on spirals with distances determined using a multiparametric Tully-Fisher relation that includes the amplitude of the galaxy rotation, the blue and red diameters, surface brightness, and morphological type. In the purely dipole approximation, the bulk motion of galaxies relative to the cosmic microwave background frame can be described by the velocity of 336±96 km s?1 in the direction l=321°, b=?1° within radius R max =10000 km s?1. An analysis of more complex velocity field models shows that the anisotropy of the Hubble expansion described by the quadrupole term is equal to ~5% on scale lengths R max=6000–10000 km s?1. The amplitude within the Local Supercluster (R max=3000 km s?1) is as high as ~20%. The inclusion of the octupole component reduces the dipole amplitude to 134±111 km s?1 on scale lengths of ~8000 km s?1. The most remarkable feature of the galaxy velocity field within R max=8000 km s?1 is the zone of minimum centered on l=80°, b=0° (the constellation of Cygnus) whose amplitude reaches 18% of the mean Hubble velocity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号