首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report on a 6‐year nearshore bathymetric dataset from the Danube Delta (Romanian Black Sea coast) that comprises 16 km of erosive, stable and accumulative low‐lying micro‐tidal beaches northward of Sf. Gheorghe arm mouth. Two to three two‐dimensional longshore sandbars exhibit a net multi‐annual cyclic (2.8–5.5 years) offshore migration (20–50 m yr?1) in a similar way to other coasts worldwide. Bar morphology and behavior on the sediment‐rich accretionary (dissipative) sector differ substantially from that on the erosive (intermediate) sector. Shoreface slope is the most important factor controlling sandbar number and behavior. It determines different wave‐breaking patterns in the surf zone, translated into different offshore sediment transport and bar zone widths along the study site. Additionally, sediment availability, as a result of the distance from the arm mouth and of the long‐term evolution of the coast, controls the sandbar volume variability. These are all ultimately reflected in the variations of sandbar migration rates and cycle periods. A non‐dimensional morpho‐sedimentary parameter is finally presented, which expresses the bar system change potential as offshore sediment transport potential across the bar zone. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
This work is inspired by the sudden resurgence of the submersed aquatic vegetation (SAV) bed in the Chesapeake Bay (USA). Because the SAV bed occurs at the mouth of the Bay's main tributary (Susquehanna River), it plays a significant role in modulating sediment and nutrient inputs from the Susquehanna to the Bay. Previous model studies on the impact of submersed aquatic vegetation on the development of river mouth bars lacked a complete mechanistic understanding. This study takes advantage of new advances in 3D computational models that include explicit physical-sedimentological feedbacks to obtain this understanding. Specifically, we used Delft3D, a state-of-the-art hydrodynamic model that provides fine-scale computations of three-dimensional flow velocity and bed shear stress, which can be linked to sediment deposition and erosion. Vegetation is modeled using a parameterization of hydraulic roughness that depends on vegetation height, stem density, diameter, and drag coefficient. We evaluate the hydrodynamics, bed shear stresses, and sediment dynamics for different vegetation scenarios under conditions of low and high river discharge. Model runs vary the vegetation height, density, river discharge, and suspended-sediment concentration. Numerical results from the idealized model show that dense SAV on river mouth bars substantially diverts river discharge into adjacent channels and promotes sediment deposition at ridge margins, as well as upstream bar migration. Increasing vegetation height and density forms sandier bars closer to the river mouth and alteration of the bar shape. Thus, this study highlights the important role of SAV in shaping estuarine geomorphology, which is especially relevant for coastal management. © 2019 John Wiley & Sons, Ltd.  相似文献   

3.
Main features of sediment regime in the mouth area of the Hong Ha River (Red River), Vietnam, are discussed. As shown, the hydraulic engineering construction on the Da tributary resulted in a nearly two-fold decrease of river sediment yield. Sediment budget components at the river mouth were analyzed to establish that more than 90% of the sediment yield was detained in the delta branches and in the nearshore zone of the river mouth. Morphological processes in the Hong Ha River mouth area were characterized in detail including delta evolution during Holocene and the dynamics of its channel network, coastline, and mouth bars. Special attention was given to modern processes of delta progradation at the mouths of main branches and to wave erosion of other parts of the delta coastline. The causes for the intensification of this kind of erosion and change of the delta type in the late XX century are discussed.  相似文献   

4.
Physics‐based models have been increasingly developed in recent years and applied to simulate the braiding process and evolution of channel units in braided rivers. However, limited attention is given to lowland braided rivers where the transport of suspended sediment plays a dominant role. In the present study, a numerical model based on the basic physics laws of hydrodynamics and sediment transport is used to simulate the evolution process of a braided river dominated by suspended load transport. The model employs a fractional method to simulate the transport of graded sediments and uses a multiple‐bed‐layer approach to represent the sediment sorting process. An idealized braided river has been produced, with the hydrodynamic, sediment transport and morphological processes being analysed. In particular, the formation process of local pool–bar units in the predicted river has been investigated. A sensitivity analysis has also been undertaken to investigate the effects of grid resolution and an upstream perturbation on the model prediction. A variety of methods are applied to analyse the geometrical and topographical properties of the modelled river. Self‐organizing characteristics related to river geometry and topography are analysed by state‐space plots, which indicate a close relationship with the periodical erosion and deposition cycles of braiding. Cross‐sectional topography and slope frequency display similar geometries to natural rivers. Scaling characteristics are found by correlation analysis of bar parameters. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
This contribution aims to model the dominant processes that control sedimentation within the ocean inlet to intermittently open–closed coastal lagoons; focussing on the role of infilling, backfilling and morphodynamic feedback. The key elements that have been included in the present model are: (1) the delivery of sediment to the mouth of the estuary by littoral processes; (2) sediment transport processes within the inlet due to non-linear tidal flow; and (3) the down-slope diffusion of sediment. The model discussed here includes a simple one-dimensional (1-D), non-linear flow parameterisation that predicts the spatial variability in the magnitude and non-linearity of the tidal flow. The predicted third and fourth velocity moments are used to drive a morphodynamic module. Down-slope diffusion of sediment is dealt with in a separate diffusion term in the bed-evolution equation. Feedback between the evolving morphology and the flow field are integral to the model. Numerical simulations are used to investigate different modes of evolution for this type of inlet system. Inlet closure due to infilling is critically controlled by the balance between sediment addition at the mouth due to littoral processes and the removal of sediment by non-linear tidal flow. Rapid widening or deepening of the inlet at its landward margin leads to the deposition of a flood shoal. Under conditions of high sedimentation (and low diffusion) the flood shoal can become sufficiently well developed to present a physical barrier to sediment entering the lagoon. Under these circumstances backfilling can become significant. The infilling and backfilling processes are ameliorated by efficient down-slope diffusion which is controlled in the present model by a diffusion parameter, D. High diffusion coefficients slow inlet closure and allow sediment to propagate further into the lagoon.  相似文献   

6.
ONE D AND TWO D COMBINED MODEL FOR ESTUARY SEDIMENTATION   总被引:3,自引:0,他引:3  
1INTRODUCTIONThefluvialprocesinanestuaryiscomplicatedundertheactionofrunof,tidalflow,windinducedcurentandwaveetc.Especialy,...  相似文献   

7.
1 INTRODUCTION Guanting Reservoir is located on the Yongding River (a large tributary of the Haihe River) and at the border of Beijing Municipality and Hebei Province. The reservoir receives three tributaries: the Sanggan River with a drainage area of 25,840 km2, the Yanghe River with 16,170 km2, and the Guishui River with 852 km2. The drainage area above the reservoir is 43,402 km2. The reservoir has two arms. The Sanggan River and Yanghe River join the Yongding River at the ups…  相似文献   

8.
Numerous estuaries of the world have been strongly modified by human activities.These interferences can make great adjustments of not only sediment transport processes,but also the collective behavior of the estuary.This paper provides a typical case of a heavily modified coastal plain estuary of Sheyang on the China coast,where a sluice barrage was built in 1956 to stop the intrusions of storm surges and saline water.Four sets of instrumented tripods were simultaneously deployed along a cross-shore transect to continuously observe near-bed flow currents and sediment transport.The in-situ surveys lasted over a spring and neap tide cycle when a strong wind event occurred in the neap tide.Comparisons of flows and sediment transport between tide-dominated and wind-dominated conditions demonstrated the important role of episodic wind events in flows and sediment transport.The wind-induced currents,bottom stresses,and sediment transport rates were significantly greater when wind was present than corresponding quantities induced by the tides.The long-shore sediment transport induced by winds exceeds the cross-shore component,especially near the river mouth bar.These results indicate the noticeable importance of wave-dominated coastal processes in shaping topographic features.A regime shift of estuarine evolution under highly intense human forcing occurs from fluvial to marine processes.This finding suggests that the management strategy of the estuarine system should focus on the restoration of estuarine processes,rather than the present focus on inhibition of marine dynamics.  相似文献   

9.
三峡工程运行后长江中下游河道洲滩普遍冲刷萎缩,航道条件极不稳定.为探究影响洲滩演变的主控因素,采用近期水文、泥沙和地形观测资料,以下荆江铁铺水道广兴洲边滩为例,分析了边界条件、水沙过程及整治工程等因素对洲滩调整特征的影响程度.结果表明:洲滩组成中的细沙(0.125 mm15000 m3/s)有一定关系,其持续时间越长,一般表现为滩体面积越小;汛期悬移质分组沙输移过程中,细沙的大幅减少导致边滩萎缩明显,其影响程度比漫滩流量更大.滩体冲淤变形特征与前3年漫滩流量下平均水流冲刷强度的相关性最好.守护工程实施后,漫滩流量下平均水流冲刷强度仍然较大,但滩体后退趋势得以抑制且小幅淤积,工程效果得以充分发挥.  相似文献   

10.
The occurrence and characteristics of transverse finger bars at Surfers Paradise (Gold Coast, Australia) have been quantified with 4 years of time-exposure video images. These bars are attached to the inner terrace and have an oblique orientation with respect to the coastline. They are observed during 24 % of the study period, in patches up to 15 bars, with an average lifetime of 5 days and a mean wavelength of 32 m. The bars are observed during obliquely incident waves of intermediate heights. Bar crests typically point toward the incoming wave direction, i.e., they are up-current oriented. The most frequent beach state when bars are present (43 % of the time) is a rhythmic low-tide terrace and an undulating outer bar. A morphodynamic model, which describes the feedback between waves, currents, and bed evolution, has been applied to study the mechanisms for finger bar formation. Realistic positive feedback leading to the formation of the observed bars only occurs if the sediment resuspension due to roller-induced turbulence is included. This causes the depth-averaged sediment concentration to decrease in the seaward direction, enhancing the convergence of sediment transport in the offshore-directed flow perturbations that occur over the up-current bars. The longshore current strength also plays an important role; the offshore root-mean-square wave height and angle must be larger than some critical values (0.5 m and 20°, respectively, at 18-m depth). Model-data comparison indicates that the modeled bar shape characteristics (up-current orientation) and the wave conditions leading to the bar formation agree with data, while the modeled wavelengths and migration rates are larger than the observed ones. The discrepancies might be because in the model we neglect the influence of the large-scale beach configuration.  相似文献   

11.
太湖平原WJ孔矿物磁学特征以及晚第四纪海侵事件   总被引:3,自引:0,他引:3       下载免费PDF全文
基于古地磁和AMS14C定年结果,对长江三角洲太湖平原的WJ孔进行岩性特征、矿物磁学、粒度分析及有孔虫化石研究,拟重建WJ孔记录的晚第四纪以来沉积环境演变过程与海侵事件,并探讨环境磁学参数对河口三角洲地区沉积环境演化的指示意义.研究结果表明,WJ孔可以划分为中更新世阶段I、中更新世阶段II、晚更新世、全新世四个阶段,沉积地貌环境分别为:河湖、滨海-阶地、河口坝-河口湾-潮滩与阶地、湖沼平原.WJ孔揭示了三次海侵事件,分别为中更新世晚期海侵,晚更新世MIS5海侵和晚更新世MIS3海侵.其中记录的MIS5e海侵最为强盛,MIS3后期也存在一次海侵加强事件.另外,滨海潮滩-河口坝环境的沉积物磁性特征明显,χlf、SIRM、HIRM等为显著高值.  相似文献   

12.
Data on several river deltas are used to analyze the regularities in their dynamics in the context of variations of water and sediment runoff, sea level, and hydroengineering activities in delta areas. The basis for this analysis includes the results of many-year studies of river deltas in Russia and the world. The specific features of the evolution of the structure and morphometry of bayhead deltas, forming in bays, lagoons, and estuaries are shown in the case of the Alikazgan delta in the Terek mouth area and the deltas of two watercourses in the Mississippi mouth area. Data on many-year variations of the morphometric characteristics of modern protruding deltas in open coastal zones are systematized, and the factors that have an effect on these changes are analyzed. The types of delta formation processes and the types of deltas are considered with regard to the factors involved. The majority of modern river deltas are found to slow down their progradation into seas under the effect of anthropogenic runoff decline; moreover, some deltas have started retreating and degrading.  相似文献   

13.
The peculiarities of the hydrological regime of the Orinoco River and the coastal zone of the Atlantic Ocean that affect the hydrological-morphological processes in the mouth area of the Orinoco River are considered. The major features of the delta water regime, including its inundation, runoff distribution over the delta branches, water and sediment balance, and the processes of river and sea water mixing are described. Special attention is paid to the morphological processes at the Orinoco mouth (delta evolution and modern processes at its coastline).  相似文献   

14.
A two‐dimensional shallow water hydro‐sediment‐morphodynamic model is applied to investigate alternate bar formation, development and sediment sorting in straight channels. The model is coupled, explicitly incorporating the flow–sediment–bed interactions by using the full mass and momentum conservation equations, which are numerically solved by a well‐balanced version of the finite volume Slope Limiter Centred (SLIC) scheme. The model is first tested against a flume experiment on alternate bars formed over a uniform sediment bed, which clearly exhibits processes of bar formation, migrating and finally approaching an equilibrium state. Then it is applied to another flume experiment on alternate bars due to non‐uniform sediment transport. The computational results are evaluated, with a focus on the longitudinal and vertical sediment sorting. It is argued for the first time that the inconsistent sediment sorting patterns observed in previous studies are determined by different sediment transport conditions, i.e. full versus partial transport. When a condition of full transport is achieved, under which all size fractions are fully mobilized and transported, the longitudinal surface sediment shows a sorting pattern of coarse‐on‐head and fine‐in‐pool, and the vertical substrate sediment exhibits an immobile‐fine‐coarse structure upwards. In contrast, for a partial transport condition, under which only finer fraction participates in the transport process, an opposite longitudinal pattern (i.e. fine‐on‐head and coarse‐in‐pool) and a different vertical structure (i.e. immobile‐coarse‐fine) are observed. Concurrently, numerical experiments with specified conditions show that the critical aspect ratio for the formation of migrating alternate bars is approximately equal to 12. With the increase of the aspect ratio, the bar length grows gradually, while the bar height increases rapidly for moderate values of the aspect ratio and then keeps nearly stable. The bar celerity, however, is weakly sensitive to the variation of this ratio. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
Morphodynamics in sand‐bed braided rivers are associated with simultaneous evolution of mid‐channel bars and channels on the braidplain. Bifurcations around mid‐channel bars are key elements that divide discharge and sediment. This, in turn, may control the evolution of connected branches, with effects propagating to both upstream and downstream bifurcations. Recent works on bifurcation stability and development hypothesize major roles of secondary flow and gradient advantage. However, this has not been tested for channel networks within a fully developed dynamic braided river. A reason for this is a lack of detailed measurements with sufficient temporal and spatial length, covering multiple bifurcations. Therefore we used a physics‐based numerical model to generate a dataset of bathymetry, flow and sediment transport of an 80 km river reach with self‐formed braid bars and bifurcations. The study shows that bar dissection due to local transverse water surface gradients is the dominant bifurcation initiation mechanism, although conversion of unit bars into compound bars dominates in the initial stage of a braided river. Several bifurcation closure mechanisms are equally important. Furthermore, the study showed that nodal point relations for bifurcations are unable to predict short‐term bifurcation evolution in a braided river. This is explained by occurrence of nonlinear processes and non‐uniformity within the branches, in particular migrating bars and larger‐scale backwater‐effects, which are not included in the nodal point relations. Planform morphology, on the other hand, has predictive capacity: bifurcation angle asymmetry and bar‐tail limb shape are indicators for near‐future bifurcation evolution. Remote sensing data has predictive value, for which we developed a conceptual model for interactions between bars, bifurcations and channels in the network. We conducted a preliminary test of the conceptual model on satellite images of the Brahmaputra. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
Images from specially-commissioned aeroplane sorties (manned aerial vehicle, MAV), repeat unmanned aerial vehicle (UAV) surveys, and Planet CubeSat satellites are used to quantify dune and bar dynamics in the sandy braided South Saskatchewan River, Canada. Structure-from-Motion (SfM) techniques and application of a depth-brightness model are used to produce a series of Digital Surface Models (DSMs) at low and near-bankfull flows. A number of technical and image processing challenges are described that arise from the application of SfM in dry and submerged environments. A model for best practice is presented and analysis suggests a depth-brightness model approach can represent the different scales of bedforms present in sandy braided rivers with low-turbidity and shallow (< 2 m deep) water. The aerial imagery is used to quantify the spatial distribution of unit bar and dune migration rate in an 18 km reach and three ~1 km long reaches respectively. Dune and unit bar migration rates are highly variable in response to local variations in planform morphology. Sediment transport rates for dunes and unit bars, obtained by integrating migration rates (from UAV) with the volume of sediment moved (from DSMs using MAV imagery) show near-equivalence in sediment flux. Hence, reach-based sediment transport rate estimates can be derived from unit bar data alone. Moreover, it is shown that reasonable estimates of sediment transport rate can be made using just unit bar migration rates as measured from 2D imagery, including from satellite images, so long as informed assumptions are made regarding average bar shape and height. With recent availability of frequent, repeat satellite imagery, and the ease of undertaking repeat MAV and UAV surveys, for the first time, it may be possible to provide global estimates of bedload sediment flux for large or inaccessible low-turbidity rivers that currently have sparse information on bedload sediment transport rates. © 2018 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

17.
Bars are key morphological units in river systems, fashioning the sediment regime and bedload transport processes within a reach. Reworking of these features underpins channel adjustment at larger scales, thereby acting as a key determinant of channel stability. Despite their importance to channel evolution, few investigations have acquired spatially continuous data on bar morphology and sediment-size to investigate bar reworking. To this end, four bars along a 10 km reach of a wandering gravel-bed river were surveyed with terrestrial laser scanning (TLS), comparing downstream changes in slope, bed material size and channel planform. Detrended standard deviations (σz) were extracted from TLS point clouds and correlated to underlying physically measured median grain-size (D50), across a greater range of σz values than have hitherto been reported. The resulting linear regression model was used to create a 1 m resolution median grain-size map. A fusion of airborne LiDAR and optical-empirical bathymetric mapping was used to develop reach-scale digital elevation models (DEMs) for rapid two-dimensional hydraulic modelling using JFlow® software. The ratio of dimensionless shear stress over critical shear stress was calculated for each raster cell to calculate the effectiveness of a range of flood events (2.33–100 year recurrence intervals) to entrain sediment and rework bar units. Results show that multiple bar forming discharges exist, whereby frequent flood flows rework tail and back channel areas, while much larger, less frequent floods are required to mobilise the coarser sediment fraction on bar heads. Valley confinement is shown to exert a primary influence on patterns of bar reworking. Historical aerial photography, hyperscale DEMs and hydraulic modelling are used to explain channel adjustment at the reach scale. The proportion of the bar comprised of more frequently entrained units (tail, back channel, supra-platform) relative to more static units (bar head) exerts a direct influence upon geomorphic sensitivity. © 2018 John Wiley & Sons, Ltd.  相似文献   

18.
Long-term, net offshore bar migration is a common occurrence on many multiple-barred beaches. The first stage of the process involves the generation of a longshore bar close to the shoreline that oscillates about a mean position for some time, followed by a stage of net offshore migration across the upper shoreface, and finally a stage of decaying bar form through loss of sediment volume at the outer boundary of the upper shoreface. The phenomenon has been previously documented in the Netherlands, the USA, the Canadian Great Lakes, and in New Zealand, but our present understanding of the morphodynamic processes and sediment transport pathways involved in bar decay is limited. In this paper, long-term, net offshore bar migration is investigated at Vejers Beach, located on the North Sea coast of Denmark where offshore bar migration rates are of the order of 45–55 m a−1. A wave height transformation model confirmed that the decay of the outer bar results in increased wave heights and undertow speeds at the more landward bar potentially causing this bar to speed up its offshore migration. The causes for outer bar decay were investigated through field measurements of sediment transport at the decaying bar and at a position further seaward on the lower shoreface. The measurements showed that a cross-shore transport convergence exists between the bar and the lower shoreface and that the loss of sediment involved in bar decay is associated with a longshore directed transport by non-surf zone processes. At Vejers, and possibly elsewhere, the net offshore migration of bars and the subsequent loss of sand during bar decay is an important part of the beach and shoreface sediment budget.  相似文献   

19.
Alternate bars were formed by sediment transport in a flume with Froude-modelled flow and relative roughness characteristic of gravel-boulder channels with steep slopes. The flume (0.3 m wide × 7.5 m long) was filled with a sand-gravel mixture, which was also fed into the top of the flume at a constant rate under constant discharge. Channel slope was set at 0.03. Initially, coarse particles accumulated on incipient bar heads near one side of the flume and diverted flow and bedload transport across the flume toward a pool scoured against the opposite flume wall downstream. Sorting in the pool directed coarse particles onto the next bar head downstream. Alternate sequences of pools and coarse bar heads were thereby linked down the entire flume by interactions of sediment sorting, flow, and channel morphology. During episodes of bar construction, unsorted bedload invaded interior bar surfaces and was deposited. Persistent deposition of coarse particles on bar heads prevented downstream migration of bars by inhibiting bar-head erosion and bedload transport over bars. Likely factors leading to bar-head stabilization in modelled gravel-bed channels are coarse mixed-size sediment, steep channel gradients, and shallow depths.  相似文献   

20.
This paper examines the morphological development of the Yangtze River mouth, which has been diverting southeasterly (dextrally), according to historical (150 years) chart‐based digital evolution model and on‐site measured tidal flow data. We reveal a significantly narrowing of the northern river mouth branch from formerly >30 km wide to presently 10 km wide due to rapid siltation. Net siltation there, however, decreases gradually, which largely contrasts with the fact that the siltation has shifted to the southern river mouth area, as shown by many newly‐emerged estuarine islands, sandy shoals and bifurcated branches. Our data have further demonstrated that the ebb flow that dominates in the study area changes its direction gradually from east to southeast from the inner to outer river mouth area, and its duration is much longer than the flood flow in the inner river mouth area, but nearly equal at the river mouth area. Accordingly, the sediment transport pathway has been diverted from east to southeast. We examine whether the Coriolis Force could explain the dextral diversion of the ebb flow and the altered morphodynamical processes. Although too weak to strengthen the tidal flows, the Coriolis Force can drag the ebb flow southeasterly, and so influence sediment transport paths at the estuarine scale. The Coriolis Force is limited in the inner river mouth, but substantial at and in the outer river mouth area when gradually free of estuarine topographic constraints. The Coriolis Force causes an offset in propagation of in‐out flow directions at the river mouth area to form a slack water setting prone to estuarine siltation. Using the present approach also enables explanation of the morphological development of the Holocene Yangtze delta‐coast that extends to the southeast. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号