首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
X-ray reflection spectra from photoionized accretion discs in active galaxies are presented for a wide range of illumination conditions. The energy, equivalent width (EW) and flux of the Fe K α line are shown to depend strongly on the ratio of illuminating flux to disc flux,   F x/ F disc  , the photon index of the irradiating power law, Γ, and the incidence angle of the radiation, i . When   F x/ F disc≤2  a neutral Fe K α line is prominent for all but the largest values of Γ. At higher illuminating fluxes an He-like Fe K α line at 6.7 keV dominates the line complex. With a high-energy cut-off of 100 keV, the thermal ionization instability seems to suppress the ionized Fe K α line when  Γ≤1.6  . The Fe K α line flux correlates with   F x/ F disc  , but the dependence weakens as iron becomes fully ionized. The EW is roughly constant when   F x/ F disc  is low and a neutral line dominates, but then declines as the line progresses through higher ionization stages. There is a strong positive correlation between the Fe K α EW and Γ when the line energy is at 6.7 keV, and a slight negative one when it is at 6.4 keV. This is a potential observational diagnostic of the ionization state of the disc. Observations of the broad Fe K α line, which take into account any narrow component, would be able to test these predictions. Ionized Fe K α lines at 6.7 keV are predicted to be common in a simple magnetic flare geometry. A model that includes multiple ionization gradients on the disc is postulated to reconcile the results with observations.  相似文献   

2.
We present a systematic study of GX 339−4 in both its very high and low hard states from simultaneous observations made with XMM–Newton and RXTE in 2002 and 2004. The X-ray spectra of both these extreme states exhibit strong reflection signatures, with a broad, skewed Fe Kα line clearly visible above the continuum. Using a newly developed, self-consistent reflection model which implicitly includes the blackbody radiation of the disc as well as the effect of Comptonization, blurred with a relativistic line function, we were able to infer the spin parameter of GX 339−4 to be  0.935 ± 0.01  (statistical) ±0.01 (systematic) at 90 per cent confidence. We find that both states are consistent with an ionized thin accretion disc extending to the innermost stable circular orbit around the rapidly spinning black hole.  相似文献   

3.
A model for the inner regions of accretion flows is presented where, owing to disc instabilities, cold and dense material is clumped into deep sheets or rings. Surrounding these density enhancements is hot, tenuous gas where coronal dissipation processes occur. We expect this situation to be most relevant when the accretion rate is close to Eddington and the disc is radiation-pressure-dominated, and so may apply to narrow-line Seyfert 1 (NLS1) galaxies. In this scenario, the hard X-ray source is obscured for most observers, and so the detected X-ray emission would be dominated by reflection off the walls of the sheets. A simple Comptonization calculation shows that the large photon-indices characteristic of NLS1s would be a natural outcome of two reprocessors closely surrounding the hard X-ray source. We test this model by fitting the XMM-Newton spectrum of the NLS1 1H  0707–495  between 0.5 and 11 keV with reflection-dominated ionized disc models. A very good fit is found with three different reflectors each subject to the same  Γ=2.35  power law. An iron overabundance is still required to fit the sharp drop in the spectrum at around 7 keV. We note that even a small corrugation of the accretion disc may result in  Γ>2  and a strong reflection component in the observed spectrum. Therefore, this model may also explain the strength and the variability characteristics of the MCG–6-30-15 Fe K α line. The idea needs to be tested with further broad-band XMM-Newton observations of NLS1s.  相似文献   

4.
We present measurements of the dimensionless spin parameters and inner-disc inclination of two stellar-mass black holes. The spin parameter of SWIFT J1753.5−0127 and GRO J1655−40 is estimated by modelling the strong reflection signatures present in their XMM–Newton observations. Using a newly developed, self-consistent reflection model which includes the blackbody radiation of the disc as well as the effect of Comptonization, blurred with a relativistic line function, we infer the spin parameter of SWIFT J1753.5−0127 to be  0.76+0.11−0.15  . The inclination of this system is estimated at  55°+2−7  . For GRO J1655−40, we find that the disc is significantly misaligned to the orbital plane, with an innermost inclination of  30°+5−10  . Allowing the inclination to be a free parameter, we find a lower limit for the spin of 0.90, this value increases to that of a maximal rotating black hole when the inclination is set to that of the orbital plane of J1655−40. Our technique is independent of the black hole mass and distance, uncertainties in which are among the main contributors to the spin uncertainty in previous works.  相似文献   

5.
We present XMM-Newton European Photon Imaging Camera (EPIC) observations of the bright Seyfert 1 galaxy MCG–6-30-15, focusing on the broad Fe K α line at ∼6 keV and the associated reflection continuum, which is believed to originate from the inner accretion disc. We find these reflection features to be extremely broad and redshifted, indicating an origin in the very central regions of the accretion disc. It seems likely that we have caught this source in the 'deep minimum' state first observed by Iwasawa et al. The implied central concentration of X-ray illumination is difficult to understand in any pure accretion disc model. We suggest that we are witnessing the extraction and dissipation of rotational energy from a spinning black hole by magnetic fields connecting the black hole or plunging region to the disc.  相似文献   

6.
We study X-ray spectra of Cyg X-3 from BeppoSAX , taking into account absorption and emission in the strong stellar wind of its companion. We find the intrinsic X-ray spectra are well modelled by disc blackbody emission, its upscattering by hot electrons with a hybrid distribution, and by Compton reflection. These spectra are strongly modified by absorption and reprocessing in the stellar wind, which we model using the photoionization code cloudy . The form of the observed spectra implies the wind is composed of two phases. A hot tenuous plasma containing most of the wind mass is required to account for the observed features of very strongly ionized Fe. Small dense cool clumps filling ≲0.01 of the volume are required to absorb the soft X-ray excess, which is emitted by the hot phase but not present in the data. The total mass-loss rate is found to be  (0.6–1.6) × 10−5 M yr−1  . We also discuss the feasibility of the continuum model dominated by Compton reflection, which we find to best describe our data. The intrinsic luminosities of our models suggest that the compact object is a black hole.  相似文献   

7.
An explanation for the soft X-ray excess in active galactic nuclei   总被引:1,自引:0,他引:1  
We present a large sample of type 1 active galactic nuclei (AGN) spectra taken with XMM–Newton , and fit them with both the conventional model (a power law and blackbody) and the relativistically blurred photoionized disc reflection model of Ross & Fabian. We find that the disc reflection model is a better fit. The disc reflection model successfully reproduces the continuum shape, including the soft excess, of all the sources. The model also reproduces many features that would conventionally be interpreted as absorption edges. We are able to use the model to infer the properties of the sources, specifically that the majority of black holes in the sample are strongly rotating, and that there is a deficit in sources with an inclination >70°. We conclude that the disc reflection model is an important tool in the study of AGN X-ray spectra.  相似文献   

8.
We systematically analyse all the available X-ray spectra of disc accreting neutron stars (atolls and millisecond pulsars) from the RXTE data base. We show that while all these have similar spectral evolution as a function of mass accretion rate, there are also subtle differences. There are two different types of hard/soft transition, those where the spectrum softens at all energies, leading to a diagonal track on a colour–colour diagram, and those where only the higher energy spectrum softens, giving a vertical track. The luminosity at which the transition occurs is correlated with this spectral behaviour, with the vertical transition at   L / L Edd∼ 0.02  while the diagonal one is at ∼0.1. Superimposed on this is the well-known hysteresis effect, but we show that classic, large-scale hysteresis occurs only in the outbursting sources, indicating that its origin is in the dramatic rate of change of mass accretion rate during the disc instability. We show that the long-term mass accretion rate correlates with the transition behaviour, and speculate that this is due to the magnetic field being able to emerge from the neutron star surface for low average mass accretion rates. While this is not strong enough to collimate the flow except in the millisecond pulsars, its presence may affect the inner accretion flow by changing the properties of the jet.  相似文献   

9.
We present XMM-Newton observations of Mrk 359, the first narrow-line Seyfert 1 galaxy (NLS1) discovered. Even among NLS1s, Mrk 359 is an extreme case with extraordinarily narrow optical emission lines. The XMM-Newton data show that Mrk 359 has a significant soft X-ray excess which displays only weak absorption and emission features. The     continuum, including reflection, is flatter than that of the typical NLS1, with     . A strong emission line of equivalent width ≈200 eV is also observed, centred near 6.4 keV. We fit this emission with two line components of approximately equal strength: a broad iron line from an accretion disc and a narrow, unresolved core. The unresolved line core has an equivalent width of ≈120 eV and is consistent with fluorescence from neutral iron in distant reprocessing gas, possibly in the form of a 'molecular torus'. Comparison of the narrow-line strengths in Mrk 359 and other low–moderate luminosity Seyfert 1 galaxies with those in QSOs suggests that the solid angle subtended by the distant reprocessing gas decreases with increasing active galactic nucleus luminosity.  相似文献   

10.
We reanalyse the ASCA and BeppoSAX data of MCG–6-30-15, using a double-zone model for the iron line profile. In this model, the X-ray source is located around ≈10 Schwarzschild radii and the regions interior and exterior to the X-ray source produce the line emission. We find that this model fits the data with a similar reduced χ 2 to the standard single-zone model. Thus we show that the presence of a broad iron line feature does not necessarily require that the X-ray source be located close to the last stable orbit or in the disc rotation axis.
Within the framework of this model, the best-fitting inclination angle of the source     for the intermediate-intensity ASCA data set is compatible with that determined by earlier modelling of optical lines. The observed variability of the line profile with intensity can be explained as variations of the X-ray source size. That several active galactic nuclei with broad lines have the peak centroid near 6.4 keV can be explained under certain conditions.
We also show that the simultaneous broad-band observations of this source by BeppoSAX rule out the Comptonization model which was an alternative to the standard inner-disc one. We thereby strengthen the case that line broadening occurs as a result of the strong gravitational influence of a black hole.  相似文献   

11.
We present three-dimensional smoothed particle hydrodynamics calculations of warped accretion discs in X-ray binary systems. Geometrically thin, optically thick accretion discs are illuminated by a central radiation source. This illumination exerts a non-axisymmetric radiation pressure on the surface of the disc, resulting in a torque that acts on the disc to induce a twist or warp. Initially planar discs are unstable to warping driven by the radiation torque and, in general, the warps also precess in a retrograde direction relative to the orbital flow. We simulate a number of X-ray binary systems which have different mass ratios, using a number of different luminosities for each. Radiation-driven warping occurs for all systems simulated. For mass ratios   q ∼ 0.1  a moderate warp occurs in the inner disc while the outer disc remains in the orbital plane (cf. X 1916−053). For less extreme mass ratios, the entire disc tilts out of the orbital plane (cf. Her X–1). For discs that are tilted out of the orbital plane in which the outer edge material of the disc is precessing in a prograde direction, we obtain both positive and negative superhumps simultaneously in the dissipation light curve (cf. V603 Aql).  相似文献   

12.
Due to dynamical friction stellar mass black holes and neutron stars are expected to form high-density cusps in the inner parsec of our Galaxy. These compact remnants, expected to number around 20 000, may be accreting cold dense gas present there, and give rise to potentially observable X-ray emission. Here we build a simple but detailed time-dependent model of such emission. The possibility that these accretion flows are radiatively inefficient is taken into account and brings in some uncertainty in the conclusions. Despite this uncertainty, we find that at least several X-ray sources of this nature should be detectable with Chandra at any one time. Turning this issue around, we also ask a question of what current observational constraints might be telling us about the total number of compact remnants. In our 'best guess' model, a cusp of ∼40 000 remnants overpredicts the number of discrete sources and the total X-ray luminosity of the inner parsec, and is hence ruled out. In the most radiatively inefficient scenario that we consider, the radiative efficiency is set to be as small as  ɛ= 10−5  . In this rather unlikely scenario, a cusp of ∼40 000 black holes would be allowed by the data, but several individual sources should still be visible. Future observations of the distribution and orbits of the cold ionized gas in the inner parsec of our Galaxy will put tighter constraints on the cusp of compact remnants.  相似文献   

13.
We present a simple physical mechanism that can account for the observed stellar mass spectrum for masses M ∗≳0.5 M . The model depends solely on the competitive accretion that occurs in stellar clusters where each star's accretion rate depends on the local gas density and the square of the accretion radius. In a stellar cluster, there are two different regimes depending on whether the gas or the stars dominate the gravitational potential. When the cluster is dominated by cold gas, the accretion radius is given by a tidal-lobe radius. This occurs as the cluster collapses towards a ρ  ∝  R −2 distribution. Accretion in this regime results in a mass spectrum with an asymptotic limit of γ =−3/2 (where Salpeter is γ =−2.35) . Once the stars dominate the potential and are virialized, which occurs first in the cluster core, the accretion radius is the Bondi–Hoyle radius. The resultant mass spectrum has an asymptotic limit of γ =−2 with slightly steeper slopes ( γ ≈−2.5) if the stars are already mass-segregated. Simulations of accretion on to clusters containing 1000 stars show that, as expected, the low-mass stars accumulate the majority of their masses during the gas-dominated phase whereas the high-mass stars accumulate the majority of their masses during the stellar-dominated phase. This results in a mass spectrum with a relatively shallow γ ≈3/2 power law for low-mass stars and a steeper power law for high-mass stars −2.5≲ γ ≤−2 . This competitive accretion model also results in a mass-segregated cluster.  相似文献   

14.
With extensive monitoring data spanning over 30 years from Vela 5B , Ariel 5 , Ginga , Compton Gamma Ray Observatory , Rossi X-ray Timing Explorer and BeppoSAX , we find evidence for long-term X-ray variability on time-scales     from the black hole low-mass X-ray binary system     . Such variability resembles the outburst cycle of Z Cam-type dwarf novae, in which the standard disc instability model plays a crucial role. If such a model is applicable to     , then the observed variability might be due to the irradiation of an unstable accretion disc. We show that within the framework of the X-ray irradiation model, when the accretion rate exceeds a critical value,     enters a 'flat-topped' high/soft state, such as seen in 1998, which we suggest corresponds to the 'standstill' state of Z Cam systems.  相似文献   

15.
We present epoch 1996, high-quality radial velocity data for HDE 226868, the optical counterpart of Cygnus X-1. Combining our results with all published historical data, we have derived a new ephemeris for the system of HJD 245 0235.29 + n  × 5.5998, which allows accurate orbital phase calculations to be made for any X-ray observations over the last 30 years. We find no evidence for any period change such as that suggested by Ninkov, Walker &38; Yang. We discuss the shortcomings of previous work in establishing the period and orbital elements.  相似文献   

16.
We present spectroscopy of the eclipsing recurrent nova U Sco. The radial velocity semi-amplitude of the primary star was found to be     from the motion of the wings of the He  ii λ 4686-Å emission line. By detecting weak absorption features from the secondary star, we find its radial velocity semi-amplitude to be     . From these parameters, we obtain a mass of     for the white dwarf primary star and a mass of     for the secondary star. The radius of the secondary is calculated to be     , confirming that it is evolved. The inclination of the system is calculated to be     , consistent with the deep eclipse seen in the light-curves. The helium emission lines are double-peaked, with the blueshifted regions of the disc being eclipsed prior to the redshifted regions, clearly indicating the presence of an accretion disc. The high mass of the white dwarf is consistent with the thermonuclear runaway model of recurrent nova outbursts, and confirms that U Sco is the best Type Ia supernova progenitor currently known. We predict that U Sco is likely to explode within ∼700 000 yr.  相似文献   

17.
Phase-resolved medium-resolution VLT spectroscopy of the low-mass X-ray binary GX 9+9 has revealed narrow C  iii emission lines that move in phase relative to our new estimate of the ephemeris, and show a velocity amplitude of 230 ± 35 km s−1. We identify the origin of these lines as coming from the surface of the donor star, thereby providing the first estimate of the mass function of   f ( M 1) ≥ 0.22 M  . Rotational broadening estimates together with assumptions for the mass donor give  0.07 ≤ q ≤ 0.35  and  182 ≤ K 2≤ 406 km s−1  . Despite a low-mass ratio, there is no evidence for a superhump in our data set. Doppler maps of GX 9+9 show the presence of a stream overflow, either in the form of material flowing downward along the accretion disc rim or in a similar fashion as occurs in high mass transfer rate cataclysmic variables known as the SW Sex stars. Finally, we note that the Bowen region in GX 9+9 is dominated by C  iii instead of N  iii emission as has been the case for most other X-ray binaries.  相似文献   

18.
Following the discovery of X-ray absorption in a high-velocity outflow from the bright quasar PG 1211 + 143 we have searched for similar features in XMM–Newton archival data of a second (high accretion rate) quasar PG 0844+349. Evidence is found for several faint absorption lines in both the EPIC and RGS spectra, whose most likely identification with resonance transitions in H-like Fe, S and Ne implies an origin in highly ionized matter with an outflow velocity of order ∼0.2c. The line equivalent widths require a line-of-sight column density of   N H∼ 4 × 1023 cm−2  , at an ionization parameter of log  ξ∼ 3.7  . Assuming a radial outflow being driven by radiation pressure from the inner accretion disc, as suggested previously for PG 1211 + 143, the flow in PG 0844+349 is also likely to be optically thick, in this case within ∼25 Schwarzschild radii. Our analysis suggests that a high-velocity, highly ionized outflow is likely to be a significant component in the mass and energy budgets of active galactic nuclei accreting at or above the Eddington rate.  相似文献   

19.
We study the excitation of density and bending waves and the associated angular momentum transfer in gaseous discs with finite thickness by a rotating external potential. The disc is assumed to be isothermal in the vertical direction and has no self-gravity. The disc perturbations are decomposed into different modes, each characterized by the azimuthal index m and the vertical index n , which specifies the nodal number of the density perturbation along the disc normal direction. The   n = 0  modes correspond to the two-dimensional density waves previously studied by Goldreich & Tremaine and others. In a three-dimensional disc, waves can be excited at both Lindblad resonances (LRs; for modes with   n = 0, 1, 2, …  ) and vertical resonances (VRs; for the   n ≥ 1  modes only). The torque on the disc is positive for waves excited at outer Lindblad/vertical resonances and negative at inner Lindblad/vertical resonances. While the   n = 0  modes are evanescent around corotation, the   n ≥ 1  modes can propagate into the corotation region where they are damped and deposit their angular momenta. We have derived analytical expressions for the amplitudes of different wave modes excited at LRs and/or VRs and the resulting torques on the disc. It is found that for   n ≥ 1  , angular momentum transfer through VRs is much more efficient than LRs. This implies that in some situations (e.g. a circumstellar disc perturbed by a planet in an inclined orbit), VRs may be an important channel of angular momentum transfer between the disc and the external potential. We have also derived new formulae for the angular momentum deposition at corotation and studied wave excitations at disc boundaries.  相似文献   

20.
The high-mass X-ray binary RX J0146.9+6121, with optical counterpart LS I+61°235 (V831 Cas), is an intriguing system on the outskirts of the open cluster NGC 663. It contains the slowest Be type X-ray pulsar known with a pulse period of around 1400 s and, primarily from the study of variation in the emission line profile of Hα, it is known to have a Be decretion disc with a one-armed density wave period of approximately 1240 d. Here we present the results of an extensive photometric campaign, supplemented with optical spectroscopy, aimed at measuring short time-scale periodicities. We find three significant periodicities in the photometric data at, in order of statistical significance, 0.34, 0.67 and 0.10 d. We give arguments to support the interpretation that the 0.34 and 0.10 d periods could be due to stellar oscillations of the B-type primary star and that the 0.67 d period is the spin period of the Be star with a spin axis inclination of  23+10−8  degrees. We measured a systemic velocity of  −37.0 ± 4.3 km s−1  confirming that LS I+61°235 has a high probability of membership in the young cluster NGC 663 from which the system's age can be estimated as 20–25 Myr. From archival RXTE All Sky Monitor (ASM) data we further find 'super' X-ray outbursts roughly every 450 d. If these super outbursts are caused by the alignment of the compact star with the one-armed decretion disc enhancement, then the orbital period is approximately 330 d.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号