首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.

The tree-limit altitudes of Norway spruce (Picea abies) and Scots pine (Pinus sylvestris) from 180 sites (within an area of 95?km?×?165?km) in the southern Scandes were correlated with the geographical variables latitude, longitude and distance to the sea. The results were compared with a similar investigation of the tree-limit of mountain birch (Betula pubescens Ehrh. ssp. tortuosa (Ledeb.) Nyman) in the same area. The three tree-limit altitudes showed good negative correlation with latitude, poor correlation with longitude and good positive correlation with the distance to the sea, suggesting that on a regional scale the altitudes are controlled by macroclimate. At some sites, local topoclimatic features, some of which were partially aspect-dependent, may cause deviations in the regional pattern of tree-limit altitude that is set primarily by summer temperature. Tree-limit responses to potential future climate warming will probably differ substantially in magnitude from site to site in relation to local topography and associated ecological constraints.  相似文献   

2.
《自然地理学》2013,34(6):561-573
The semi-arid forest-steppe ecotone in China is characterized by a patchy pattern of forest and steppe, with forest patches restricted to shady slopes. To address the effect of topography on forest distribution through regulation of available water, we calculated evaporation as a function of slope aspect and inclination. Field vegetation records from randomly selected sites with minimum slope inclination were used to test the simulated forest distribution. Seasonal and diurnal changes of surface soil temperature and moisture of shady and sunny slopes were recorded. Soil water content was measured during two growing seasons on both sunny and shady slopes with the same forest type at three sites located along the mean annual precipitation (MAP) gradient. Evaporation decreases with slope inclination on shady slopes, but increases with inclination on sunny slopes. The shady slope received 35% of the annual direct solar radiation received by the sunny slope when the slope inclination was 25°, and the contrast in annual direct solar radiation between the shady and sunny slopes further widens as slope inclination increases. Steeper shady slopes can support forests in dryer climates, with log-linear regression revealing a minimum slope inclination for forest distribution along the MAP gradient. The simulated minimum slope inclination for forest growth was larger than the observed minimum inclination, and the difference was greater in wetter conditions. A larger forest area fraction was considered to lead to a reduction in soil temperature and evaporation, as verified by soil temperature and moisture records and soil water content measurements. The slope-specific forest distribution in the semi-arid region of China can be explained by a topography-controlled soil water supply. Lower evaporation, resulting from lower direct solar radiation on shady slopes, allows shady slopes to retain a water supply sufficient for sustaining forests, and the existence of forests on shady slopes further reduces evaporation. Different tree species coexist at the xeric timberline due to regulation by slope inclination and aspect.  相似文献   

3.
One of the main controls on the net mass change of land‐terminating Arctic glaciers is the magnitude and distribution of snow accumulation. In Dickson Land, region of Svalbard with the greatest distance to the sea, the issue has not been receiving much scientific attention for decades. In this paper, new snow accumulation data are presented from Svenbreen in Dickson Land from end‐of‐winter surveys. The measured winter balance was 0.42 ± 0.15 m w.e. in 2010, 0.50 ± 0.10 m w.e. in 2011 and 0.62 ± 0.10 cm w.e. in 2012. Snow depth and water equivalent have been analysed in the background of altitude, slope and aspect extracted from the digital elevation model of the glacier. On steep northern slopes (>15°) accumulation was the highest, whereas it was decreased on southern slopes with moderate inclination (9–12°). Elevation, which on many glaciers proved to be highly correlated with snow depth, explained only 17–34% of snow depth variability due to complex interplay between local climate and geometry of a small valley.  相似文献   

4.
基于积雪面积逐日无云遥感产品和气象观测资料,分析了2001—2020年三江源地区积雪日数的水平、垂直分布特征及变化规律,并对积雪日数与气温和降水量进行了相关分析。结果表明:(1) 2001—2020年三江源地区积雪日数呈西高东低,高海拔山脉大于盆地平原的分布格局,高海拔山脉地区积雪日数均值普遍大于200 d,85.48%的区域积雪日数呈波动增加趋势,显著增加区域占比为16.59%,平均增加速率为0.98 d·a-1。(2) 积雪日数及其变化趋势存在明显的海拔和坡向分异,积雪日数随海拔上升呈指数型增加,较低海拔(<3.0 km)区域积雪日数少、呈减少趋势且减少速率随海拔高度上升而加快;高海拔区域积雪日数较多且呈增多趋势,但海拔大于4.4 km后积雪日数增多速率随海拔上升而减缓,且5.5~6.0 km地区积雪日数呈减少趋势,高海拔地区积雪日数存在一定程度的“海拔依赖性”。积雪日数北坡大于南坡、西坡大于东坡,西北坡积雪日数最多,为78.30 d,不同坡向的积雪日数均呈增多趋势,其中西坡的增多速率最快,达1.04 d·a-1。(3) 近20 a三江源地区明显的“暖湿化”气候特征是影响积雪日数变化的主要原因,其中降水量是主要驱动因素,积雪日数增多与降水量增加密切相关,且高海拔地区积雪日数对降水量的依赖性更强。  相似文献   

5.
The paper reviews various kinds of geoecological change in the tree-limit ecotone of the Scandes Mountains during the period 1970–95. The focus of the study is a part of a regional network of sites intended for long-term tree-limit monitoring, with special stress on effects of climatic variability. The elevational tree-limits of Betula pubescens sp. Sortuosa, Picea abies and Pinus sylvestris, which rose in response to the climatic amelioration earlier this century, now show clear symptoms of increasing climatic stress and disturbance. This manifests as defoliation, growth recession and reproductive failure, locally leading to some initial elevational tree-limit retraction (unbalanced mortality). Defoliation was preceded by decades of weak summer cooling and an increasingly maritime climate, but recently it correlates significantly with low winter soil temperatures, causing death of needles, shoots and buds. In some habitats, Betula pubescens has suffered from mechanical stress and disturbance by increased snow accumulation. Tree-limit decline is paralleled by analogous responses of high-elevation boreal forests as well as the ground cover, encompassing elevational range-limit retraction of certain plant species, deterioration of alpine/subalpine dwarf-shrub heaths and terricolous lichen mats. These processes coincide with indications of enhanced periglacial activity, chiefly wind deflation of frost-heaved top-soils at exposed sites. Presumably, reindeer trampling and grazing play a certain role in the latter context, although this disturbance interacts with climate cooling and increased storminess. Short-term extreme events, particularly concerning winter climate (e.g. ground frost), represent previously underrated disturbance mechanisms in cold-stressed, high-altitude boreal forest. The results suggest mechanisms of tree-layer regression, which lag behind the most severe stresses and disturbances by decades and make cold-marginal trees increasingly sensitive to climatic extremes and, in addition, unable to respond progressively to later positive weather anomalies, due to major defoliation and hypothetical xylem cavitation. The recorded changes are logical in consequence of the irregular climatic cooling and a more maritime climate since the late 1930s. In a wider perspective, the results fit a current pattern of natural geoecological destabilization and rapid vegetation change in the North Atlantic region. In addition, the results are discussed in the perspective of global climate change and biogeographical records over the past few decades.  相似文献   

6.
Landscapes in the ecotone between forest and tundra contain a mosaic of patches of trees, meadows, lakes, disturbed areas, and other features. The structure of this mosaic affects species habitat and potential ecotone response to global change. However, the alpine forest-tundra ecotone may be insensitive to climatic change if it is a climatic relict or is frequently disturbed. We used GIS and multivariate statistics to (1) analyze landscape structure in transects across the ecotone in Rocky Mountain National Park, (2) identify the major variants of forest-tundra ecotone, and (3) identify the influence of the environment and natural disturbances on variation in the landscape structure of the ecotone. There are six major types of ecotone varying in the amount of natural disturbances, permanent features (e.g., lakes), closed forest, patch forest, and krummholz. Variation is primarily related to slope, elevation, aspect, and geology associated with the morphology of the mountains and the disturbances they produce. The ecotone is not strongly structured by natural disturbances; thus, it may be more strongly controlled by and sensitive to climatic change than in areas where disturbance is more prevalent. Monitoring of potential ecotone response to global change is feasible, if tailored to the types of ecotone and their expected response.  相似文献   

7.
Mass balance of glaciers in mountain areas varies not only with altitude and regional position but also with aspect, gradient, glacier size, glacier type and detailed topographic position. These factors are combined here in models of how glacier altitude varies, tested with data for the Alps edited from the World Glacier Inventory. An overall northward tendency in glacier numbers (toward 005 ± 4°) and lower altitudes (013 ± 5°) is maintained across a range of glacier sizes, types, altitudes and the major divisions of the Alps. Variation with aspect of glacier altitude (and, by implication, of glacier balance) in the Alps is essentially unimodal, and north‐facing glaciers average 220 m lower in middle altitude than south‐facing: 148 m in the Western Alps, 232 m in the West‐central, 252 m in the East‐central, and 268 m in the Eastern Alps. For smaller subdivisions, confidence intervals on estimates are broader and many differences lack statistical significance. Contrasts are greater in the higher massifs, with greater relief, and lower in cloudy, windward areas. There are small windrelated tendencies east of north along the northern and western fringes, but trends across space are weak: position is thus treated by subdivision into districts and groups. Mid‐altitude averages 2891 m overall and varies from 2552 to 3127 m for 27 glacier districts, and from 2124 to 3209 m for 103 glacier groups. Glacier mid‐altitude varies also with glacier form, nourishment, height range and area, which account for over two‐thirds of variance in combined models.  相似文献   

8.
研究历史遗址的空间分布,有助于深入了解历史时期人类活动与自然地理环境的关系,从而更加科学有效地管理和保护历史文化遗址。以河西地区3?654处历史文化遗址为研究对象,结合当时的历史文化背景,在GIS技术的支持下,对河西地区历史文化遗址的空间分布特征及其自然影响因素进行了研究。结果显示:研究区历史文化遗址受自然环境的影响较大,但不同遗址类型受影响的程度不大相同,军事设施遗址和石窟寺及石刻遗址更反映地形和区位因素,居住址和城址则对水源和综合自然条件的要求更严格;除军事和宗教遗址外,生产和生活型遗址点多分布于海拔2?200?m以下、距河流不超过10 km、坡度小于15°的平地、微斜坡、缓斜坡和斜坡上;为获取更多的生存空间,人们生产生活一般选择在走廊绿洲平原区,对坡向的要求不显著;遗址呈现出以石羊河中游、黑河中游及北大河中下游3个高密集分布区,另外在疏勒河中游和党河中下游存在2个较高密集分布区。  相似文献   

9.
This paper presents new data on the extent of and controls on paraglacial reworking of glacigenic drift by debris flows and snow avalanches at eight localities in western Norway. At sites around Jostedalsbreen, gully density is in the order of c. 10-100 gullies per km. Drift slopes at the sites in the Jotunheim massif are generally much less extensively modified by paraglacial processes (gully density nowhere exceeds 8 km-1 in either site). Factors controlling paraglacial drift modification include gradient, sediment availability and water supply. Gully density generally exceeds 20 gullies per km where drift is steeper than c. 30° and thicker than c. 10 m, and where the void ratio of unreworked sediment exceeds c. 0.35. Widespread gullying is also favoured at sites of high and focused water input, in particular where melting snow and ice are involved. A significant implication of these findings concerns the preservation of glacigenic sediments and landforms in different paraglaciated landscapes. Understanding the detailed constraints on paraglacial processes is essential for realistically assessing the geomorphological significance of paraglaciation in a range of environments.  相似文献   

10.
Landscapes in the ecotone between forest and tundra contain a mosaic of patches of trees, meadows, lakes, disturbed areas, and other features. The structure of this mosaic affects species habitat and potential ecotone response to global change. However, the alpine forest-tundra ecotone may be insensitive to climatic change if it is a climatic relict or is frequently disturbed. We used GIS and multivariate statistics to (1) analyze landscape structure in transects across the ecotone in Rocky Mountain National Park, (2) identify the major variants of forest-tundra ecotone, and (3) identify the influence of the environment and natural disturbances on variation in the landscape structure of the ecotone. There are six major types of ecotone varying in the amount of natural disturbances, permanent features (e.g., lakes), closed forest, patch forest, and krummholz. Variation is primarily related to slope, elevation, aspect, and geology associated with the morphology of the mountains and the disturbances they produce. The ecotone is not strongly structured by natural disturbances; thus, it may be more strongly controlled by and sensitive to climatic change than in areas where disturbance is more prevalent. Monitoring of potential ecotone response to global change is feasible, if tailored to the types of ecotone and their expected response.  相似文献   

11.

This paper describes one geometrical method of simulating the spatial distribution of snow cover. Geographical Information Systems (GIS) and precise Digital Elevation Model (DEM) were used in the simulation. The model is based on empirical parameters called coefficients depending on slope aspect and inclination. As a result, this model predicts that windward convex terrains remain snow-free during winter. This snow cover distribution was validated by usage of an air photograph taken in early spring, and the distribution of vegetation patches which represent the outer fringes of snow covered areas. Low ground temperatures together with high DC resistivities, which suggest the presence of permafrost, were identified in simulated snow-free areas.  相似文献   

12.
《自然地理学》2013,34(3):203-233
The altitudinal treeline ecotone is a windy environment where wind velocities and directions are controlled by local mountain topography and also by the distribution pattern and structures of tree stands. Wind may override the role of heat deficiency in determining treeline position, spatial pattern, ecological conditions, and tree growth. Regular strong permanent winds restrict tree height and usually cause asymmetric and suppressed growth forms that are common in the treeline ecotone. Apart from direct physiological and mechanical effects on trees and ground vegetation, wind also disperses seeds, relocates snow, and locally erodes soils in the treeline ecotone. Wind effects must be considered an important factor that may delay or even preclude establishment of seedling trees on wind-swept terrain. Discussions of a potential climatically driven upward shift of the treeline at the landscape and smaller scales should give greater attention to the varying wind effects because warming cannot compensate for these other factors. The relative importance of microsite facilitation providing shelter from the wind will increase in parallel with the upslope migration of the tree limit into a much windier environment.  相似文献   

13.
Treelines are widely studied worldwide in relation to climate changes because they are hypothesized to be sensitive climate proxies. However, forest treeline expansion toward higher altitudes may be influenced both by a warming climate and by other factors, such as surface morphology and, in the European Alps, the decline in alpine farming. Our results from five valleys in the inner and peripheral regions of the Alps show that present-day treeline altitudes mostly depend on anthropogenic and orographicgeomorphologic factors. Climatic treelines are limited to steep and inaccessible slopes, and occur at higher altitudes and farther from mountain peaks in the inner regions than in the peripheral regions of the mountain range. Looking for sites in which to study treeline responses to climate change, we recommend investigating the inner regions of the Alps where treelines are farther from human disturbances and from geomorphologic constraints, potentially resulting in freer upward shifts under warmer temperature conditions. We also found that, in the valleys selected, human disturbance is mainly concentrated about 165 m below non-climatic treelines, suggesting a homogeneous influence on treelines, regardless of geographic position.  相似文献   

14.
Winter desiccation-induced foliage loss at high-elevation locations is an important determinant of positive carbon balance for trees and thus influences the location of the alpine treeline ecotone. In this study, data are presented that describe the amount of winter desiccation incurred by krummholz growth forms of subalpine fir ( Abies lasiocarpa (Hook) Nutt.) at treeline locations in Glacier National Park, Montana, USA, for the winter of 1998/1999. An average 8.68% of the krummholz canopy was lost due to desiccation.
Winter desiccation is not predictable based on any single environmental variable. When outliers are removed, winter desiccation shows a strong correlation with elevation ( r = 0.97). Patch level winter desiccation amounts are, however, highly predictable from elevation, slope, aspect and topographic context when considered together. In general, injury increases with elevation and on more southwesterly facing hillslopes. High slopes and sheltered locations decrease winter desiccation.
Within patches, most winter desiccation is located at the windward edge of the patch. This trend may be modified by the presence of leaders above the mean canopy surface of the krummholz patch, or by local microtopographic features such as dead branches or the proximity of large rocks.
The winter of 1998/1999 was a high winter desiccation year compared to the two previous winters. The winter of 1998/1999 had high snowfall, and meltout did not occur until later than the previous two winters. The extended period of snow cover is hypothesized to be one of the causes of the increased winter desiccation for the 1998/1999 winter.  相似文献   

15.
The paper focuses on early Holocene tree growth and alpine tree-limits in the northernmost Swedish Scandes (Lapland). Megafossil wood remnants in peats and lakes were searched for over a large area at elevations high above the modern tree-limits. Wood of Pinus sylvestris, Betula pubescens spp. tortuosa and Alnus incana was discovered near the shore of a small lake (999 m a.s.l.) c. 500 m higher than today's tree-limit of Pinus sylvestris in this region. Radiocarbon dating yielded values of unprecedented age, c. 8500–8100 14C years BP for all three species and in addition 5400–4500 14C years BP for Betula and Alnus. The highest position of the Pinus tree-limit occurred during the early Holocene, which compares well with the situation reconstructed by megafossils in the southern Scandes. It now appears that the long-term tree-limit and climate histories are broadly the same in entire mid- and northern Fennoscandia. Corrected for glacio-isostatic land uplift, the tree-limit record suggests that the summers were c. 2.4°C warmer than today at 8500 14C years BP . A dry continental climate with substantial seasonal contrasts is likely to have prevailed during this period, which restricted the occurrence of glaciers and glacier activity. Most circumstances point to the overriding importance of the Milankovitch orbital theory for pacing or forcing the long-term postglacial climate change. The results are inconsistent with most inferences based on pollen, certain macrofossil records and general circulation simulations. These proxy environmental histories have frequently advocated a mid-Holocene thermal optimum and an oceanic and humid climate in northern and western Fennoscandia during the early Holocene. The uncovered discrepancy between the outcome of the objective and factual megafossil method and more subjective/inferential microfossil methods should be important for Quaternary plant ecology in general, stressing the usefulness of megafossil studies.  相似文献   

16.
基于县域尺度的青藏高原牧区积雪雪灾风险分析(英文)   总被引:2,自引:0,他引:2  
Snow disaster is one of the top ten natural disasters worldwide, and the most severe natural disaster to affect the pastoral areas of the Qinghai-Tibet Plateau. Based on the hazard harmfulness data collected from historical records and data collected from entities affected by this hazard in 2010, a comprehensive analysis of the 18 indexes of snow disaster on the Qinghai-Tibet Plateau was conducted, encompassing the hazard harmfulness, the amount of physical exposure the hazard-bearing entities face, the sensitivity to the hazard, and the capacity to respond to the disaster. The analysis indicates that:(1) areas at high-risk of snow disaster on the Qinghai-Tibet Plateau are located in certain areas of the counties of Yecheng and Pishan in the Xinjiang region;(2) areas at medium-risk of snow disaster are found between the Gangdise Mountains and the Himalayas in the central-western part of the Qinghai-Tibet Plateau, and the southeastern part of the southern Qinghai Plateau;(3) the risk of snow disaster is generally low throughout the large area to the south of 30°N and the region on the border of the eastern Qinghai-Tibet Plateau. Overall, the risk of snow disaster in high-altitude areas of the central Qinghai-Tibet Plateau is higher than that at the edge of the plateau.  相似文献   

17.
张镱锂  吴雪  郑度 《地理学报》2020,75(5):931-948
喜马拉雅山脉中段的珠穆朗玛峰等地,海拔高差巨大、生境复杂多变、土地覆被类型多样且植被垂直带谱完整,是全球范围内研究土地覆被垂直变化的理想场所。本文基于30 m空间分辨率的土地覆被数据(2010年)和DEM数据,在ArcGIS和Matlab平台的支持下,提出并运用脊线法、样带法和扇区法3种山地南北坡划分方法,研究了喜马拉雅山土地覆被垂直分布与结构差异。结果表明:① 山地土地覆被分布具有明确的垂直地带性结构特征,喜马拉雅中部土地覆被垂直带谱为南六北四式,土地覆被垂直带谱中具有人类活动的特点。② 南北坡之间的土地覆被垂直带谱差异明显,南坡土地覆被类型完整多样,北坡相对简单;对同类型土地覆被而言,南坡较北坡分布高程低、幅度宽。③ 依据各类型分布面积比随海拔变化情况,土地覆被类型在南北坡上的垂直分布可分为4种模式:冰川雪被、稀疏植被和草地为单峰分布型,裸地为南单峰北双峰分布型。④ 3种划分方法中,南坡的土地覆被垂直带结构具有相似性,而北坡的土地覆被垂直带结构存在差异,扇区法较好地反映了土地覆被自然分布格局。  相似文献   

18.

The Posets massif is located in the Central Pyrenees and reaches a height of 3363 m a.s.l. at the Posets peak, the second highest massif in the Pyrenees. Geomorphological maps of scales 1:25000 and 1:10000, BTS (bottom temperature of winter snow), ground measurements and snow poles were used to observe the more representative periglacial active landform association, ground thermal regime, the winter snow cover evolution and basal temperatures of snow. The main active periglacial landforms and processes related to the ground thermal regime and snow cover were studied. Mountain permafrost up to 2700 m a.s.l. on northexposed slopes and up to 2900 m a.s.l. on south-exposed slopes were detected. Three permafrost belts were differentiated: sporadic permafrost between 2700 and 2800 m a.s.l. and between 2850 and 3000 m a.s.l., discontinuous permafrost between 2800 and 2950 and between 2950 and 3050, and continuous permafrost up to 2900 m a.s.l. and up to 3050 m a.s.l. on northern and southern slopes, respectively.  相似文献   

19.
It is demonstrated that pronival (protalus) ramparts can be formed by a snow-push mechanism and need not accumulate in the conventional manner as a result of supranival processes. Ridges in pronival positions up to 1.2 m high and of unequivocal snow-push origin are described from two sites in Smørbotn cirque, Romsdalsalpane, southern Norway. The seven lines of evidence are: (1) parallel abrasion tracks on large boulders embedded in the substrate; (2) displaced surface and embedded clasts with proximal furrows; (3) corrugated (flute-like) substrate surfaces; (4) the sickle-shaped plan-form of the ridges; (5) generally asymmetrical ridge cross-profiles (shallow, concave proximal; steep, convex distal); (6) strong preferred orientations and dips of surface-embedded clasts on ridge proximal slopes; and (7) a subnival/pronival ridge comprising loosely packed diamicton forming along the contact zone between the snowbed and substrate. This evidence indicates ridge formation by snow sliding involving bulldozing of the substrate. Factors considered important in favouring snow push producing distinct pronival ramparts at the sites include: a maritime periglacial climate with heavy winter snowfall and rapid snow-firn conversion producing snow densities of up to 900 kg m–3; a deformable substrate with relatively small inputs of rockfall or avalanche debris; and a steep headwall susceptible to snow avalanching and hence enhanced snow supply. Consideration is given to the prospect that larger pronival ramparts can form incrementally by a snow-push mechanism.  相似文献   

20.
西北地区降雪和融雪特征的长期变化对于融雪洪水过程的准确模拟具有重要意义。本研究基于1961—1979年站点观测的日降水和气温等数据,首先对比了湿球温度法、KS方法和双临界气温法计算的降雪量,确定了精度最高的双临界气温方案,进而计算了1980—2019年的日雪雨比,最后分析了雪雨比、降雪开始日期和融雪开始日期的变化规律。结果包括:①春季平均气温呈显著上升趋势,随海拔上升升温速率减小,青藏高原地区、东南部半干旱区、半湿润区春季气温上升速率略低于北疆、南疆、河西走廊及内蒙古西部,春季雪雨比在海拔1000 m以上呈显著下降趋势,在青藏高原地区、东南部半干旱区、半湿润区呈显著下降趋势;秋季平均气温显著上升,随海拔上升升温速率增大,空间上在青藏高原地区上升速率最快,秋季雪雨比在不同海拔和部分气候分区都呈不显著下降趋势;冬季平均气温在海拔2000 m以上呈现显著升温,且随着海拔的升高升温速率加快,空间上在青藏高原地区、东南部半干旱区、半湿润区呈现显著升温,降雪量在1000~2000 m呈现显著增加趋势,空间上在北疆地区呈现显著增加趋势。②降雪开始日期随着温度的升高在所有区域都没有显著的推迟,每一年的降雪开始日期在不同高程带和不同气候区之间的差别没有变化,仍为30~40d。③融雪开始日期在所有海拔区间和气候分区都呈现出显著的提前趋势,每一年的融雪开始的日期在不同高程带和不同气候区的差别仍为25~30d。降雪和融雪特征的变化说明气候变化可能已经对融雪洪水的特征产生了明显的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号