首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An obstacle to the asteroid mass determination lies in the difficulty in isolating the gravitational perturbation exerted by a single asteroid on the planets, being strongly correlated and mixed up with those of many other asteroids. This hindrance may be avoided by the method of analysis presented here: an asteroid mass is estimated in correspondence with its close encounters with Mars where the acceleration it induces on the planet can be sufficiently disentangled from those generated by the remaining asteroid masses to calculate. We test this technique in the analysis of range observations to Mars Global Surveyor and Mars Express performed from 1999 to 2007. For this purpose, we adopt the dynamical model of the planetary ephemeris INPOP06 (Fienga et al., 2008), which includes the gravitational influences of the 300 most perturbing asteroids of the Martian orbit. We obtain the solutions of 10 asteroid masses that have the largest effects on this orbit over the period examined: they are generally in good agreement with determinations recently published.  相似文献   

2.
We apply the technique of astrometric mass determination to measure the masses of 21 main-belt asteroids; the masses of 9 Metis (1.03 ± 0.24 × 10-11 M), 17 Thetis (6.17 ± 0.64 × 10-13 M), 19 Fortuna (5.41 ± 0.76 × 10-12 M), and 189 Phthia (1.87 ± 0.64 × 10-14 M) appear to be new. The resulting bulk porosities of 11 Parthenope (12±4%) and 16 Psyche (46±16%) are smaller than previously-reported values. Empirical expressions modeling bulk density as a function of mean radius are presented for the C and S taxonomic classes. To accurately model the forces on these asteroids during the mass determination process, we created an integrated ephemeris of the 300 large asteroids used in preparing the DE-405 planetary ephemeris; this new BC-405 integrated asteroid ephemeris also appears useful in other high-accuracy applications.  相似文献   

3.
Masses of 19 asteroids have been determined from the analysis of their gravitational effect on the motion of perturbed bodies. The following asteroids were selected as perturbed bodies: (1) those which had single close encounters with the perturbing asteroid; (2) those whose mean motion was in a 1 : 1 commensurability with that of the perturber and which had close or moderate recurrent encounters with the perturber. The perturber mass was determined from observations of several tens of perturbed asteroids that were selected from these two groups. The selection criterion was the error of the mass determined from observations of only one asteroid. Positional observations of the asteroids on the interval 1900–2002 were used. The masses were determined with errors by an order-half an order of magnitude smaller than the masses found. The results are compared with those of other authors.  相似文献   

4.
The level of precision of modern numerical ephemeris of the Solar System necessitates taking into account the gravitational influence of the largest asteroids on the terrestrial planets. This can be done in a straightforward manner when assuming that the mass of the asteroid is well known. Nevertheless, this is rarely the case, even for the largest asteroids. In this paper, we use recent determinations of the masses of Ceres, Pallas, and Vesta to both qualitatively and quantitatively determine the action of these asteroids on the orbital parameters of the Earth and Mars. This is done by the numerical integration by comparing the orbital motions of the perturbed planet when adding or not the perturbing asteroid to the classical 9 bodies problem (the Sun + the eight planets). Some preliminary results are discussed. Published in Russian in Astronomicheskii Vestnik, 2009, Vol. 43, No. 1, pp. 83–86. The text was submitted by the autors in English.  相似文献   

5.
Pulsar timing uses planetary ephemerides to convert the measured pulse arrival time at an observatory to the arrival time at the Solar System barycenter(SSB). Since these planetary ephemerides cannot be perfect, a method of detecting the associated errors based on a pulsar timing array is developed. By using observations made by an array of 18 millisecond pulsars from the Parkes Pulsar Timing Array, we estimated the vector uncertainty from the Earth to the SSB of JPL DE421, which reflects the offset of the ephemeris origin with respect to the ideal SSB, in different piecewise intervals of pulsar timing data, and found consistent results. To investigate the stability and reliability of our method, we divided all the pulsars into two groups. Both groups yield largely consistent results, and the uncertainty of the Earth-SSB vector is several hundred meters, which is consistent with the accuracy of JPL DE421. As an improvement in the observational accuracy, pulsar timing will be helpful to improve the solar system ephemeris in the future.  相似文献   

6.
The masses of 21 main-belt asteroids were determined by the dynamical method. The masses of 13 asteroids have relative errors of less than 50 percent. When earlier positional observations are excluded and recent, highly accurate ones are used, the error of asteroid mass determination is reduced.  相似文献   

7.
The general approach to studying the dynamics of moons of planets and asteroids consists in developing more and more accurate models of motion based on observational data. Not only the necessary ephemerides, but also some physical parameters of planets and moons are obtained this way. It is demonstrated in the present study that progress in this field is driven not only by the increase in accuracy of observations. The accuracy of ephemerides may be increased by expanding the observation time interval. Several problems arise on the way toward this goal. Some of them become apparent only when the procedure of observational data processing and use is examined in detail. The method used to derive astrometric data by processing the results of photometric observations of mutual occultations and eclipses of planetary moons is explained below. The primary contribution to the error of astrometric results is produced by the unaccounted noise level in photometric readings and the inaccuracy of received values of the albedo of moons. It is demonstrated that the current methods do not allow one to eliminate the noise completely. Extensive additional photometric measurements should be performed at different angles of rotation of moons and in different spectral bands of the visible wavelength range in order to obtain correct values of the albedo of moons. Many new distant moons of the major planets have been discovered in the early 21st century. However, the observations of these moons are scarce and were performed over short time intervals; as a result, some of the moons were lost. The necessity of further observations of these Solar System bodies is pointed out in the present study. Insufficient knowledge of asteroid masses is an obstacle to improving the accuracy of the ephemerides of Mars. The basic method for determining the masses of large asteroids consists in analyzing their influence on the motion of Mars, the Earth, and spacecraft. The masses of more than 100 large asteroids were determined this way. One of the principal techniques for Earth-based measurement of the masses of asteroids involves astrometric observations of binary asteroids. The determination of relative coordinates is made rather difficult by the apparent proximity of components. The success of these efforts depends on the availability of instrumentation and the expertise of observers skilled in adaptive optics and speckle interferometry. Collaboration between different research teams and observers is absolutely necessary.  相似文献   

8.
Laurel L. Wilkening 《Icarus》1979,40(3):434-438
Since it is known that there is a diversity of surface types among asteroids and assumed that asteroids represent several different bulk compositions and stages in planetary evolution, a first mission to the asteroid belt must study and compare several asteroids of differing types. Both very primitive and highly evolved asteroids should be studied. Identifications of any asteroid with a known type of meteorite will permit the attachment of a large body of accurate data to a known location, and thereby secure many commonly made assumptions as facts. Thus, it is essential that remote analysis of asteroids be able to distinguish among the compositions of known meteorites. Determination of the absolute abundances of Mg, Al, Si, Ca, Fe, Ni, and S will permit meteorite types to be distinguished. Analysis of additional elements such as C and H and other trace elements will permit more certainty in identification. Remote sensing of primitive asteroids should permit the detection of water on or outgassing from asteroid surfaces. An important goal will be to determine the degree to which remote observations of surfaces reflect real differences in interior compositions; hence, accurate determinations of densities will be essential. High-resolution photography of asteroidal surfaces may yield information on the heterogeneity of the surfaces.  相似文献   

9.
J.G. Williams 《Icarus》1984,57(1):1-13
The orbit of Mars is perturbed more than 5 m, a value compatible with the accuracy of the Viking lander ranging data, by about three dozen asteroids. In addition to larger asteroids throughout the belt, significant perturbations of long period are generated by smaller objects near commensurabilities with Mars. The largest periodic terms induced by 1 Ceres and 2 Pallas have amplitudes of 0.8 and 0.2 km, respectively, both with 10-year periods. Due to a near commensurability, 4 Vesta causes a 5-km, 52-year term. While the Viking ranges will yield significant mass determinations for the largest three asteroids, and some of the smaller bodies should be detectable, it will be difficult to seperate the smaller bodies with useful accuracies. Accurate discrimination must await range data from future missions to Mars or other bodies in the neighborhood of the asteroid belt. The Viking ranges can also yield improved masses for the outer planets (except Pluto), an application which is being exploited by groups analyzing these data. Uncertainties in the asteroid masses limit the ultimate accuracy of the Viking determinations of both the long time scale motion of the system the inner four planets with respect to an inertial frame and the rate of change of the gravitational constant.  相似文献   

10.
《Planetary and Space Science》1999,47(6-7):873-881
The ROSETTA spacecraft will fly-by a few asteroids during its course to the final cometary target. The candidate asteroids presently are 3840 Ministrobel (S-type), 2703 Siwa and 140 (C-type).With the limited data presently available on these bodies we calculated some approximate quantities which may be useful to select the fly-by trajectories of the ROSETTA probe. In particular we derived the zones in which particles could stably orbit by analyzing Hills problem of three hierarchical masses—the sun, the asteroid and the orbiting particle. Then, following the approach of Hamilton and Burns, the effects of solar radiation pressure and of the ellipticity of the orbits were also taken into account. In this way for each asteroid we could calculate not only a classical quantity like the radius of the Hill sphere, but also the critical starting orbital distance (as a function of orbital inclination) within which most orbits remain bound to the asteroid, and outside which most escape as a consequence of perturbations. Moreover we determined the orbital stability zone, defined as the union of all the numerically integrated orbits showing long-term stability, for each of the target asteroids. The particular shape of these zones would suggest to have the spacecrafts close approach out of the orbital plane of the asteroids.To further investigate this problem and, in particular, to take into account the irregular shape of the asteroids, we developed a model using a polyhedral representation of the central rotating body, following a theory developed by Werner and Scheeres. This model is described here and the first orbital integration results are presented. © 1999 Elsevier Science Ltd. All rights reserved.  相似文献   

11.
The U.S. Naval Observatory has begun a program of ephemeris improvement and reference frame determination from the main belt asteroids. The program is, currently, starting out with a limited set of observations of the larger asteroids to determine the equator and equinox corrections for the USNO W1J00 transit circle observations catalog, and, if possible, improve the orbits of these asteroids based on this limited set of observations. For this project, transit circle observations of the Sun and the planets Mercury through Jupiter, are also being used to determine the equator, equinox, and ephemeris corrections, the next goal is to improve the orbits of the larger asteroids in the optical reference frame using observation series that cover a much longer period of time. This will allow the exploration of the differences between the dynamical reference frame based on radar observations of main belt asteroids and its relation with the optical reference frame. Other goals include the exploration of the mass distribution in the main asteroid belt from high precision observations, and the effect of this mass on the ephemerides of the major planets.  相似文献   

12.
The size distribution of main belt of asteroids is determined primarily by collisional processes. Large asteroids break up and form smaller asteroids in a collisional cascade, with the outcome controlled by the strength-size relationship for asteroids. In addition to collisional processes, the non-collisional removal of asteroids from the main belt (and their insertion into the near-Earth asteroid (NEA) population) is critical, and involves several effects: strong resonances increase the orbital eccentricity of asteroids and cause them to enter the inner planet region; chaotic diffusion by numerous weak resonances causes a slow leak of asteroids into the Mars- and Earth-crossing populations; and the Yarkovsky effect, a radiation force on asteroids, is the primary process that drives asteroids into these resonant escape routes. Yarkovsky drift is size-dependent and can modify the main-belt size distribution. The NEA size distribution is primarily determined by its source, the main-belt population, and by the size-dependent processes that deliver bodies from the main belt. All of these effects are simulated in a numerical collisional evolution model that incorporates removal by non-collisional processes. We test our model against a wide range of observational constraints, such as the observed main-belt and NEA size distributions, the number of asteroid families, the preserved basaltic crust of Vesta and its large south-pole impact basin, the cosmic ray exposure ages of meteorites, and the cratering records on asteroids. We find a strength-size relationship for main-belt asteroids and non-collisional removal rates from the main belt such that our model fits these constraints as best as possible within the parameter space we explore. Our results are consistent with other independent estimates of strength and removal rates.  相似文献   

13.
P. Descamps 《Icarus》2010,207(2):758-768
The present paper deals with the application of the classical theory of equilibrium figures of two rotating liquid masses to the case where bodies exhibit a radially stratified internal density distribution so that they can be considered as inhomogeneous bodies. The derived ellipsoidal shape solutions are applied to five real systems of equal-sized synchronous asteroids. Furthermore, internal inhomogeneity puts strong constraints on the surface grain density. A satisfactory model fit is achieved with internal densities of asteroids steadily increasing outwards. In particular, from such an approach we derived grain densities of the considered systems in agreement with their mineralogical composition inferred from reflectance spectroscopy. According to this new approach, 4492 Debussy, presently of unknown spectral type, is predicted to appear as a C-type object with a grain density on the order of 2 g/cm3.  相似文献   

14.
Abstract— ‐Major surface fissures and relatively large‐scale, angular surface irregularities are expected to have been present on many asteroids at early stages in their histories as a byproduct of at least two processes (impact disruption and reassembly into rubble piles for all classes of asteroid and, for carbonaceous chondrite parent bodies, aqueous alteration) which led to the low bulk densities currently being observed for asteroids. However, in all cases where high‐enough resolution images exist, such abrupt, deep irregularities are not observed. We model the spatial redistribution of impact‐generated regolith on an asteroid with an idealized irregular shape to show how the complex gravitational field of such a body will lead to the systematic infilling of deep valleys in the surface. Our analysis emphasizes the high efficiency with which regolith redistribution can act to disguise the internal structures of asteroids with sizes in the 20–100 km range.  相似文献   

15.
The dependence of the cumulative number of numbered asteroids (up to 3720) on their absolute magnitude is investigated. The differential mass index k is derived from these relations for fainter asteroids. A steeper slope (2.2 < k < 2.4) is found in the four most populous asteroid familes (Flora, Koronis, Eos and Themis) and a flatter slope (1.3 < k < 1.6) for non-family asteroids. This indicates that there are two different asteroid populations in the asteorid belt. Total masses of the asteroid families may be greater than it is commonly accepted.  相似文献   

16.
Abstract– The asteroid belt is found today in a dramatically different state than that immediately following its formation. It is estimated that it has been depleted in total mass by a factor of at least 1000 since its formation, and that the asteroids’ orbits evolved from having near‐zero eccentricity and inclination to the complex distributions we find today. The asteroid belt also hosts a wide range of compositions, with the inner regions dominated by S‐type and other water‐poor asteroids and the outer regions dominated by C‐type and other primitive asteroids. We discuss a model of early inner solar system evolution whereby the gas‐driven migration of Jupiter and Saturn brings them inwards to 1.5 AU, truncating the disk of planetesimals in the terrestrial planet region, before migrating outwards toward their current locations. This model, informally titled “The Grand Tack,” examines the planetary dynamics of the solar system bodies during the final million years of the gaseous solar nebula lifetime—a few million years (Myr) after the formation of the first solids, but 20–80 Myr before the final accretion of Earth, and approximately 400–600 Myr before the Late Heavy Bombardment of the inner solar system. The Grand Tack attempts to solve some outstanding problems for terrestrial planet formation, by reproducing the size of Mars, but also has important implications for the asteroid population. The migration of Jupiter causes a very early depletion of the asteroid belt region, and this region is then repopulated from two distinct source regions, one inside the formation region of Jupiter and one between and beyond the giant planets. The scattered material reforms the asteroid belt, producing a population the appropriate mass, orbits, and with overlapping distributions of material from each parent source region.  相似文献   

17.
Abstract— Four asteroidal bodies (the Martian satellites Phobos and Deimos and the main-belt asteroids 243 Ida and 253 Mathilde) have now been the subjects of sufficiently close encounters by spacecraft that the masses and sizes and, hence, the densities of these bodies can be estimated to ~10%. All of these asteroids are significantly less dense than most members of the classes of meteorites identified as being compositionally most nearly similar to them on the basis of spectral characteristics. We show that two processes can act, independently or in concert, during the evolutionary histories of asteroids to produce a low bulk density. One of these processes is the result of one or more impact events and can affect any asteroid type, whereas the other can occur only for certain types of small asteroids that have undergone aqueous alteration.  相似文献   

18.
The orbital evolutions of the asteroid 3040 Kozai and model asteroids with similar orbits have been investigated. Their osculating orbits for an epoch 1991 December 10 were numerically integrated forward within the interval of 20,000 years, using a dynamical model of the solar system consisting of all inner planets, Jupiter, and Saturn.The orbit of the asteroid Kozai is stable. Its motion is affected only by long-period perturbations of planets. With change of the argument of perihelion of the asteroid Kozai, the evolution of the model asteroid orbits changes essentially, too. The model orbits with the argument of perihelion changed by the order of 10% show that asteroids with such orbital parameters may approach the Earth orbit, while asteroids with larger changes may even cross it, at least after 10,000 years. Long-term orbital evolution of asteroids with these orbital parameters is very sensitive on their angular elements.  相似文献   

19.
Abstract— Densities and porosities for 285 ordinary chondrites have been assembled and analyzed. Measured chondrite porosities are bimodal; finds have an average porosity of <3%, whereas fall porosities average 7% but range from zero to >30%. We conclude that mild degrees of weathering fill pore spaces, lowering grain densities and porosities without significantly changing the bulk size or mass of the sample. By assuming an original pristine grain density (as a function of the meteorite's mineralogy—determined by its class), we can derive model pristine porosities. These model porosities cluster around an average value of 10% for all classes of ordinary chondrites. Ordinary chondrites do not show any correlation of porosity (model or measured) with petrographic grade or sample size (over a range from 0.2 g to 2 kg). However, we do see a correlation between shock state and porosity. Shock-blackened meteorites are less porous than other meteorites. Furthermore, less severely shocked meteorites show a much broader range of porosities, with the maximum porosity seen among meteorites of a given shock class falling linearly as a function of that shock class. This is consistent with the idea that shock compresses and closes pore space. Analysis of meteorite porosity provides a lower bound to the fine-scale porosity of asteroids. Our densities, even with 10% primordial porosity, are significantly higher than inferred densities of possible asteroid parent bodies. These asteroids are probably loose piles of rubble.  相似文献   

20.
The latest version of the planetary part of the numerical ephemerides EPM (Ephemerides of Planets and the Moon) developed at the Institute of Applied Astronomy of the Russian Academy of Sciences is presented. The ephemerides of planets and the Moon were constructed by numerical integration in the post-Newtonian metric over a 140-year interval (from 1880 to 2020). The dynamical model of EPM2004 ephemerides includes the mutual perturbations from major planets and the Moon computed in terms of General Relativity with allowance for effects due to lunar physical libration, perturbations from 301 big asteroids, and dynamic perturbations due to the solar oblateness and the massive asteroid ring with uniform mass distribution in the plane of the ecliptic. The EPM2004 ephemerides resulted from a least-squares adjustment to more than 317000 position observations (1913–2003) of various types, including radiometric measurements of planets and spacecraft, CCD astrometric observations of the outer planets and their satellites, and meridian and photographic observations. The high-precision ephemerides constructed made it possible to determine, from modern radiometric measurements, a wide range of astrometric constants, including the astronomical unit AU = (149597870.6960 ± 0.0001) km, parameters of the rotation of Mars, the masses of the biggest asteroids, the solar quadrupole moment J 2 = (1.9 ± 0.3) × 10−7, and the parameters of the PPN formalism β and γ. Also given is a brief summary of the available state-of-the-art ephemerides with the same precision: various versions of EPM and DE ephemerides from the Jet Propulsion Laboratory (JPL) (USA) and the recent versions of these ephemerides—EPM2004 and DE410—are compared. EPM2004 ephemerides are available via FTP at ftp://qua-sar.ipa.nw.ru/incoming/EPM2004.__________Translated from Astronomicheskii Vestnik, Vol. 39, No. 3, 2005, pp. 202–213.Original Russian Text Copyright © 2005 by Pitjeva.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号