首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
The earlyP wave coda (5–15 sec after the first arrival) of underground explosions at the Nevada Test Site is studied in the time domain using 2082 teleseismic short-period recordings, with the intent of identifying near-source contributions to the signals in the frequency range 0.2–2.0 Hz. Smaller magnitude events tend to have relatively high coda levels in the 0.4–0.8 Hz frequency band for both Yucca Flat and Pahute Mesa explosions. Coda complexity in this low-frequency passband is negatively correlated with burial depth for Pahute Mesa events but is only weakly correlated with depth for Yucca Flat events. Enhanced excitation of relatively long-period scattered waves for smaller, less deeply buried events is required to explain this behavior. Coda complexity in the 0.8–1.1 Hz band is positively correlated with magnitude and depth for Pahute Mesa events, but has no such dependence for Yucca Flat events. This may result from systematic variations between the spectra of direct signals and coda arrivals caused bypP interference for the largest events, all of which were detonated at Pahute Mesa. Another possible explanation is a frequency-dependent propagation effect on the direct signals of the larger events, most of which were located in the center of the mesa overlying strong lateral velocity gradients in the crust and upper mantle. Event average complexity varies spatially for both test sites, particularly in the 0.8–1.1 Hz band, providing evidence for frequency-dependent focussing or scattering by near-source structure. Both the direct arrivals and the early coda have strong azimuthal amplitude patterns that are produced by defocussing by mantle heterogeneity. The direct arrivals have stronger coherent azimuthal patterns than the early coda for Pahute Mesa events, indicating more pronounced deep crustal and shallow mantle defocussing for the direct signals. However, for Yucca Flat events the direct arrivals have less coherent azimuthal patterns than the coda, suggesting that a highly variable component of near-source scattering preferentially affecting the downgoing energy is superimposed on a pattern produced by mantle heterogeneity that affects the entire signal. This complicated behavior of the direct arrivals may be the result of triplications and caustics produced by the complex basement structure known to underlie the Yucca Flat test site. The presence of strong azimuthal patterns in the early coda indicates that source strength estimates based on early coda are subject to biases similar to those affecting estimates based on direct arrivals.  相似文献   

2.
A search for Pc3–4 wave activity was performed using data from a trans-Antarctic profile of search-coil magnetometers extending from the auroral zone through cusp latitudes and deep into the polar cap. Pc3–4 pulsations were found to be a ubiquitous element of ULF wave activity in all these regions. The diurnal variations of Pc3 and Pc4 pulsations at different latitudes have been statistically examined using discrimination between wave packets (pulsations) and noise. Daily variations of the Pc3–4 wave power differ for the stations at the polar cap, cusp, and auroral latitudes, which suggests the occurrence of several channels of propagation of upstream wave energy to the ground: via the equatorial magnetosphere, cusp, and lobe/mantle. An additional maximum of Pc3 pulsations during early-morning hours in the polar cap has been detected. This maximum, possibly, is due to the proximity of the geomagnetic field lines at these hours to the exterior cusp. The statistical relation between the occurrence of Pc3–4 pulsations and interplanetary parameters has been examined by analyzing normalized distributions of wave occurrence probability. The dependences of the occurrence probability of Pc3–4 pulsations on the IMF and solar wind parameters are nearly the same at all latitudes, but remarkably different for the Pc3 and Pc4 bands. We conclude that the mechanisms of high-latitude Pc3 and Pc4 pulsations are different: Pc3 waves are generated in the foreshock upstream of the quasi-parallel bow shock, whereas the source of the Pc4 activity is related to magnetospheric activity. Hourly Pc3 power has been found to be strongly dependent on the season: the power ratio between the polar summer and winter seasons is 8. The effect of substantial suppression of the Pc3 amplitudes during the polar night is reasonably well explained by the features of Alfven wave transmission through the ionosphere. Spectral analysis of the daily energy of Pc3 and Pc4 pulsations in the polar cap revealed the occurrence of several periodicities. Periodic modulations with periods 26, 13 and 8–9 days are caused by similar periodicities in the solar wind and IMF parameters, whereas the 18-day periodicity, observed during the polar winter only, is caused, probably, by modulation of the ionospheric conductance by atmospheric planetary waves. The occurrence of the narrow-band Pc3 waves in the polar cap is a challenge to modelers, because so far no band-pass filtering mechanism on open field lines has been identified.  相似文献   

3.
Summary A method of numerical simulation of the coefficient of reflection of the ionospheric transition layer as a function of frequency is applied to the experimental data related to several series of pearl-type pulsations Pc1 (f = 0.2 – 2 Hz) recorded at the observatories of Kerguelen, Sogra and Nurmijarvi. The inverse problem of modelling, i.e. determining the vertical profiles of ionospheric electron concentration corresponding to the actual experimental situations, was solved approximately. The initial assumption for interpreting the specific nature of the series of Pc1 micropulsations parallel in time was their resonance origin under reflection of the signal at magnetically conjugate ionospheres, Alfvén's resonators, in both of the Earth's hemispheres.  相似文献   

4.
— Delhi – the capital of India lies on a severe earthquake hazard threat not only from local earthquakes but also from Himalayan events just 200–250 km apart. The seismic ground motion in a part of Delhi City is computed with a hybrid technique based on the modal summation and the finite-difference scheme for site-specific strong ground motion modelling. Complete realistic SH and #E5/E5#-SV wave seismograms are computed along two geological cross sections, (1) north-south, from Inter State Bus Terminal (ISBT) to Sewanagar and (2) east-west, from Tilak Bridge to Punjabi Bagh. Two real earthquake sources of July 15, 1720 (MMI=IX, M=7.4) and August 27, 1960 (M=6.0) have been used in modelling. The response spectra ratio (RSR), i.e. the response spectra computed from the signals synthesized along the laterally varying section and normalized by the response spectra computed from the corresponding signals, synthesized for the bedrock reference regional model, have been determined. As expected, the sedimentary cover causes an increase of the signal amplitude, particularly in the radial and transverse components. To further check the site-effects, we reversed the source location to the other side of the cross section and recomputed the site amplifications. There are only a few sites where a large amplification is invariant with respect to the two source locations considered. The RSR ranges between 5 to 10 in the frequency range from 2.8 to 3.7 Hz for the radial and transverse components of motion along the NS cross section. Along the EW cross section RSR varies between 3.5 to 7.5 in the frequency range from 3.5 to 4.1 Hz. The amplification of the vertical component is considerable at high frequency (>4 Hz.) whereas it is negligible in lower frequency range.  相似文献   

5.
We analyze data from three seismic antennas deployed in Las Cañadas caldera (Tenerife) during May–July 2004. The period selected for the analysis (May 12–31, 2004) constitutes one of the most active seismic episodes reported in the area, except for the precursory seismicity accompanying historical eruptions. Most seismic signals recorded by the antennas were volcano-tectonic (VT) earthquakes. They usually exhibited low magnitudes, although some of them were large enough to be felt at nearby villages. A few long-period (LP) events, generally associated with the presence of volcanic fluids in the medium, were also detected. Furthermore, we detected the appearance of a continuous tremor that started on May 18 and lasted for several weeks, at least until the end of the recording period. It is the first time that volcanic tremor has been reported at Teide volcano. This tremor was a small-amplitude, narrow-band signal with central frequency in the range 1–6 Hz. It was detected at the three antennas located in Las Cañadas caldera. We applied the zero-lag cross-correlation (ZLCC) method to estimate the propagation parameters (back-azimuth and apparent slowness) of the recorded signals. For VT earthquakes, we also determined the S–P times and source locations. Our results indicate that at the beginning of the analyzed period most earthquakes clustered in a deep volume below the northwest flank of Teide volcano. The similarity of the propagation parameters obtained for LP events and these early VT earthquakes suggests that LP events might also originate within the source volume of the VT cluster. During the last two weeks of May, VT earthquakes were generally shallower, and spread all over Las Cañadas caldera. Finally, the analysis of the tremor wavefield points to the presence of multiple, low-energy sources acting simultaneously. We propose a model to explain the pattern of seismicity observed at Teide volcano. The process started in early April with a deep magma injection under the northwest flank of Teide volcano, related to a basaltic magma chamber inferred by geological and geophysical studies. The stress changes associated with the injection produced the deep VT cluster. In turn, the occurrence of earthquakes permitted an enhanced supply of fresh magmatic gases toward the surface. This gas flow induced the generation of LP events. The gases permeated the volcanic edifice, producing lubrication of pre-existing fractures and thus favoring the occurrence of VT earthquakes. On May 18, the flow front reached the shallow aquifer located under Las Cañadas caldera. The induced instability constituted the driving mechanism of the observed tremor.  相似文献   

6.
Highlights of studies of ULF waves from 1995 to early 1997 are presented. The subjects covered include (1) Pc 3–5 waves excited by sources in the solar wind, with emphasis on the role of the magnetospheric cavity in modifying the external source and establishing its own resonances, and the role of the plasmapause in magnetohydrodynamic wave propagation; (2) Pi 2 waves, with emphasis on the plasmaspheric resonances and possible alternative excitation by plasmasheet source waves; (3) the spatial structure of internally excited long-period waves, including a kinetic theory for radially confined ring current instability and groundbased multipoint observation of giant pulsations; (4) amplitude-modulated Pc 1–2 waves in the outer magnetosphere (Pc 1–2 bursts) and in the inner magnetosphere (structured Pc 1 waves or pearls); and (5) the source region of the quasi-periodic emissions. Theory and observations are compared, and controversial issues are highlighted. In addition, some future directions are suggested.  相似文献   

7.
Analysis of sustained long-period activity at Etna Volcano, Italy   总被引:1,自引:0,他引:1  
Following the installation of a broadband network on Mt. Etna, sustained Long-Period (LP) activity was recorded accompanying a period of total quiescence and the subsequent onset of the 2004–2005 effusive episode. From about 56000 events detected by an automatic classification procedure, we analyse a subset of about 3000 signals spanning the December 17th, 2003–September 25th, 2004, time interval. LP spectra are characterised by several, unevenly-spaced narrow peaks spanning the 0.5–10 Hz frequency band. These peaks are common to all the recording sites of the network, and different from those associated with tremor signals. Throughout the analysed time interval, LP spectra and waveforms maintain significant similarity, thus indicating the involvement of a non-destructive source process that we interpret in terms of the resonance of a fluid-filled buried cavity. Polarisation analysis indicates radiation from a non-isotropic source involving large amounts of shear. Concurrently with LP signals, recordings from the summit station also depict Very-Long-Period (VLP) pulses whose rectilinear motion points to a region located beneath the summit craters at depths ranging between 800 and 1100 m beneath the surface. Based on a refined repicking of similar waveforms, we obtain robust locations for a selected subset of the most energetic LP events from probabilistic inversion of travel-times calculated for a 3D heterogenous structure. LP sources cluster in a narrow volume located beneath the summit craters, and extending to a maximum depth of ≈ 800 m beneath the surface. No causal relationships are observed between LP, VLP and tremor activities and the onset of the 2004–2005 lava effusions, thus indicating that magmatic overpressure played a limited role in triggering this eruption. These data represent the very first observation of LP and VLP activity at Etna during non-eruptive periods, and open the way to the quantitative modelling of the geometry and dynamics of the shallow plumbing system.  相似文献   

8.
Summary Using methods of numerical modelling of the propagation of ULF waves through the ionosphere, the characteristics of the vertical flux of electromagnetic energy are analysed in the ULF range — at the outer boundary of the modelled ionosphere (altitude 1000 km) the reflexibility and penetrability of the energy, at the Earth's surface the transmissivity of the energy. The existence of two frequency bands is proved within the ULF range with different forms of ionospheric wave filtration: a) The band of extremely low frequencies, f<0.1–0.2 Hz (pc3–5 and Pc2 pulsation ranges) with a mirroring effect of the ionosphere-Earth system, but with small absorption; b) the band f>0.2 Hz (the Pc1 range) with increased absorption, but with resonance windows and wave emissions with a very well defined frequency structure.  相似文献   

9.
Summary This article is a continuation of the methodological series of the author's papers[2–4] related to the problem of numerical modelling of ionospheric filtration of signals in the Pc1 range of micropulation frequencies. A matrix method of treating the total wave field within the ionospheric transition layer is presented in connection with the total wave fields determined at both boundaries of the ionospheric transition layer. The computation is based on the method of thin layers (homogeneous) in a finely stratified, inhomogeneous and anisotropic (magneto-active) ionosphere. The results can be used in constructing automated computation algorithms which add considerably to the applications of the method in question[2–4].  相似文献   

10.
Most of the data recorded at seismological observatories are essentially noise, not signal. One way to achieve a higher information density is to trigger the seismograph, as in strong-motion accelerographs. This approach loses the first motion—not important for earthquake-engineering studies, but very important for studies of focal mechanism. To eliminate this defect, various cumbersome techniques have been used, such as closed-loop tape-recording. Here we describe a seismograph that records only the signals and does not lose the first motion. Our procedure uses a microprocessor (MC6800) to monitor the energy level adaptively, uses a solid-state memory like a large shift-register, and has the microprocessor trigger recording from the solid-state memory onto a tape cassette whenever a signal (as defined by energy level) is recognized by the microprocessor. A field station consists of a crystal clock, seismometer, amplifier, analog-to-digital converter, Parallel Interface Adapter (PIA), MC6800 microprocessor, 8K solid-state memory, Asynchronous Communications Interface Adapter (ACIA), cassette tape-recorder, and battery. The duration of operation depends upon the frequency content of data, the sampling rate used, and the frequency of events. The design criteria used for the stations of the first field system are a 1 Hz to 10 Hz bandpass amplifier, 8-bit digitization, 5 samples per cycle of highest frequency content, and quality tape cassettes. These requirements are appropriate for exploring for magma chambers in subduction zones—the motivation for developing this system. A playback facility uses the DEC LSI-11 computer, which has an assembly language set very similar to that of the MC6800. This equipment, or a slight modification thereof, would be suitable for recording strong-motion earthquakes, for monitoring quarry blasts, or for any seismological effort in which the triggering criterion can be specified as an algorithm for programming into the microprocessor firmware. The resulting data are digital and only include significant signals, thus the data reduction facilities may properly concentrate on analysis and interpretation. Because the parameters of the system can be easily modified in firmware or software, the system is very flexible and can be considered the Universal Geophysical Recorder. An adaptation to recording transient EM phenomena is in progress. In this application, the source is controlled, but the use of the self-triggering approach eliminates the need for a radio-control system to activate the recorders, HIG Contribution no. 753.  相似文献   

11.
12.
首都圈数字地震台网对微弱爆破信号的检测能力   总被引:3,自引:0,他引:3       下载免费PDF全文
利用首都圈数字地震台网接收人工地震信号,进行地下结构研究具有重要意义.但人工震源释放的能量小,激发的地震波以短周期为主,因此本文较全面地研究了地震台网对短周期微弱信号(1~20 Hz)的检测能力:(1) 分析了台网的背景噪声,结果表明基岩台址的地震台噪声比沉积盖层台址的地震台噪声低约13 dB,这相当于近1个震级的检测阈值;夜间的噪声比白天低约5 dB;噪声有逐年增高的趋势,2006年比2001年噪声提高约4 dB.(2 )分析了在台网内进行的药量为25 kg的陆地井下爆破实验,一次爆破相当于0.69级(ML)的天然地震,有18个地震台可辨认爆炸产生的Pg、Pm或Pc波;离爆破点218 km的基岩台,仍可以接收到振幅只有1.6 nm 的Pm波,这个结果可为地震勘探实际工作提供参考.(3) 研究了台网外核爆试验的信号特征,2006年发生在朝鲜的地下核试验是一次检验台网检测微弱信号能力的好机会.波形记录经1~5Hz滤波后,台网中噪声小的18个基岩台可以清晰辨认核爆破产生的P波或Lg波,P波平均振幅为16 nm,计算的平均震级为mb4.3,和NEIC给出的震级相同;分析还表明背景噪声是影响台站信号检测能力的主要因素之一.  相似文献   

13.
In this paper we present densely sampled fumarole temperature data, recorded continuously at a high-temperature fumarole of Mt. Merapi volcano (Indonesia). These temperature time series are correlated with continuous records of rainfall and seismic waveform data collected at the Indonesian–German multi-parameter monitoring network. The correlation analysis of fumarole temperature and precipitation data shows a clear influence of tropical rain events on fumarole temperature. In addition, there is some evidence that rainfall may influence seismicity rates, indicating interaction of meteoric water with the volcanic system. Knowledge about such interactions is important, as lava dome instabilities caused by heavy-precipitation events may result in pyroclastic flows. Apart from the strong external influences on fumarole temperature and seismicity rate, which may conceal smaller signals caused by volcanic degassing processes, the analysis of fumarole temperature and seismic data indicates a statistically significant correlation between a certain type of seismic activity and an increase in fumarole temperature. This certain type of seismic activity consists of a seismic cluster of several high-frequency transients and an ultra-long-period signal (<0.002 Hz), which are best observed using a broadband seismometer deployed at a distance of 600 m from the active lava dome. The corresponding change in fumarole temperature starts a few minutes after the ultra-long-period signal and simultaneously with the high-frequency seismic cluster. The change in fumarole temperature, an increase of 5 °C on average, resembles a smoothed step. Fifty-four occurrences of simultaneous high-frequency seismic cluster, ultra-long period signal and increase of fumarole temperature have been identified in the data set from August 2000 to January 2001. The observed signals appear to correspond to degassing processes in the summit region of Mt. Merapi.  相似文献   

14.
The assumption that volcanic tremor may be generated by deterministic nonlinear source processes is now supported by a number of studies at different volcanoes worldwide that clearly demonstrate the low-dimensional nature of the phenomenon. We applied methods based on the theory of nonlinear dynamics to volcanic tremor events recorded at Sangay volcano, Ecuador in order to obtain more information regarding the physics of their source mechanism. The data were acquired during 21–26 April 1998 and were recorded using a sampling interval of 125 samples s–1 by two broadband seismometers installed near the active vent of the volcano. In a previous study Johnson and Lees (2000) classified the signals into three groups: (1) short duration (<1 min) impulses generated by degassing explosions at the vent; (2) extended degassing chugging events with a duration 2–5 min containing well-defined integer overtones (1–5 Hz) and variable higher frequency content; (3) extended degassing events that contain significant energy above 5 Hz. We selected 12 events from groups 2 and 3 for our analysis that had a duration of at least 90 s and high signal-to-noise ratios. The phase space, which describes the evolution of the behavior of a nonlinear system, was reconstructed using the delay embedding theorem suggested by Takens. The delay time used for the reconstruction was chosen after examining the first zero crossing of the autocorrelation function and the first minimum of the Average Mutual Information (AMI) of the data. In most cases it was found that both methods yielded a delay time of 14–18 samples (0.112–0.144 s) for group 2 and 5 samples (0.04 s) for group 3 events. The sufficient embedding dimension was estimated using the false nearest neighbors method which had a value of 4 for events in group 2 and was in the range 5–7 for events in group 3. Based on these embedding parameters it was possible to calculate the correlation dimension of the resulting attractor, as well as the average divergence rate of nearby orbits given by the largest Lyapunov exponent. Events in group 2 exhibited lower values of both the correlation dimension (1.8–2.6) and largest Lyapunov exponent (0.013–0.022) in comparison with the events in group 3 where the values of these quantities were in the range 2.4–3.5 and 0.029–0.043, respectively. Theoretically, a nonlinear oscillation described by the equation ++g(x)=fcost can generate deterministic signals with characteristics similar to those observed in groups 2 and 3 as the values of the parameters ,,f, are drifting, causing instability of orbits in the phase space.  相似文献   

15.
李旭  范军 《四川地震》1997,(2):28-33
本文利用标定信号的数字记录和模拟记录,参考已有的模拟记录的幅频特性,计算求得了成都遥测台网(CTSN)数字记录系统的仪器响应,其幅频特性曲线的形态与模拟记录的大致相同,而高于10Hz时,随机干扰成分较大,因此处理这套系统的数据时,应尽量选取低于10Hz的信号。  相似文献   

16.
We use the dense Israel Seismic Network (ISN) to discriminate between low magnitude earthquakes and explosions in the Middle East region. This issue is important for CTBT monitoring, especially when considering small nuclear tests which may be conducted under evasive conditions. We explore the performance of efficient discriminants based on spectral features of seismograms using waveforms of 50 earthquakes and 114 quarry and underwater blasts with magnitudes 1.0–2.8, recorded by ISN short-period stations at distances up to 200 km. The single-station spectral ratio of the low and high-frequency seismic energy shows an overlap between explosions and earthquakes. After averaging over a subnet of stations, the resolving power is enhanced and the two classes of events are separated. Different frequency bands were tested; the (1–3 Hz)/(6–8 Hz) ratio provided the best discriminant performance. We also estimated normalized r.m.s. spectral amplitudes in several sequential equal frequency windows within the 1–12 Hz band and applied multiparametric automatic classification procedures (Linear Discrimination Function and Artificial Neural Network) to the amplitudes averaged over a subnetwork. A leave-one-out test showed a low rate of error for the multiparametric procedures. An innovative multi-station discriminant is proposed, based on spectral modulation associated with ripple-firing in quarry blasts and with the bubbling effect in underwater explosions. It utilizes a distinct azimuth-invariant coherency of spectral shapes for different stations in the frequency range (1–12 Hz). The coherency is measured by semblance statistics commonly used in seismic prospecting for phase correlation in the time domain. After modification, the statistics applied to the network spectra provided event separation. A new feature of all the above mentioned procedures is that they are based on smoothed (0.5 Hz window), instrument-corrected FFT spectra of the whole signal; they are robust to the accuracy of onset time estimation and, thus well suited to automatic event identification.  相似文献   

17.
地震数据采集是地震信号数字化必不可少的环节,动态范围是其一个重要的性能指标.实际地震信号的动态范围在160dB以上,而目前普遍使用的24位地震数据采集器动态范围相对较小且在50 Hz采样率时最大只达到135dB,致使24位地震数据采集器在实际使用中对小信号分辨率不够,不能有效提取地震信息;在大地震时又容易使数据采集器出现饱和限幅失真的现象而失去地震监测记录功能.本文针对在地震监测和地震研究中需要具有高分辨率和高动态范围的地震数据采集器这个亟待解决的问题,提出一种采用多通道AD转换器并行分级采集的方法,讨论了通道间失配及其标定.对研制实验样机的测试表明,其动态范围在50Hz采样时可以达到157dB以上,线性度优于0.005%.  相似文献   

18.
Data analyzed in the present work correspond to a 40 days field experiment carried out in Teide Volcano (Canary Islands, Spain) with two short-period small-aperture dense seismic antennas in 1994. The objective of this experiment was to detect, analyze and locate the local seismicity. We analyzed also the background seismic noise to investigate the possible presence of volcanic tremor. From a set of 76 events, we selected 21 of them in base of their good signal-to-noise ratio and their possibility to locate their seismic source by using the seismic antennas. A visual classification based on the S–P time and seismogram shape has permitted to establish three groups of events: local seismicity (S–P time between 3 and 5 s), very local earthquakes (S–P time smaller than 3 s) and artificial explosions. These earthquakes have been located by applying the Zero Lag Cross-Correlation technique and the inverse ray-tracing procedure. Those earthquakes that were recorded simultaneously by both seismic antennas were also located by intersecting both back-azimuths. The analysis of the seismicity has revealed that the amount of seismicity in Teide Volcano is moderate. This seismicity could be distributed in three main areas: inside the Caldera Edifice (below the Teide–Pico Viejo complex), in the eastern border of the Caldera Edifice and offshore of the island. At present, this activity is the only indicator of the volcano dynamics. The analysis of the back-ground seismic noise has revealed that at frequencies lower than 2 Hz, the Oceanic Load signal is predominant over other signals, even over local earthquakes with a magnitude of 2.0. Due to this, although if in the Teide area were present a weak volcanic tremor, or other volcanic signals with predominant peaks below 2 Hz, to observe them would be a very difficult task.  相似文献   

19.
This paper presents a review of the advances in strong motion recording since the early 1930s, based mostly on the experiences in the United States. A particular emphasis is placed on the amplitude and spatial resolution of recording, which both must be ‘adequate’ to capture the nature of strong earthquake ground motion and response of structures. The first strong motion accelerographs had optical recording system, dynamic range of about 50 dB and useful life longer than 30 years. Digital strong motion accelerographs started to become available in the late 1970s. Their dynamic range has been increasing progressively, and at present is about 135 dB. Most models have had useful life shorter than 5–10 years. One benefit from a high dynamic range is early trigger and anticipated ability to compute permanent displacements. Another benefit is higher sensitivity and hence a possibility to record smaller amplitude motions (aftershocks, smaller local earthquakes and distant large earthquakes), which would augment significantly the strong motion databases. The present trend of upgrading existing and adding new stations with high dynamic range accelerographs has lead to deployment of relatively small number of new stations (the new high dynamic range digital instruments are 2–3 times more expensive than the old analog instruments or new digital instruments with dynamic range of 60 dB or less). Consequently, the spatial resolution of recording, both of ground motion and structural response, has increased only slowly during the past 20 years, by at most a factor of two. A major (and necessary) future increase in the spatial resolution of recording will require orders of magnitude larger funding, for purchase of new instruments, their maintenance, and for data retrieval, processing, management and dissemination. This will become possible only with an order of magnitude cheaper and ‘maintenance-free’ strong motion accelerographs. In view of the rapid growth of computer technology this does not seem to be (and should not be) out of our reach.  相似文献   

20.
In a previous study it was reported that whistler- mode signals received at Faraday, Antarctica (65°S,64°W) and Dunedin, New Zealand (46°S, 171°E) with entry regions in Pacific longitudes (typically from the VLF transmitter NLK, Seattle, USA) showed an increase in transmission of wave energy as magnetic activity increased. However, signals with entry regions in Atlantic longitudes (typically from the NSS transmitter, Annapolis, USA) did not appear to show such a relationship. This paper reports the results of a study of the same two longitude ranges but with the opposite transmitter providing additional whistler-mode signal information, with L-values in the range 1.8–2.6. Transmissions from NLK once again indicate a relationship between the transmission of wave energy and magnetic activity even though the signals were propagating in Atlantic longitudes, not Pacific. Any trend in NSS events observed at Dunedin was obscured by a limited range of magnetic activity, and duct exit regions so close to the receiver that small-scale excitation effects appeared to be occurring. However, by combining data from both longitudes, i.e Pacific and Atlantic, and using only ducts with exit regions that were > 500 km from the receiver, NSS events were found to show the same trend as NLK events. No significant longitude-dependent or transmitter-dependent variations in duct efficiency could be detected. Duct efficiency increases by a factor of about 30 with Kp = 2–8 and this result is discussed in terms of changes in wave-particle interactions and duct size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号