首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A pit located near Ballyhorsey, 28 km south of Dublin (eastern Ireland), displays subglacially deposited glaciofluvial sediments passing upwards into proglacial subaqueous ice‐contact fan deposits. The coexistence of these two different depositional environments at the same location will help with differentiation between two very similar and easily confused glacial lithofacies. The lowermost sediments show aggrading subglacial deposits indicating a constrained accommodation space, mainly controlled by the position of an overlying ice roof during ice‐bed decoupling. These sediments are characterized by vertically stacked tills with large lenses of tabular to channelized sorted sediments. The sorted sediments consist of fine‐grained laminated facies, cross‐laminated sand and channelized gravels, and are interpreted as subglaciofluvial sediments deposited within a subglacial de‐coupled space. The subglaciofluvial sequence is characterized by glaciotectonic deformation structures within discrete beds, triggered by fluid overpressure and shear stress during episodes of ice/bed recoupling (clastic dykes and folds). The upper deposits correspond to the deposition of successive hyperpycnal flows in a proximal proglacial lake, forming a thick sedimentary wedge erosively overlying the subglacial deposits. Gravel facies and large‐scale trough bedding sand are observed within this proximal wedge, while normally graded sand beds with developed bedforms are observed further downflow. The building of the prograding ice‐contact subaqueous fan implies an unrestricted accommodation space and is associated with deformation structures related to gravity destabilization during fan spreading (normal faults). This study facilitates the recognition of subglacial/submarginal depositional environments formed, in part, during localized ice/bed coupling episodes in the sedimentary record. The sedimentary sequence exposed in Ballyhorsey permits characterization of the temporal framework of meltwater production during deglaciation, the impact on the subglacial drainage system and the consequences on the Irish Sea Ice Stream flow mechanisms.  相似文献   

2.
A study of proglacial deformation associated with a Late Weichselian glaciomarine sequence was carried out at Melabakkar-Ásbakkar, west Iceland. At this site, coarse-grained sediments have been deformed into compressive structures with no associated push moraine morphology. Two large structures were examined, Structure A which consists of large-scale reverse (and normal) faulting and overturned bedding; and Structure B, which is more complex, with open folding, high-angle reverse faulting, nappe structures and normal faulting. The structures were interpreted as the result of increasing compressive proglacial deformation, followed by subglacial deformation, which destroyed the surface morphology of the push moraine and incorporated some of the sediments into a subglacial diamicton. The results from this study were compared with other examples of proglacial deformation, and it is suggested that at sites where deformation was restricted to the margin, longitudinal strain was lower than at sites where deformation extended out into the foreland. It is also suggested that if deformation increases downglacier, this is indicative of an overall glacial advance, whilst if the deformation decreases downglacier, this is indicative of a glacial retreat.  相似文献   

3.
The Catfish Creek Drift Formation is a significant and extensive lithostratigraphical marker unit in SW Ontario. Here the stratotype, exposed in the Lake Erie bluffs of the Plum Point-Bradtville (Grandview) area south of London, Ontario, Canada, is proposed. It consists of subglacial and proglacial sediments deposited at the beginning of the Nissouri Phase of the Wisconsinan glaciation. In the 2.5-km-long stratotype section, the Catfish Creek Drift consists of 9 members. Five of them, the Dunwich and Grandview I-IV members, mainly consist of till, with minor components of stratified drift. The Dunwich till was deposited by the Huron-Georgian Bay lobe, but the Grandview I-IV tills by the Erie lobe. The Zettler Farm Member consists of co-lobal till in the central part of the section and of a proglacial waterlain flow diamicton and a subglacial undermelt diamicton in the SW part. Three members consist entirely of stratified drift; the glaciolacustrine silty and clayey Waite Farm Member, the ice-marginal deltaic Oosprink Farm Member and the Boy Scout Camp Member - deposited by meltwater streams in subglacial channels. The sequence of interbedded till and stratified drift represents the oscillating advance of the Laurentide Ice Sheet in the Lake Erie basin.  相似文献   

4.
At the Dänischer Wohld Peninsula coastal sections (North West Germany), subglacial deformation was found at three scales. At the smallest scale, features typical of deforming bed tills were found, i.e. small boudins, tectonic laminations and low fabric strength till. At an intermediate scale, large lenses of glaciolacustrine sediments were found within subglacially deformed till. At the largest scale, there were large (over 5 m high) subglacial folds. We suggest that these styles of sedimentation/deformation were associated with a series of readvances during overall glacial retreat: subglacial deformation occurred during each advance and glaciolacus trine sedimentation occurred during each retreat. This led to glaciolacustrine sediments and deforming bed tills being folded together during subsequent readvances. Where the rheology was relatively weak, the lacustrine sediments were totally incorporated into the diamicton and lost their previous identity. However, where the glaciolacustrine sediments were relatively strong, they survived. We suggest that this style of deformation is typical of the conditions just upglacier from the ice margin and is associated with a relatively thick deforming layer and a high input of subglacial sediment. We conclude that the evidence found at this site provides further indications that the southern margins of the Fenno-Scandinavian ice sheet were coupled with the glacier bed and underwent deforming bed conditions.  相似文献   

5.
The Fiskarheden quarry, situated in NW Dalarna, central Sweden, reveals thick coarse‐grained sediments of Scott type facies association representing a sandur deposited in an ice‐proximal proglacial environment. Optically Stimulated Luminescence (OSL) dating of the sandur sediments suggests a pre‐Last Glacial Maximum (LGM) age. Most acquired ages are pre‐Saalian (>200 ka) and we regard each of these ages to represent non/poorly bleached sediment except for one small‐aliquot OSL age of 98±6 ka. This age comes from the top surface of an arguably well‐bleached sand bed deposited on the lee‐side of a braid‐bar, putting the sandur build‐up into the Early Weichselian. Large‐scale glaciotectonic structures show an imbricate thrust fan involving both ductile and brittle deformation. The deformation was from the WNW, which largely coincides with the formative trend of the predominating streamlined terrain and Rogen moraine tracts surrounding Fiskarheden. It is suggested that the deformation of the sandur sediments took place when the advancing glacier approached and pushed its own proglacial outwash sediment, during an ice‐marginal oscillation either at the inception of one of the Early Weichselian glaciations in the area, or during a general ice retreat amid a deglacial phase. The Fiskarheden sandur deposits are covered by a subglacial traction till deposited from the NE/NNE. This direction corresponds with younger streamlined terrain flowsets cross‐cutting the older NNW–SSE system and probably represents deglaciation in the area following the LGM. This study will add to the understanding of the formation and deformation of Pleistocene sandur successions and their relationship to past ice‐sheet behaviour.  相似文献   

6.
Sediment from the Attawapiskat area near James Bay, Northern Ontario was sampled for micromorphological analyses. The sediment is a glacial diamicton (till) of subglacial origin. The till contains entrained and scavenged sediments of proglacial and/or subglacial glaciofluvial/glaciolacustrine origin from a subglacial deforming layer that was emplaced due to both stress reduction and/or porewater dissipation. Evidence of porewater escape, clay translocation and other microstructures all point to emplacement under active subglacial bed deformation. The limited number of edge to edge (ee) grain crushing events, however, point to lower stress levels than might anticipated under a thin fast ice lobe of the James Bay during the Middle Pliocene. Microstructures of Pleistocene tills were quantitatively compared with the Attawapiskat till and the limited number of ee events at Attawapiskat further highlighted that grain to grain contact was curtailed possibly due to high till porosity, high porewater pressures and low strain rates or alternatively due to a high clay matrix component reducing grain crushing contact events. It is suggested that this Middle Pliocene till may be indicative of sediments emplaced under ice lobe surging conditions or fast ice stream subglacial environments. This proposal has significant implications for the glaciodynamics of this part of the Middle Pliocene James Bay lobe. This research highlights a crucial link between subglacial conditions, till microstructural analyses and glaciodynamics.  相似文献   

7.
The geomorphic, stratigraphic and sedimentological characteristics of glaciolacustrine sediments in the metropolitan Detroit, Michigan area were studied to determine environments of deposition and make paleogeographic reconstructions. Nine lithofacies were identified and paleoenvironments interpreted based on their morphostratigraphic relationships with relict landforms. The sediments studied are found southeast of the Defiance and Birmingham moraines lying beneath a lowland characterized by a low morainal swell (Detroit moraine) and a series of lacustrine terraces that descend progressively in elevation southeastward. The glaciolacustrine sediments were deposited approximately 14.3–12.4 kA BP during the Port Bruce and Port Huron glacial phases of late Wisconsinan time, and are related to proglacial paleolakes Maumee, Arkona, Whittlesey, Warren, Wayne, Grassmere, Lundy and Rouge. The glaciolacustrine section is typically 2–4 m thick and consists of a basal unit of wavy-bedded clayey diamicton overlain by a surficial deposit of stratified and cross-stratified sand and gravel. The basal unit is comprised of subaqueous debris flow deposits that accumulated as subaqueous moraine in paleolake Maumee along the retreating front of the Huron lobe. The surficial deposits of sand and gravel were formed by traction, resulting from lacustrine wave activity and fluvial processes, in lakebed plain, beach ridge and deltaic depositional settings. Much of the lake-margin sand and gravel was derived from clayey diamicton by lacustrine wave action and winnowing, and that associated with paleolakes of the Port Huron phase is largely reworked Port Bruce sediment. Paleogeographic reconstructions show that the Defiance, Birmingham and Detroit moraines, Defiance and Rochester channels, and the Rochester delta, were deposited penecontemporaneously as paleolake Maumee expanded northward across the map area. A unique type of wavy bedform is characteristic of clayey diamicton deposited by subaqueous mass flow in the study area that is useful for differentiating sediment: 1) deposited by mass flow in subaqueous vs. subaerial settings, and 2) deposited by subaqueous mass flow vs. basal till. These bedforms are a useful tool for identifying subglacial meltwater deposits, and facilitate the mapping and correlation of glacial sediments based on till sheets. The map area provides a continental record of ice sheet dynamics along the southern margin of the Laurentide ice sheet during Heinrich event H-1. The record reveals rapid glacial retreat (~ 0.8 km/yr) contemporaneous with the discharge of a large volume of meltwater. Evidence in the study area for subglacial meltwater is problematic, but indications that periglacial conditions persisted in the map area until ~ 12.7 kA BP, and extended for 200 km or more south of the ice front suggest that a frozen substrate may have contributed to instability of the LIS.  相似文献   

8.
Lake Zürich occupies a glacially overdeepened perialpine trough in the northern Middlelands of Switzerland. A total of 154.4 m of Quaternary sediments and 47.3 m of Tertiary Molasse bedrock has been cored from the deepest part of the lake, some 10 km south of the city of Zürich. Some 16.8 m of gravels and sands directly overlying the bedrock include basal till and probably earliest subglacial fluvial and lacustrine deposits. These are overlain by 98.6 m of fine-grained, glacial-aged sediments comprising completely deformed proglacial and/or subglacial lacustrine muds, separated by four basal mud tills. The lack of interglacial sediments, fossils, and other datable material, and the presence of severe sediment deformation and unknown amounts of erosion prevent the establishment of an exact chronostratigraphy for sediments older than the upper mud till. Above it some 8.6 m of lacustrine muds were deposited, folded, faulted, and tilted during the final opening of the lake at about 17,500–17,000 years ago. Superimposed are 30.4 m of final Würm and post-glacial sediments comprising (from oldest): cyclic proglacial mud, thick-bedded and laminated mud, a complex transition zone, laminated carbonate, laminated marl, and diatom-calcite varves. These sediments reflect changing catchment and lacustrine conditions including: glacial proximity, catchment stability, lake inflow characteristics, thermal structure, chemistry, and bed stability. Average sedimentation rates ranged from 11 cm yr−1 immediately after glacier withdrawal, to as low as 0.4 mm yr−1 as the environment stabilized. The lack of coarse outwash deposits separating the fine-grained glaciolacustrine sediments from a corresponding underlying basal till suggests that deglaciation of the deep northern basin of Lake Zürich was by stagnation-zone retreat rather than by retreat of an active ice-front.  相似文献   

9.
Subglacial and subaqueous sediments deposited near the margin of a Late-glacial ice-dammed lake near Achnasheen, northern Scotland, are described and interpreted. The subglacial sediments consist of deformation tills and glacitectonites derived from pre-existing glaciolacustrine deposits, and the subaqueous sediments consist of ice-proximal outwash and sediment flow deposits, and distal turbidites. Sediment was delivered from the glacier to the lake by two main processes: (1) subglacial till deformation, which fed debris flows at the grounding line; and (2) meltwater transport, which fed sediment-gravity flows on prograding outwash fans. Beyond the ice-marginal environment, deposition was from turbidity currents, ice-rafting and settling of suspended sediments. The exposures support the conclusion that the presence of a subglacial deforming layer can exert an important influence on sedimentation at the grounding lines of calving glaciers.  相似文献   

10.
《Sedimentary Geology》2007,193(1-4):21-31
Three basal-till facies from the Lower Vistula valley were examined. The lowest facies, a sandy diamicton with characteristic sand inclusions forming detached and attenuated folds, is overlain by a bedded till characterized by alternating diamictons and sorted sediment layers. The uppermost till facies is a homogeneous diamicton.The three till facies must have been formed by complex subglacial sedimentary processes during the first Late Weichselian ice advance. The lowest till facies is interpreted as a deformation till, and accumulated during the initial stage of the ice advance. The middle facies represents a stagnation phase during the initial ice advance, and was deposited during recurrent periods of subglacial melt-out followed by meltwater sedimentation. The upper till facies was deposited by direct subglacial melt-out during a stage of stagnant ice.It is suggested that bed deformation and temporarily enhanced basal sliding have been caused by ice streaming at the time of the ice-sheet advance and just before its stagnation.  相似文献   

11.
Ó Cofaigh, C., Evans, D. J. A. & Hiemstra, J. F. 2010: Formation of a stratified subglacial ‘till’ assemblage by ice‐marginal thrusting and glacier overriding. Boreas, 10.1111/j.1502‐3885.2010.00177.x. ISSN 0300‐9483. A thick sequence of glaciotectonically stacked till and outwash is preserved in a coastal embayment at Feohanagh, southwest Ireland. The sequence contains a variety of diamicton lithofacies, including laminated, stratified and massive components, but stratified diamictons dominate. Stratification/lamination is imparted by the presence of numerous closely spaced subhorizontal and anastomosing partings, which give a fissile appearance to the diamictons. Many partings are the result of sandy or thin gravelly layers within the diamictons. Some diamictons contain interbeds and lenses of sand, mud and gravel, which still preserve the original stratification. The sequence at Feohanagh is the product of a two‐stage depositional process in which initial glaciolacustrine sedimentation in an ice‐dammed lake was followed by glaciotectonic thrusting and overriding, during which the lake sediments were reworked and variably deformed. Similar late Quaternary sequences of glaciotectonically stacked stratified sediments and till have been described from around the coastal margins of Ireland and Britain, where they constitute glaciotectonite–subglacial traction till continuums rather than true lodgement tills as traditionally implied. Thick stratified diamicton assemblages are likely to occur in areas where steep topography provides pinning points for the glacier margin to stabilize and deliver large volumes of sediment into a glaciolacustrine or glaciomarine setting before proglacial and subglacial reworking of the sediment pile. The resulting geological–climatic unit, often defined as ‘till’, will contain a large amount of stratified and variably deformed material (laminated and stratified diamictons will be common), including intact sediment rafts, reflecting low strain rates and short sediment transport distances.  相似文献   

12.
Subglacial to proglacial sediment transition in a shallow ice-contact lake   总被引:1,自引:0,他引:1  
A complete subglacial to glacial-lacustrine facies transition is described from a temporary exposure in the Lake Michigan bluffs of southeastern Wisconsin. This transition occurs where a Late Woodfordian terminal moraine intersects the bluff line and grades from basal meltout till to chaotic diamicton to rhythmites over an abrupt 90 m lateral distance. The boundary of the subglacial meltout deposits is marked by an abrupt increase in pebbles and cobbles, which cluster at specific horizons, producing an incipient stratification. Thereafter, the diamicton develops contorted flow structures with progressive segregation into coarse and fine-grained fractions, ultimately into well-stratified rhythmites.  相似文献   

13.
JOHN MENZIES 《Sedimentology》1990,37(3):481-493
Examination of sediments along the north shore of Lake Erie at Mohawk Bay reveals a relationship between the formation of intensely brecciated diamictons and the presence of sand-block intraclasts. It is postulated that the sand blocks were subglacially deposited within a meltwater environment, and later frozen prior to being eroded and transported within a mobile subglacial debris layer. On immobilization the frozen sand blocks, encased within the diamicton, acted as a heat sink creating cryostatic stresses within the surrounding diamicton as a result of the advance of a frost front and related frozen ‘fringe’. The effect of these anisotropic stresses resulted in porewater migration to the frost front. Subsequent development of intense brecciation occurred as aureoles around the sand intraclasts due to localized high tensile stresses causing fracturing within the fine-grained matrix of the diamicton.  相似文献   

14.
Ice sheets that advance upvalley, against the regional gradient, commonly block drainage and result in ice‐dammed proglacial lakes along their margins during advance and retreat phases. Ice‐dammed glacial lakes described in regional depositional models, in which ice blocks a major lake outlet, are often confined to basins in which the glacial lake palaeogeographical position generally remains semi‐stable (e.g. Great Lakes basins). However, in places where ice retreats downvalley, blocking regional drainage, the palaeogeographical position and lake level of glacial lakes evolve temporally in response to the position of the ice margin (referred to here as ‘multi‐stage’ lakes). In order to understand the sedimentary record of multi‐stage lakes, sediments were examined in 14 cored boreholes in the Peace and Wabasca valleys in north‐central Alberta, Canada. Three facies associations (FAI–III) were identified from core, and record Middle Wisconsinan ice‐distal to ice‐proximal glaciolacustrine (FAI) sediments deposited during ice advance, Late Wisconsinan subglacial and ice‐marginal sediments (FAII) deposited during ice‐occupation, and glaciolacustrine sediments (FAIII) that record ice retreat from the study area. Modelling of the lateral extent of FAs using water wells and gamma‐ray logs, combined with interpreted outlets and mapped moraines based on LiDAR imagery, facilitated palaeogeographical reconstruction of lakes and the identification of four major retreat‐phase lake stages. These lake reconstructions, together with the vertical succession of FAs, are used to develop a depositional model for ice‐dammed lakes during a cycle of glacial advance and retreat. This depositional model may be applied in other areas where meltwater was impounded by glacial ice advancing up the regional gradient, in order to understand the complex interaction between depositional processes, ice‐marginal position, and supply of meltwater and sediment in the lake basin. In particular, this model could be applied to decipher the genetic origin of diamicts previously interpreted to record strictly subglacial deposition or multiple re‐advances.  相似文献   

15.
The landscape of northeast Norfolk is dominated by a high (>50 m) ridge which has been interpreted as an end moraine (Cromer Ridge). This feature is truncated by coastal erosion at Trimingham. Evidence of large- and small-scale compressive styles of deformation is found throughout the sequence, except at the very top, where late Anglian/early Hoxnian lake sediments are found within an undeformed kettle hole. The deformation consists of open folds (including chevron folds) and listric thrust faults. It is suggested that these are the result of a single compressive event, which was caused by proglacial glaciotectonic deformation. It is inferred that this deformation is due to a combination of frontal pushing and compressive stresses transmitted through a subglacial deforming wedge. It is also shown that strain increases towards the ice sheet margin, as reflected by the deformational styles (from open folding up-glacier to listric thrust faulting down-glacier). The Cromer Ridge is shown to be a push moraine complex related to an actively retreating ice margin.  相似文献   

16.
JOHN SHAW 《Sedimentology》1987,34(1):103-116
Glacigenic sediments exposed in pits around Villeneuve, near Edmonton, Alberta, are subdivided into facies based on grain size, sedimentary structure, glacially-induced deformation and faulting, and groove marks. Two diamicton facies are recognised, one of which is interpreted as a primary till, deposited directly from glacier ice, and the other as a product of mass-movement. The diamicton facies are closely associated with current bedded facies interpreted as fluvioglacial deposits. The stratigraphic sedimentological and tectonic aspects of these fluvial deposits suggest subglacial deposition in channels and cavities. At any one place the glacier appears to have alternated between being attached to the bed, causing thrusting and sole marking, and being separated from the bed by a cavity in which fluvial and mass-movement sediments accumulated. The net result is a highly complex and laterally variable stratigraphy produced by a single glacial advance. The correct interpretation of such sequences is essential if lithostratigraphy is to be used to establish glacial history. In addition, the interpretations presented here have implications regarding the formation of soft zones in ‘till’. They indicate that the soft zones are beds of sorted sediment redeposited by mass-movement.  相似文献   

17.
Four major sedimentary facies are present in coarse-grained, ice-marginal deposits from central East Jylland, Denmark. Facies A and B are matrix-supported gravels deposited by subaerial sediment gravity flows as mudflows (facies A) and debris flows (facies B). Facies C consists of clast-supported, water-laid gravels and facies D are cross-bedded sand and granules. The facies can be grouped into three facies associations related to the supraglacial and proglacial environments: (1) the flow-till association is made up of alternating beds of remobilized glacial mixton (facies A) and well-sorted cross-bedded sand (facies D); (2) the outwash apron association resembles the sediments of alluvial fans in containing coarse-grained debris-flow deposits (facies B), water-laid gravel deposited by sheet floods (facies C) and cross-bedded sand and granules (facies D) from braided distributaries; (3) the valley sandur association comprises water-laid gravel (facies C) interpreted as sheet bars and longitudinal bars interbedded with cross-bedded sand and granules (facies D) deposited in channels between bars in a braided environment.The general coarsening-upward trend of the sedimentary sequences caused by the transition of bars and channel-dominated facies to debris-flow-dominated facies indicate an increasing proximality of the outwash deposits, picturing the advance and still stand of a large continental lowland ice-sheet. The depositional properties suggest that sedimentation was caused by melting along a relatively steep, active glacier margin as a first step towards the final vanishing of the Late Weichselian icesheet (the East Jylland ice) covering eastern Denmark.  相似文献   

18.
Glaciofluvial De Geer moraines have rarely been described in detail in the literature. This study presents a model for the genesis of moraines of this type in the Chapais area, Québec. The model is based mainly on facies and deformatin structures analysis, and geomorphological data. Well-stratified glaciofluvial material is commonly found in the core of the moraines, whereas till or glacial diamicton may be present as surficial cover on their proximal side or as injected lenses in the sorted sediments. The paleocurrents are systematically directd downglacier. The moraines were built up in subglacial crevasses in areas where meltwater was channelized. Water flowed under pressure from small upglacier cavities, carrying a load of coars-grained material When flowing water entered crevasses already occupied by water, flow sparation occurred, reducing the capacity of the flow to carry the particles, and avalanching glaciofluvial material on the leeside of the piled sediments. The occurrence, in these sediments, of glaciotectonic deformation structures such as overturned to recumbent folds and thrust faults is evidence that the glacier was still active to some degree during and after the sedimentation phase.  相似文献   

19.
This paper describes recent proglacial lacustrine sediments exposed by the drainage of a small (probably never more than 0·03 km2) ice-dammed lake basin at Leirbreen, central Jotunheimen, Norway. The dominant facies include ripple-laminated, massive and horizontally-stratified sands, massive and horizontally-laminated silts, and irregularly-laminated fine sands and silts. The major control on lake circulation and the nature and distribution of these facies was an underflow driven by a subglacial meltwater stream which formed the major lake input. Although much of the sedimentary sequence indicates a pulsatory input, the proximal character of this small lake prevented the development of classic varved silts. Compressional deformation of shoreline sediments was due to winter lake ice push. Other deformational processes included the grounding of icebergs, water escape and syn-sedimentary downslope collapse. Observations from an adjacent small ice-marginal lake at Leirbreen provide support for several of the inferences drawn from the sediments of the former ice-dammed lake.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号