首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Abstract

The accuracy of six combined methods formed by three commonly-used soil hydraulic functions and two methods to determine soil hydraulic parameters based on a soil hydraulic parameter look-up table and soil pedotransfer functions was examined for simulating soil moisture. A novel data analysis and modelling approach was used that eliminated the effects of evapotranspiration so that specific sources of error among the six combined methods could be identified and quantified. By comparing simulated and observed soil moisture at six sites of the USDA Soil Climate Analysis Network, we identified the optimal soil hydraulic functions and parameters for predicting soil moisture. Through sensitivity tests, we also showed that adjusting only the soil saturated hydraulic conductivity, Ks , is insufficient for representing important effects of macropores on soil hydraulic conductivity. Our analysis illustrates that, in general, soil hydraulic conductivity is less sensitive to Ks than to the soil pore-size distribution parameter.

Editor D. Koutsoyiannis; Associate editor D. Hughes

Citation Pan, F., McKane, R.B. and Stieglitz, M., 2012. Identification of optimal soil hydraulic functions and parameters for predicting soil moisture. Hydrological Sciences Journal, 57 (4), 723–737.  相似文献   

3.
Abstract

Mapping soil hydraulic parameters with traditional scaling methods that use laboratory-determined hydraulic characteristics (the LAB method) is not always feasible as it involves expensive, time-consuming and sophisticated measurements on soil samples collected in several locations of the study area. An alternative scaling method (the AP method) has been recently proposed to indirectly retrieve the soil hydraulic properties following the Arya-Paris physico-empirical pedotransfer function, which makes use of particle-size distribution and bulk density values. In this synthetic study we verify the performance of the AP method from a functional perspective, by evaluating the differences in the simulated soil water budget through a Monte Carlo approach. Notwithstanding that the AP method can provide soil hydraulic property patterns with faster experimental procedures and minor costs, we observe significant bias in the predicted spatially-averaged soil water budget due to a poor parametric calibration of the AP method and an imprecise identification of the spatial correlation structure of the AP-estimated scaling factors.

Citation Nasta, P., Romano, N., and Chirico, G.B., 2013. Functional evaluation of a simplified scaling method for assessing the spatial variability of soil hydraulic properties at the hillslope scale. Hydrological Sciences Journal, 58 (5), 1059–1071.  相似文献   

4.
The extrapolation of results from field trials to larger areas of land for purposes of regional impact assessment is an important issue in geomorphology, particularly for landform properties that show high stochastic variability in space and time, such as shallow landslide erosion. It is shown in this study, that by identifying the main driver for spatial variability in shallow landslide erosion at field scales, namely slope angle, it is possible to develop a set of generic functions for assessing the impact of landslides on selected soil properties at larger spatial scales and over longer time periods. Research was conducted within an area of pastoral soft‐rock Tertiary hill country in the North Island of New Zealand that is subject to infrequent high intensity rainfall events, producing numerous landslides, most of which are smaller than several hundred square metres in size and remove soil to shallow depths. All landslides were mapped within a 0·6 km2 area and registered to a high resolution (2 m) slope map to show that few landslides occur on slopes < 20° and 95% were on slopes > 24°. The areal density of landslides from all historical events showed an approximately linear increase with slope above 24°. Integrating landslide densities with soil recovery data demonstrates that the average value of a soil property fluctuates in a ‘saw‐tooth’ fashion through time with the overall shape of the curve controlled by the frequency of landslide inducing storm events and recovery rate of the soil property between events. Despite such fluctuations, there are gradual declines of 7·5% in average total carbon content of topsoil and 9·5% in average soil depth to bedrock, since the time of forest clearance. Results have application to large‐scale sediment budget and water quality models and to the New Zealand Soil Carbon Monitoring System (CMS). Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
The levels of variance associated with measuring the infiltration process and modelling it by means of a regression model are compared to see which approach yields the best results in terms of effort and accuracy. A nested sampling scheme has been used in the three major physiographic units of central Guyana, South America: ‘White Sands’; (Haplic and Ferralic Arenosols), ‘Brown Sands’ (Haplic Ferrasols) and ‘Laterite’ (Xanthic and Dystric Leptosols). Cluster analysis yields three sample groups that reflect the sharp landscape boundaries between the units. Multiple regression analysis shows that each unit has a different combination of soil properties that explains the variance in final infiltration rate and sorptivity satisfactorily. Nested analysis of variance indicates that clear spatial patterns with distances of variation of several hundred metres exist for final infiltration rate in White Sands and Laterite. Infiltration rate in Brown Sands and sorptivity in all units have large short-distance variabilities and high ‘noise’ levels. The correlated independent variables behave accordingly. For the majority of the soil properties, sampling at distances of 100 to 200 m results in variance levels of more than 80 per cent of the total variance, which indicates that only a detailed investigation can assess spatial variation in soil hydrological behaviour. The use of simple soil properties to predict infiltration is only possible in a very general sense and with the acceptance of high variance levels.  相似文献   

6.
H.K. McMillan 《水文研究》2012,26(18):2838-2844
This paper uses soil moisture data from 17 recording sensors within the 50 km2 Mahurangi catchment in New Zealand to determine how measured variability in soil moisture affects simulations of drainage in a typical lumped conceptual model. The data show that variability smoothes the simulated field capacity threshold such that a proportion of the catchment contributes to drainage even when mean soil moisture content is well below field capacity. Spatial variability in soil moisture controls by extension the catchment drainage behaviour: the resulting smoothed shape of the catchment‐scale drainage function is demonstrated and is also determined theoretically under simplifying assumptions. The smoothing effect increases the total simulated discharge by 130%. The analysis explains previous findings that different drainage equations are required at point scale versus catchment scale in the Mahurangi. The spatial variability and hence the emergent drainage behaviour are found to vary with season, suggesting that time‐varying parameters would be warranted to simulate drainage. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
Understanding the dynamics of spatial and temporal variability of soil moisture at the regional scale and daily interval, respectively, has important implications for remote sensing calibration and validation missions as well as environmental modelling applications. The spatial and temporal variability of soil moisture was investigated in an agriculturally dominated region using an in‐situ soil moisture network located in central Saskatchewan, Canada. The study site evaluated three depths (5, 20, 50 cm) through 139 days producing a high spatial and temporal resolution data set, which were analysed using statistical and geostatistical means. Processes affecting standard deviation at the 5‐cm depth were different from the 20‐cm and 50‐cm depths. Deeper soil measurements were well correlated through the field season. Further analysis demonstrated that lag time to maximum correlation between soil depths increased through the field season. Temporal autocorrelation was approximately twice as long at depth compared to surface soil moisture as measured by the e‐folding frequency. Spatial correlation was highest under wet conditions caused by uniform rainfall events with low coefficient of variation. Overall soil moisture spatial and temporal variability was explained well by rainfall events and antecedent soil moisture conditions throughout the Kenaston soil moisture network. It is expected that the results of this study will support future remote sensing calibration and validation missions, data assimilation, as well as hydrologic model parameterization for use in agricultural regions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
The knowledge of soil moisture spatio-temporal variability is highly relevant for water resources management. This paper reports an analysis of the spatial–temporal variability of soil moisture data for a small to medium-scale soil-sensors network in a coastal wetland of southwestern Spain. Measurements were taken from five sites located in the Doñana National Park over the time-period of one hydrological year from September 2017 to September 2018. The total area of the soil-sensors network shows an extension about 25 × 3 km. Soil moisture data was separated into time invariant (the temporal mean of the whole period at each site) and time-variant terms (the deviations of soil moisture from the mean, or anomalies). The time-invariant component was generally the main contributor to the total spatial variance of soil moisture and it was mostly controlled by the groundwater levels in the area. Nevertheless, the time variant terms have a huge effect on soil moisture variability in very dry states. Characteristic convex time-dependent patterns for this field site were found between spatially averaged soil moisture and its variability. This information could be used for the up and downscaling of soil moisture from satellite data. Those patterns of relation between spatial mean and variability of soil moisture were only affected by heavy rainfalls giving rise to hysteretic behaviour. This study shows that even though groundwater level is a time-variant variable, it significantly affects soil moisture's time-variant but also time-invariant terms due to the different average groundwater level depths at the different sites.  相似文献   

9.
One of the important methods used to evaluate the effectiveness of soil erosion models is to compare the predictions given by the model to measured data from soil loss collected on plots taken under natural rainfall conditions. While it is recognized that plot data contain natural variability, this factor is not quantitatively considered during such evaluations because our knowledge of natural variability between plots which have the same treatments is very limited. The goal of this study was to analyse sufficient replicated plot data and present methodology to allow the model evaluator to take natural, within‐treatment variability of erosion plots into account when models are tested. A large amount of data from pairs of replicated erosion plots was evaluated and quantified. The basis for the evaluation method presented is that if the difference between the model prediction and a measured plot data value lies within the population of differences between pairs of measured values, then the prediction is considered ‘acceptable’. A model ‘effectiveness’ coefficient was defined for studies undertaken on large numbers of prediction versus measured data comparisons. This method provides a quantitative criterion for taking into account natural variability and uncertainty in measured erosion plot data when those data are used to evaluate erosion models. Published in 2000 by John Wiley & Sons, Ltd.  相似文献   

10.
Soil moisture state and variability control many hydrological and ecological processes as well as exchanges of energy and water between the land surface and the atmosphere. However, its state and variability are poorly understood at spatial scales larger than the fields (i.e. 1 km2) as well as the ability to extrapolate field scale to larger spatial scales. This study investigates soil moisture profiles, their spatial organization, and physical drivers of variability within the Walnut Creek watershed, Iowa, during Soil Moisture Experiment 2005 and relates the watershed scale findings to previous field‐scale results. For all depths, the watershed soil moisture variability was negatively correlated with the watershed mean soil moisture and followed an exponential relationship that was nearly identical to that for field scales. This relationship differed during drying and wetting. While the overall time stability characteristics were improved with observation depth, the relatively wet and dry locations were consistent for all depths. The most time stable locations, capturing the mean soil moisture of the watershed within ± 0·9% volumetric soil moisture, were typically found on hill slopes regardless of vegetation type. These mild slope locations consistently preserve the time stability patterns from field to watershed scales. Soil properties also appear to impact stability but the findings are sensitive to local variations that may not be well defined by existing soil maps. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
Our understanding of hydraulic properties of peat soils is limited compared with that of mineral substrates. In this study, we aimed to deduce possible alterations of hydraulic properties of peat soils following degradation resulting from peat drainage and aeration. A data set of peat hydraulic properties (188 soil water retention curves [SWRCs], 71 unsaturated hydraulic conductivity curves [UHCs], and 256 saturated hydraulic conductivity [Ks] values) was assembled from the literature; the obtained data originated from peat samples with an organic matter (OM) content ranging from 23 to 97 wt% (weight percent; and according variation in bulk density) representing various degrees of peat degradation. The Mualem‐van Genuchten model was employed to describe the SWRCs and UHCs. The results show that the hydraulic parameters of peat soils vary over a wide range confirming the pronounced diversity of peat. Peat decomposition significantly modifies all hydraulic parameters. A bulk density of approximately 0.2 g cm?3 was identified as a critical threshold point; above and below this value, macroporosity and hydraulic parameters follow different functions with bulk density. Pedotransfer functions based on physical peat properties (e.g., bulk density and soil depth) separately computed for bog and fen peat have significantly lower mean square errors than functions obtained from the complete data set, which indicates that not only the status of peat decomposition but also the peat‐forming plants have a large effect on hydraulic properties. The SWRCs of samples with a bulk density of less than 0.2 g cm?3 could be grouped into two to five classes for each peat type (botanical composition). The remaining SWRCs originating from samples with a bulk density of larger than 0.2 g cm?3 could be classified into one group. The Mualem‐van Genuchten parameter values of α can be used to estimate Ks if no Ks data are available. In conclusion, the derived pedotransfer functions provide a solid instrument to derive hydraulic parameter values from easily measurable quantities; however, additional research is required to reduce uncertainty.  相似文献   

12.
《Journal of Hydrology》2002,255(1-4):90-106
A detailed uncertainty analysis of three-component mixing models based on the Haute–Mentue watershed (Switzerland) is presented. Two types of uncertainty are distinguished: the ‘model uncertainty’, which is affected by model assumptions, and the ‘statistical uncertainty’, which is due to temporal and spatial variability of chemical tracer concentrations of components. The statistical uncertainty is studied using a Monte Carlo procedure. The model uncertainty is investigated by the comparison of four different mixing models all based on the same tracers but considering for each component alternative hypotheses about their concentration and their spatio-temporal variability. This analysis indicates that despite the uncertainty, the flow sources, which generate the stream flow are clearly identified at the catchments scale by the application of the mixing model. However, the precision and the coherence of hydrograph separations can be improved by taking into account any available information about the temporal and spatial variability of component chemical concentrations.  相似文献   

13.
Soil hydraulic parameter values for large‐scale modelling cannot be obtained by direct methods. Pedotransfer functions (PTFs) that relate soil hydraulic properties (SHPs) to generally available soil texture data may provide an alternative. A considerable number of PTF models has been developed, the application of three recent PTFs is evaluated. As a first step sets of SHPs derived from the PTFs are compared with measured sets of SHPs for three sites. No good agreement was found statistically between measured and PTF results or between PTF results. As a second step and from a practical point of view results for three hydrologically functional variables were compared and evaluated. The three selected functional variables are saturated hydraulic conductivity, k0, in relation to infiltration excess runoff, available soil water amounts for evapotranspiration and water table depth for a specified upward flux or capillary rise. Derived k0 distributions from PTFs show substantially less variance than from the measured data at all three sites. This can have a considerable impact on infiltration excess runoff, depending on the actual rainfall regime. Simulated available soil water amounts for evapotranspiration for some combinations of PTFs and sites are close to those obtained for measured SHPs, however, no consistency in results can be detected. Water table depths for specified upward flux densities using PTF derived SHPs are generally deeper than those based on measured SHPs and means a potentially higher water availability. Overall, differences in capillary rise among the selected PTFs and between measured and PTF based results are again inconsistent and show no clear relationship with soil texture. Finally, as a third step, effective SHPs were calculated by using spatially averaged texture as PTF input representing areal average behaviour. For these effective SHPs the calculated effective values for the three selected functional variables appear to be close to the areally averaged values obtained with step 2. The selected functional variables thus appear to depend linearly on the PTFs over the range for which the data are representative. This suggests that for our specific PTFs areal mean or effective values for the three functional variables can be obtained fairly accurately from a single measurement of a bulk collection of soil samples as input. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

14.
Hydrologic models have increasingly been used in forest hydrology to overcome the limitations of paired watershed experiments, where vegetative recovery and natural variability obscure the inferences and conclusions that can be drawn from such studies. Models are also plagued by uncertainty, however, and parameter equifinality is a common concern. Physically‐based, spatially‐distributed hydrologic models must therefore be tested with high‐quality experimental data describing a multitude of concurrent internal catchment processes under a range of hydrologic regimes. This study takes a novel approach by not only examining the ability of a pre‐calibrated model to realistically simulate watershed outlet flows over a four year period, but a multitude of spatially‐extensive, internal catchment process observations not previously evaluated, including: continuous groundwater dynamics, instantaneous stream and road network flows, and accumulation and melt period spatial snow distributions. Many hydrologic model evaluations are only on the comparison of predicted and observed discharge at a catchment outlet and remain in the ‘infant stage’ in terms of model testing. This study, on the other hand, tests the internal spatial predictions of a distributed model with a range of field observations over a wide range of hydroclimatic conditions. Nash‐Sutcliffe model efficiency was improved over prior evaluations due to continuing efforts in improving the quality of meteorological data collection. Road and stream network flows were generally well simulated for a range of hydrologic conditions, and snowpack spatial distributions were well simulated for one of two years examined. The spatial variability of groundwater dynamics was effectively simulated, except at locations where strong stream–groundwater interactions exist. Model simulations overall were quite successful in realistically simulating the spatiotemporal variability of internal catchment processes in the watershed, but the premature onset of simulated snowmelt for one of the simulation years has prompted further work in model development. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
Soil moisture has a fundamental influence on the processes and functions of tundra ecosystems. Yet, the local dynamics of soil moisture are often ignored, due to the lack of fine resolution, spatially extensive data. In this study, we modelled soil moisture with two mechanistic models, SpaFHy (a catchment-scale hydrological model) and JSBACH (a global land surface model), and examined the results in comparison with extensive growing-season field measurements over a mountain tundra area in northwestern Finland. Our results show that soil moisture varies considerably in the study area and this variation creates a mosaic of moisture conditions, ranging from dry ridges (growing season average 12 VWC%, Volumetric Water Content) to water-logged mires (65 VWC%). The models, particularly SpaFHy, simulated temporal soil moisture dynamics reasonably well in parts of the landscape, but both underestimated the range of variation spatially and temporally. Soil properties and topography were important drivers of spatial variation in soil moisture dynamics. By testing the applicability of two mechanistic models to predict fine-scale spatial and temporal variability in soil moisture, this study paves the way towards understanding the functioning of tundra ecosystems under climate change.  相似文献   

16.
Coherency functions are used to describe the spatial variation of seismic ground motions at multiple supports of long span structures. Many coherency function models have been proposed based on theoretical derivation or measured spatial ground motion time histories at dense seismographic arrays. Most of them are suitable for modelling spatial ground motions on flat‐lying alluvial sites. It has been found that these coherency functions are not appropriate for modelling spatial variations of ground motions at sites with irregular topography (Struct. Saf. 1991; 10 (1):1–13). This paper investigates the influence of layered irregular sites and random soil properties on coherency functions of spatial ground motions on ground surface. Ground motion time histories at different locations on ground surface of the irregular site are generated based on the combined spectral representation method and one‐dimensional wave propagation theory. Random soil properties, including shear modulus, density and damping ratio of each layer, are assumed to follow normal distributions, and are modelled by the independent one‐dimensional random fields in the vertical direction. Monte‐Carlo simulations are employed to model the effect of random variations of soil properties on the simulated surface ground motion time histories. The coherency function is estimated from the simulated ground motion time histories. Numerical examples are presented to illustrate the proposed method. Numerical results show that coherency function directly relates to the spectral ratio of two local sites, and the influence of randomly varying soil properties at a canyon site on coherency functions of spatial surface ground motions cannot be neglected. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
Thinly stratified sedimentary deposits in a heterogeneous field were investigated to obtain basic physical data for the simulation of water flow. A procedure is described which translates a thinly stratified soil profile into a number of functional layers using functional hydrological properties. A functional layer is defined as a combination of one or more soil horizons and should (i) be recognizable during a soil survey using an auger and (ii) show significantly different functional hydrological properties when compared with another functional layer. This procedure gave three easily recognizable functional layers. Sets of hydrological characteristics of these three functional layers were obtained by physical measurements of the soil and by estimation, using textural data for classification into a standard Dutch series. The performance of several combinations of these sets was tested by comparing simulated and measured soil matric potentials for seven plots during one year. The best simulation results were obtained if measured soil hydraulic characteristics were used for relatively homogeneous functional layers and if the soil hydraulic characteristics were estimated at each location for the most heterogeneous layer.  相似文献   

18.
Soil water is an important limiting factor for restoring alpine meadows on the northern Tibetan Plateau. Field studies of soil‐water content (SWC), however, are rare due to the harsh environment, especially in a mesoscale alpine‐meadow ecosystem. The objective of this study was to assess the spatial variability of SWC and the temporal variation of the spatial variability in a typical alpine meadow using a geostatistical approach. SWC was measured using a neutron probe to a depth of 50 cm at 113 locations on 22 sampling occasions in a 33.5‐hm2 alpine meadow during the 2015 and 2016 growing seasons. Mean SWC in the study plot for the two growing seasons was 18.7, 14.0, 13.9, 14.3, and 14.8% for depths of 10, 20, 30, 40, and 50 cm, respectively, and SWC was significantly larger at 10 cm than at other depths. SWC was negatively correlated with its spatial variability, and the spatial variability was higher when SWC was lower. Thirty‐three sampling locations in this study plot met the requirement of accuracy of the central limit theorem. A Gaussian model was the best fit for SWC semivariance at depths of 10, 20, and 30 cm, and the spatial structural ratio was between 0.997 and 1, indicating a strong spatial dependence of SWC. The sill and range fluctuated temporally, and the nugget and spatial structural ratio did not generally vary with time. The sill was significantly positively correlated with SWC and was initially stable and then tend to increase with SWC. The nugget, range, and spatial structure ratio, however, were not correlated with SWC. These results contribute to our understanding of SWC spatial distribution and variation in alpine meadows and provide basic empirical SWC data for mesoscale model simulations, optimizing sampling strategies and managing meadows on the Tibetan Plateau.  相似文献   

19.
Soil freeze–thaw events have important implications for water resources, flood risk, land productivity, and climate change. A property of these phenomena is the relationship between unfrozen water content and sub-freezing temperature, known as the soil freezing characteristic curve (SFC). It is documented that this relationship exhibits hysteretic behaviour when frozen soil thaws, leading to the definition of the soil thawing characteristic curve (STC). Although explanations have been given for SFC/STC hysteresis, the effect that ‘scale’ – particularly ‘measurement scale’ – may have on these curves has received little attention. The most commonly used measurement scale metric is the ‘support’, which is the spatial (or temporal) unit within which the measured variable is integrated or soil volume sampled. We show (a) measurement support can influence the range and shape of the SFC and (b) hysteresis can be attributed, in part, to the support and location of the measurements comprising the SFC/STC. We simulated lab measured temperature, volumetric water content (VWC), and permittivity from soil samples undergoing freeze–thaw transitions using Hydrus-1D and a modified Dobson permittivity model. To assess the effect of measurement support and location on SFC/STC, we masked the simulated temperature and VWC/permittivity extent to match the instrument's support and location. By creating a detailed simulation of the intra- and inter-support variability associated with the penetration of a freezing front, we demonstrate how measurement support and location can influence the temperature range over which water freezing events are captured. We show it is possible to simulate hysteresis in homogenous media with purely geometric considerations, suggesting that SFC/STC hysteresis may be more of an apparent phenomenon than mechanistically real. Lastly, we develop an understanding of how the location and support of soil temperature and VWC/permittivity measurements influence the temperature range over which water freezing events are captured.  相似文献   

20.
Abstract

A new approach was developed for estimating vertical soil water fluxes using soil water content time series data. Instead of a traditional fixed time interval, this approach utilizes the time interval between two sequential minima of the soil water storage time series to identify groundwater recharge events and calculate components of the soil water budget. We calculated water budget components: surface-water excess (Sw), infiltration less evapotranspiration (I – ET) and groundwater recharge (R) from May 2001 to January 2003 at eight locations at the USDA Agricultural Research Center, Beltsville, Maryland, USA. High uncertainty was observed for all budget components. This uncertainty was attributed to spatial and temporal variation in Sw, I – ET and R, and was caused by nonuniform rainfall distributions during recharge events, variability in the profile water content, and spatial variability in soil hydraulic properties. The proposed event-based approach allows estimating water budget components when profile water content monitoring data are available.

Citation Guber, A., Gish, T., Pachepsky, Y., McKee, L., Nicholson, T. & Cady, R. (2011) Event-based estimation of water budget components using a network of multi-sensor capacitance probes. Hydrol. Sci. J. 56(7), 1227–1241.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号