首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Solute concentrations and fluxes in rainfall, throughfall and stemflow in two forest types, and stream flow in a 90 ha catchment in southern Chile (39°44′S, 73°10′W) were measured. Bulk precipitation pH was 6·1 and conductivity was low. Cation concentrations in rainfall were low (0·58 mg Ca2+ l?1, 0·13 mg K+ l?1, 0·11 mg Mg2+ l?1 and <0·08 mg NH4–N l?1), except for sodium (1·10 mg l?1). Unexpected high levels of nitrate deposition in rainfall (mean concentration 0·38 mg NO3–N l?1, total flux 6·3 kg NO3–N ha?1) were measured. Concentrations of soluble phosphorous in bulk precipitation and stream flow were below detection limits (<0·09 mg l?1) for all events. Stream‐flow pH was 6·3 and conductivity was 28·3 μs. Stream‐water chemistry was also dominated by sodium (2·70 mg l?1) followed by Ca, Mg and K (1·31, 0·70 and 0·36 mg l?1). The solute budget indicated a net loss of 3·8 kg Na+ ha?1 year?1, 5·4 kg Mg2+ ha?1 year?1, 1·5 kg Ca2+ ha?1 year?1 and 0·9 kg K+ ha?1 year?1, while 4·9 kg NO3–N ha?1 year?1 was retained by the ecosystem. Stream water is not suitable for domestic use owing to high manganese and, especially, iron concentrations. Throughfall and stemflow chemistry at a pine stand (Pinus radiata D. Don) and a native forest site (Siempreverde type), both located within the catchment, were compared. Nitrate fluxes within both forest sites were similar (1·3 kg NO3–N ha?1 year?1 as throughfall). Cation fluxes in net rainfall (throughfall plus stemflow) at the pine stand generally were higher (34·8 kg Na+ ha?1 year?1, 21·5 kg K+ ha?1 year?1, 5·1 kg Mg2+ ha?1 year?1) compared with the secondary native forest site (24·7 kg Na+ ha?1 year?1, 18·9 kg K+ ha?1 year?1 and 4·4 kg Mg2+ ha?1 year?1). However, calcium deposition beneath the native forest stand was higher (15·9 kg Ca2+ ha?1 year?1) compared with the pine stand (12·6 kg Ca2+ ha?1 year?1). Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

2.
The temporal variability in nitrogen (N) transport in the Corbeira agroforestry catchment (NW Spain) was analysed from October 2004 to September 2008. Nitrate (NO3–N) and total Kjeldahl nitrogen (TKN) loads and concentrations were determined at various timescales (annual, seasonal and event). The results revealed a strong intra‐annual and inter‐annual variability in N transport influenced by weather patterns and consequently by the hydrological regime. Mean annual export of total N in the catchment was 5.5 kg ha?1 year?1, with NO3–N being the dominant form. Runoff events comprised 10% of the study period but contributed 40 and 61% of the total NO3–N and TKN loads, respectively. The NO3–N and TKN concentrations were higher during runoff events than under baseflow conditions, pointing to diffuse sources of N. The mobilization of TKN during runoff events was attributed to surface runoff, while NO3–N might be related to subsurface and groundwater flow. Runoff events were characterized by high variability in N loads and concentrations. Higher variability was observed in N loads than in N concentrations, indicating that event magnitude plays an important role in N transport in this catchment; event magnitude explained approximately 96% of the NO3–N load. However, a combination of variables related to runoff event intensity (rainfall, discharge increase and kinetic energy) explained only 66% of the TKN load. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
We studied the relationships between streamwater chemistry and the topography of subcatchments in the Dorokawa watershed in Hokkaido Island, northern Japan, to examine the use of topography as a predictor of streamwater chemistry in a watershed with relatively moderate terrain compared with other regions of Japan. Topographic characteristics of the Dorokawa watershed and its subcatchments were expressed as topographic index (TI) values, which ranged from 4·5 to 20·4 for individual grid cells (50 × 50 m2), but averaged from 6·4 to 7·4 for the 20 subcatchments. Streamwater samples for chemical analyses were collected four times between June and October 2002 from 20 locations in the watershed. The pH of water that passed through the watershed increased from ~5·0 to 7·0, with major increases in Na+ and Ca2+ and marked decreases in NO3? and SO . Distinctive spatial patterns were observed for dissolved organic carbon (DOC), dissolved organic nitrogen (DON), and NO3? concentrations of streamwater across the watershed. Statistical analyses indicated significant linear relationships between the average TI values of subcatchments and DOC, DON, and NO3? concentrations. Furthermore, the proportion of DOC in streamwaters in the wet season increased with TI values relative to other nitrogen species, whereas NO3? concentrations decreased with TI. The gradients of soil wetness and the presence of wetlands explained many of the observed spatial and temporal patterns of DOC, DON, and NO3? concentrations in the surface waters of the Dorokawa watershed. Our results suggest that the TI is especially useful for predicting the spatial distribution of DOC, DON and NO3? in the surface waters of Hokkaido, where topographical relief is moderate and wetlands more common than in other regions of Japan. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
Understanding the influence of complex interactions among hydrological factors, soil characteristics and biogeochemical functions on nutrient dynamics in overland flow is important for efficiently managing agricultural nonpoint pollution. Experiments were conducted to assess nutrient export from Ultisol soils in the Sunjia catchment, Jiangxi province, southern China, between 2003 and 2005. Four plots were divided into two groups: two peanut plots and two agroforestry (peanut intercropped with citrus) plots. During the study period, we collected water samples for chemical analyses after each rainfall event that generated overland flow to assess nutrient export dynamics. The concentrations of potassium (K) and nitrate‐N (NO3–N) in overland flow were higher during the wetting season (winter and early spring). This reflects the solubility of K and NO3–N, the accumulation of NO3–N during the dry season and an increase in desorption processes and mixing with pre‐event water caused by prolonged contact with soil in areas with long‐duration, low‐intensity rainfall. In contrast, concentrations of total nitrogen (TN) and total phosphorus (TP) were higher during the wet season (late March to early July) and during the dry season (mid‐July to the end of September or early October). This was due to the interaction between specific hydrological regimes, the properties of the Ultisol and particulate transport processes. Variations in nutrient concentrations during storm events further identified that event water was the dominant source of total nitrogen and total phosphorus, and pre‐event water was the dominant source of NO3–N. In addition, the results obtained for the different land uses suggest that agroforestry practices reduce nutrient loss via overland flow. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
While the role of groundwater in flushing of solutes has long been recognized, few studies have explicitly studied the within‐event changes in groundwater chemistry. We compared the changes in groundwater chemistry during storm events for a wetland and hillslope position in a small (1·5 ha) glaciated, forested catchment in western New York. Flushing responses for dissolved organic carbon (DOC) and nitrogen (DON), nitrate (NO3) and sulfate (SO4) in wetland and hillslope groundwaters were also compared against the corresponding responses in stream water. Eight storm events with varying intensity, amount, and antecedent moisture conditions were evaluated. Solute flushing patterns for wetland and hillslope groundwaters differed dramatically. While DOC concentrations in wetland groundwater followed a dilution trend, corresponding values for hillslope groundwater showed a slight increase. Concentrations for NO3 in wetland groundwater were below detection limits, but hillslope groundwaters displayed high NO3 concentrations with a pronounced increase during storm events. Flushing responses at all positions were also influenced by the size of the event and the time between events. We attributed the differences in flushing to the differences in hydrologic flow paths and biogeochemical conditions. Flushing of the wetland did appear to influence storm‐event stream chemistry but the same could not be said for hillslope groundwaters. This suggests that while a variety of flushing responses may be observed in a catchment, only a subset of these responses affect the discharge chemistry at the catchment outlet. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
While the hydrological balance of forest ecosystems has often been studied at the annual level, quantitative studies on the factors determining rainfall partitioning of individual rain events are less frequently reported. Therefore, the effect of the seasonal variation in canopy cover on rainfall partitioning was studied for a mature deciduous beech (Fagus sylvatica L.) tree over a 2‐year period. At the annual level, throughfall amounted to 71% of precipitation, stemflow 8%, and interception 21%. Rainfall partitioning at the event level depended strongly on the amount of rainfall and differed significantly (p < 0·001) between the leafed and the leafless period of the year. Therefore, water fluxes of individual events were described using a multiple regression analysis (ra2 > 0·85, n = 205) with foliation, rainfall characteristics and meteorological variables as predictor variables. For a given amount of rainfall, foliation significantly increased interception and decreased throughfall and stemflow amounts. In addition, rainfall duration, maximum rainfall rate, vapour pressure deficit, and wind speed significantly affected rainfall partitioning at the event level. Increasing maximum hourly rainfall rate increased throughfall and decreased stemflow generation, while higher hourly vapour pressure deficit decreased event throughfall and stemflow amounts. Wind speed decreased throughfall in the growing period only. Since foliation and the event rainfall amount largely determined interception loss, the observed net water input under the deciduous canopy was sensitive to the temporal distribution of rainfall. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
The effects on phytoplankton photosynthesis of inorganic metal salts HgCl2, CuSO4, Cd(NO3)2, ZnCl2 and Pb(NO3)2 were studied over monthly intervals. In experiments with individual metals, phytoplankton photosynthesis was not adversely affected if the concentration increase above background levels did not exceed 10?9 mole Hg/l, 5·10?9 mole Cu/l, 2·10?8 mole Cd/l, 5·10?8 mole Zn/l and 2·10?7 mole Pb/l, respectively. However when the concentration was increased by 5·10?10 mole Hg/l+5·10?9 mole Cu/l+5·10?9 mole Cd/l+5·10?8 mole Zn/l+5·10?8 mole Pb/l photosynthesis was significantly reduced, due to a synergetic effect of the combined metals. The influence of phytoplankton density, pH-value concentration of calcium, dissolved organic nitrogen and allochthonous debris on heavy metal toxicity was investigated. Changes in phytoplankton composition are believed to the main reason for the seasonal variation in the toxic effects of heavy metals.  相似文献   

8.
To investigate the impacts of the invasion by bamboo on fluxes of nutrients and pollutants, the nutrient/pollutant fluxes and canopy interactions, including neutralization of acidity, leaching and uptake of nitrogen (N), were characterized in conjunction with rainfall partitioning in a Moso‐bamboo (Phyllostachys pubescens) forest. Measurements of precipitation volume, pH, major ions, and silicate (SiO2) in rainfall, throughfall and stemflow were collected weekly in a Moso‐bamboo forest located in Munakata City, Western Japan for 1 year. Results showed that rainfall partitioning into stemflow was larger than that for other types of forest, which may be due to the properties of Moso‐bamboo forest structure, such as a straight and smooth culm. Inorganic N (NO3 + NH4+) and S (SO42−) fluxes of throughfall and stemflow were approximately 1·6 and 1·3 times higher than that of rainfall, respectively. Contribution of stemflow flux to inorganic N and S fluxes to the forest floor was high. This could be due to lower uptake of inorganic N through culm and a higher rainfall partitioning into stemflow than that for other types of forest. The Moso‐bamboo canopy neutralized rainfall acidity, reducing the fluxes of potentially acidifying compounds via throughfall and stemflow. Canopy leaching of K+ was distinctly higher than that of Mg2+ and Ca2+ and could be related to the high mobility of K+ in plant tissues. Cl and SiO2 were readily leached as for K+. The impact of the invasion by bamboo on nutrient cycling was discussed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
Understanding the influence of storm events on nitrate (NO3?) dynamics is important for efficiently managing NO3? pollution. In this study, five sites representing a downstream progression of forested uplands underlain by resistant sandstone to karst lowlands with agricultural, urban and mixed land‐use were established in Spring Creek, a 201 km2 mixed land‐use watershed in central Pennsylvania, USA. At each site, stream water was monitored during six storm events in 2005 to assess changes in stable isotopes of NO3?15N‐NO3? and δ18O‐NO3?) and water (δ18O‐H2O) from baseflow to peakflow. Peakflow fractions of event NO3? and event water were then computed using two‐component mixing models to elucidate NO3? flow pathway differences among the five sites. For the forested upland site, storm size appeared to affect NO3? sources and flow pathways. During small storms (<35 mm rainfall), greater event NO3? fractions than event water fractions indicated the prevalence of atmospheric NO3? source contributions at peakflow. During larger storms (>35 mm rainfall), event NO3? fractions were less than event water fractions at peakflow suggesting that NO3? was flushed from stored sources via shallow subsurface flow pathways. For the urbanized site, wash‐off of atmospheric NO3? was an important NO3? source at peakflow, especially during short‐duration storms where event water contributions indicated the prevalence of overland flow. In the karst lowlands, very low fractions of event water and even lower fractions of event NO3? at peakflow suggested the dominance of ground water flow pathways during storms. These ground water flow pathways likely flushed stored NO3? sources into the stream, while deep soils in the karst lowlands also may have promoted NO3? assimilation. The results of this study illustrated how NO3? isotopes and δ18O‐H2O could be combined to show key differences in water and NO3? delivery between forested uplands, karst valleys and fully urbanized watersheds. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
In order to help evaluate the trends in the NO3-N concentration in groundwater with a view to preventing further degradation in water quality in the future, a distributed groundwater quality model was constructed for the Nasunogahara basin. The best fit for the groundwater table elevations by the flow component of the model was achieved with average mean absolute errors (MAEs) of 0·92 m for the calibration period and 0·83 m for the validation period. Moreover, the best fit for the NO3-N concentration by the water quality component was achieved with average mean relative errors (MREs) of 29·8% for the calibration period and 30·3% for the validation period. After developing a robust model, various change scenarios were tested; specifically, the effects of effluent load control and a decrease in paddy field area on the NO3-N concentration in groundwater were predicted. The most intensively farmed area contributed about 40% of the total effluent load because of livestock farming in the basin. When the effluent load from this area was decreased by 50%, the average NO3-N concentrations at sites S1, S2 and S3 were reduced by about 15%; however, the average concentrations at S4 and S5 were reduced by only 1%. Furthermore, when the total effluent load from the concentrated livestock area was removed completely, the average groundwater NO3-N concentrations at S1, S2 and S3 were reduced by about 30% as compared with the original calculated results. In contrast, decreasing the area of the paddy fields in the basin did not greatly influence the groundwater NO3-N concentration. In the case of a 70% reduction in paddy field area, average NO3-N concentrations increased by about 7% at S1, S2 and S3. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
Ten representative research sites were selected in eastern Spain to assess soil erosion rates and processes in new citrus orchards on sloping soils. The experimental plots were located at representatives sites on limestone, in areas with 498 to 715 mm year?1 mean annual rainfall, north‐facing slopes, herbicide treated, and new (less than 3 years old) plantations. Ten rainfall simulation experiments (1 h at 55 mm h?1 on 0·25 m2 plots) were carried out at each of the 10 selected study sites to determine the interill soil erosion and runoff rates. The 100 rainfall simulation tests (10 × 10 m) showed that ponding and runoff occurred in all the plots, and quickly: 121 and 195 s, respectively, following rainfall initiation. Runoff discharge was one third of the rainfall, and sediment concentration reached 10·4 g L?1. The soil erosion rates were 2·4 Mg ha?1 h?1 under 5‐year return period rainfall thunderstorms. These are among the highest soil erosion rates measured in the western Mediterranean basin, similar to badland, mine spoil and road embankment land surfaces. The positive relationship between runoff discharge and sediment concentration (r2 = 0·83) shows that the sediment availability is very high. Soil erosion rates on new citrus orchards growing on sloped soils are neither tolerable nor sustainable. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
Wei Wei  Liding Chen  Bojie Fu  Yihe Lü  Jie Gong 《水文研究》2009,23(12):1780-1791
Rainfall extremes (RE) become more variable and stochastic in the context of climate change, increasing uncertainties and risks of water erosion in the real world. Vegetation also plays a key role in soil erosion dynamics. Responses of water erosion to RE and vegetation, however, remain unclear. In this article, on the basis of the data measured on 15 plots (area: 10 m × 10 m and 10 m × 5 m) and the definition of World Meteorological Organization (WMO) on rainfall extremes, 158 natural rainfall events from 1986 to 2005 were analysed, and rain depth and maximal 30‐min intensity (MI30) were used to define RE. Then, water erosion process under RE and five vegetation types (spring wheat, alfalfa, sea buckthorn, Chinese pine, and wheatgrass) were studied in a key loess semiarid hilly area, NW China. The following findings were made: (1) The minimal thresholds of depth and MI30 for defining RE were determined as 40·11 mm and 0·55 mm/min, respectively. Among the studied rainfall events, there were four events with both the variables exceeding the thresholds (REI), five events with depths exceeding 40·11 mm (REII), and four events with MI30 exceeding 0·55 mm/min (REIII). Therefore, not only extreme rainstorm, but also events with lower intensities and long durations were considered as RE. Moreover, RE occurred mostly in July and August, with a probability of 46 and 31%, respectively. (2) Extreme events, especially REI, in general caused severer soil‐water loss. Mean extreme runoff and erosion rates were 2·68 and 53·15 times of mean ordinary rates, respectively. The effect of each event on water erosion, however, becomes uncertain as a result of the variations of RE and vegetation. (3) The buffering capacities of vegetation on RE were generally in the order of sea buckthorn > wheatgrass > Chinese pine > alfalfa > spring wheat. In particular, sea buckthorn reduced runoff and erosion effectively after 3–4 years of plantation. Therefore, to fight against water erosion shrubs like sea buckthorn are strongly recommended as pioneer species in such areas. On the contrary, steep cultivation (spring wheat on slopes), however, should be avoided, because of its high sensitivities to RE. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
Excessive terrestrial nutrient loadings adversely impact coral reefs by primarily enhancing growth of macroalgae, potentially leading to a phase‐shift phenomenon. Hydrological processes and other spatial and temporal factors affecting nutrient discharge must be examined to be able to formulate effective measures for reducing nutrient export to adjacent reefs. During storm events and baseflow periods, water samples were obtained from the tropical Todoroki River, which drains an intensively agricultural watershed into Shiraho coral reef. In situ nutrient analyzers were deployed for 6 months to hourly measure dissolved nutrient (NO3‐N and PO43−‐P) concentrations. Total phosphorus (TP) and suspended solid concentration (TSS) were increased by higher rainfall intensity (r = 0·94, p < 0·01) and river discharge Q (r = 0·88, p < 0·01). In contrast, NO3‐N concentration tends to decrease drastically (e.g. from 3 to 1 mg l−1) during flood events. When base flow starts to dominate afterwards, NO3‐N manifested an increasing trend, but decreases when baseflow discharge becomes low. This counter‐clockwise hysteresis for NO3‐N highlights the significant influence of groundwater discharge. N delivery can therefore be considered a persistent process compared to sediment and P discharge, which are highly episodic in nature. Based on GIS analysis, nutrient concentration along the Todoroki River was largely affected by the percentage of sugarcane/bare areas and bedrock type. The spatial distribution of N concentration in the river reflects the considerable influence of subsurface geology—higher N levels in limestone‐dominated areas. P concentrations were directly related to the total length of artificial drainage, which enhances sediment transport. The use of high‐resolution monitoring data coupled with GIS‐based spatial analysis therefore enabled the clarification of control factors and the difference in the spatio‐temporal discharge characteristics between N and P. Thus, although erosion‐reduction schemes would reduce P discharge, other approaches (e.g. minimize fertilizer) are needed to reduce N discharge. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
The source and hydrochemical makeup of a stream reflects the connectivity between rainfall, groundwater, the stream, and is reflected to water quantity and quality of the catchment. However, in a semi-arid, thick, loess covered catchment, temporal variation of stream source and event associated behaviours are lesser known. Thus, the isotopic and chemical hydrographs in a widely distributed, deep loess, semi-arid catchment of the northern Chinese Loess Plateau were characterized to determine the source and hydrochemical behaviours of the stream during intra-rainfall events. Rainfall and streamflow were sampled during six hydrologic events coupled with measurements of stream baseflow and groundwater. The deuterium isotope (2H), major ions (Cl, SO42−, NO3, Ca2+, K+, Mg2+, and Na+) were evaluated in water samples obtained during rainfall events. Temporal variation of 2H and Cl measured in the groundwater and stream baseflow prior to rainfall was similar; however, the isotope compositions of the streamflow fluctuated significantly and responded quickly to rainfall events, likely due to an infiltration excess, overland dominated surface runoff during torrential rainfall events. Time source separation using 2H demonstrated greater than 72% on average, the stream composition was event water during torrential rainfall events, with the proportion increasing with rainfall intensity. Solutes concentrations in the stream had loglinear relationships with stream discharge, with an outling anomaly with an example of an intra-rainfall event on Oct. 24, 2015. Stream Cl behaved nonconservative during rainfall events, temporal variation of Cl indicated a flush and washout at the onset of small rainfall events, a dilution but still high concentration pattern in high discharge and old water dominated in regression flow period. This study indicates rainfall intensity affects runoff responses in a semi-arid catchment, and the stored water in the thick, loess covered areas was less connected with stream runoff. Solute transport may threaten water quality in the area, requiring further analysis of the performance of the eco-restoration project.  相似文献   

15.
The chemical inputs by rainfall, throughfall and stemflow were studied in a pine plantation located in Pierces Creek Forest, Canberra, Australia. Three treatments were included in the study: a control (C) and two fertilizer treatments. The first fertilizer treatment (F) involved two applications of mixed fertilizers at high rates, the second (IL) involved application of a complete liquid fertilizer with irrigation, so as to remove nutrient and water restrictions to growth. The application rates of nutrients were higher for IL than F. Net inputs of elements in throughfall and stemflow, obtained by subtracting the amounts in the rainfall, were compared for different treatments. For cations (the sum of Ca, Mg, Na and K), the treatment effect on leaching by throughfall and stemflow was IL > F > C; but the F to C differences were greater for throughfall than stemflow. The effects were almost entirely due to increases in concentration, rather than the amount of rainfall becoming throughfall or stemflow. The concentration of nitrogen (as NH4 or NO3) in throughfall or stemflow could be lower or higher than in rainfall, indicating net removal or leaching, respectively. Net removal occurred for most rainfall events for the control treatment, for a substantial number of events for treatment F, but for few events for treatment IL. The ammonium ion was preferentially removed from throughfall, and nitrate from stemflow. Transfers of potassium and total nitrogen by litterfall, throughfall and stemflow were also studied. The proportions of potassium and nitrogen being transferred by these processes showed little difference between treatments; the overall values for potassium being 60% by throughfall, 4% by stemflow and 36% by litterfall. In contrast the transfer of nitrogen was dominated by litterfall (81%), with 18% by throughfall and 1% by stemflow. © 1997 John Wiley & Sons, Ltd.  相似文献   

16.
Summer stream water quality was monitored before and following the logging of 50% of the boreal forest within three small watersheds (<50 ha) nested in the ‘Ruisseau des Eaux‐Volées’ Experimental Watershed, Montmorency Forest (Québec, Canada). Logging was conducted in winter, on snow cover according to recommended best management practices (BMPs) to minimize soil disturbance and protect advance growth. A 20‐m forest buffer was maintained along perennial streams. In watershed 7·2, cut‐blocks were located near the stream network and logging was partially allowed within the riparian buffer zone. In watersheds 7·5 and 7·7, logging occurred farther away from the stream network. Observations were also made for watershed 7·3 that collected the runoff from watersheds 7·2 and 7·5, and watershed 7·6, the uproad portion of watershed 7·7. The control watershed 0·2 was contiguous to the impacted watersheds and remained undisturbed. Following clearcutting, changes in summer daily maximum and minimum stream temperatures remained within ± 1 °C while changes in diurnal variation did not decrease by more than 0·5 °C. Concentrations of NO3? greatly increased by up to 6000% and concentrations of K+ increased by up to 300% during the second summer after logging. Smaller increases were observed for Fetotal (up to 71%), specific conductance (up to 26%), and Mg2+ (up to 19%). Post‐logging pH decreased slightly by no more than 7% while PO43? concentration remained relatively constant. Suspended sediment concentrations appeared to increase during post‐logging, but there was not enough pre‐logging data to statistically confirm this result. Logging of moderate intensity and respecting established BMPs may account for the limited changes of water quality parameters and the low exceedances of the criteria for the protection of aquatic life. The proximity of the cutover to the stream network and logging within the riparian zone did not appear to affect water quality. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
Based on measured stream nitrogen concentrations at outlets of 12 small sub‐areas (1·3–54·7 km2) in a largely forested catchment during the base flow period, we investigated the influences of discharges and different catchment characteristics on stream nitrogen concentration. Our field surveys were carried out during the 11‐month's period from April 2001 to February 2002 and the correlations between nitrogen concentrations and catchment characteristics were studied. The results showed that the vegetation cover was strongly correlated to total nitrogen (TN) and nitrate + nitrite ? nitrogen (NOx‐N) concentrations. That is, the TN and NOx‐N concentrations had positive correlations with mean normalized difference vegetation cover index (NDVI) of each sub‐area during dormant seasons (mean NDVI < 0 · 70) and had negative correlations during the growing season (mean NDVI ≥ 0 . 70). The significance of catchment characteristics to TN and NOx‐N concentrations was ranked as vegetation cover > soil > topography > land use, and the best models can account for 55–64% of the variance of TN and NOx‐N concentrations. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
This paper examines the impact of contrasting antecedent soil moisture conditions on the hydrochemical response, here the changes in dissolved nitrogen (NO3?, NH4+ and dissolved organic nitrogen (DON)) and dissolved organic carbon (DOC) concentrations, of a first‐order stream during hydrological events. The study was performed in the Hermine, a 5 ha forested watershed of the Canadian Shield. It focused on a series of eight precipitation events (spring, summer and fall) sampled every 2 or 3 h and showing contrasted antecedent moisture conditions. The partition of the eight events between two groups (dry or wet) of antecedent moisture conditions was conducted using a principal component analysis (PCA). The partition was controlled (first axis explained 86% of the variability) by the antecedent streamflow, the streamflow to precipitation ratio Q/P and by the antecedent groundwater depth. The mean H+, NO3?, NH4+, total dissolved nitrogen and DOC concentrations and electrical conductivity values in the stream were significantly higher following dry antecedent conditions than after wetter conditions had prevailed in the Hermine, although the temporal variability was high (17 to 138%). At the event scale, a significantly higher proportion of the changes in DON, NO3?, and DOC concentrations in the stream was explained by temporal variations in discharge compared with the seasonal and annual scales. Two of the key hydrochemical features of the dry events were the synchronous changes in DOC and flow and the frequent negative relationships between discharge and NO3?. The DON concentrations were much less responsive than DOC to changes in discharge, whereas NH was not in phase with streamflow. During wet events, the synchronicity between streamflow and DON or NO3? was higher than during dry events and discharge and NO3? were generally positively linked. Based on these observations, the hydrological behaviour of the Hermine is conceptually compatible with a two‐component model of shallow (DON and DOC rich; variable NO3?) and deep (DON and DOC poor; variable NO3?) subsurface flow. The high NO3? and DOC levels measured at the early stages of dry events reflected the contribution from NO3?‐rich groundwaters. The contribution of rapid surface flow on water‐repellent soil materials located close to the stream channel is hypothesized to explain the DOC levels. An understanding of the complex interactions between antecedent soil moisture conditions, the presence of soil nutrients available for leaching and the dynamics of soil water flow paths during storms is essential to explain the fluxes of dissolved nitrogen and carbon in streams of forested watersheds. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
Litterfall was measured in a dry schlerophyll eucalypt forest and a nearby Pinus radiata plantation of similar tree density and basal area near Canberra in south-eastern Australia. Total annual litterfall for the eucalypts was 329 g m−2, compared with 180 g m−2 for the pines, with the bark component being 52 g m−2 for eucalypts and zero for pines. Barkfall did not occur for the eucalypts during the drought of 1982–1983 but complete bark shedding occurred during the subsequent very wet year when barkfall was 177 g m−2 for Eucalyptus rossii and 146 g m−2 for Eucalyptus mannifera (9·3 and 7·6 g m−2 of basal area, respectively). Barkfall of E. rossii responded to rainfall in the period autumn to early summer, whereas E. mannifera responded to summer rainfall. In the eucalypt forest floor-litter was stratified into a surface layer where the components were substantially intact, and a cohesive layer where the components were fragmented and bound together by fungal hyphae. The amount and residence times of loose and cohesive floor-litter were 1056 g m−2 and 3·2 years, respectively, for the loose litter layer; and 1164 g m−2 and 3·5 years for the cohesive layer. The litter biomass represented 17% of the estimated total above-ground biomass of 127 tonnes ha−1. A previous study showed roots to be 25% of total biomass, suggesting a total biomass of 167 tonnes ha−1. © 1998 John Wiley & Sons, Ltd.  相似文献   

20.
Measured, calculated and simulated values were combined to develop an annual nitrogen budget for Loch Vale Watershed (LVWS) in the Colorado Front Range. Nine-year average wet nitrogen deposition values were 1·6 (s=0·36) kg NO3-N ha−1, and 1·0 (s=0·3) kg NH4-N ha−1. Assuming dry nitrogen deposition to be half that of measured wet deposition, this high elevation watershed receives 3·9 kg N ha−1. Although deposition values fluctuated with precipitation, measured stream nitrogen outputs were less variable. Of the total N input to the watershed (3·9 kg N ha−1 wet plus dry deposition), 49% of the total N input was immobilized. Stream losses were 2·0 kg N ha−1 (1125 kg measured dissolved inorganic N in 1992, 1–2 kg calculated dissolved organic N, plus an average of 203 kg algal N from the entire 660 ha watershed). Tundra and aquatic algae were the largest reservoirs for incoming N, at approximately 18% and 15% of the total 2574 kg N deposition, respectively. Rocky areas and forest stored the remaining 11% and 5%, respectively. Fully 80% of N losses from the watershed came from the 68% of LVWS that is alpine. © 1997 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号