首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper describes the development and testing of a distributed, physically based model of glacier hydrology. The model is used to investigate the behaviour of the hydrological system of Haut Glacier d'Arolla, Valais, Switzerland. The model has an hourly time-step and three main components: a surface energy balance submodel, a surface flow routing submodel and a subglacial hydrology submodel. The energy balance submodel is used to calculate meltwater production over the entire glacier surface. The surface routing submodel routes meltwater over the glacier surface from where it is produced to where it either enters the subglacial hydrological system via moulins or runs off the glacier surface. The subglacial hydrology submodel calculates water flow in a network of conduits, which can evolve over the course of a melt season simulation in response to changing meltwater inputs. The main model inputs are a digital elevation model of the glacier surface and its surrounding topography, start-of-season snow depth distribution data and meteorological data. Model performance is evaluated by comparing predictions with field measurements of proglacial stream discharge, subglacial water pressure (measured in a borehole drilled to the glacier bed) and water velocities inferred from dye tracer tests. The model performs best in comparison with the measured proglacial stream discharges, but some of the substantial features of the other two records are also reproduced. In particular, the model results show the high amplitude water pressure cycles observed in the borehole in the mid-melt season and the complex velocity/discharge hysteresis cycles observed in dye tracer tests. The results show that to model outflow hydrographs from glacierized catchments effectively, it is necessary to simulate spatial and temporal variations in surface melt rates, the delaying effect of the surface snowpack and the configuration of the subglacial drainage system itself. The model's ability to predict detailed spatial and temporal patterns of subglacial water pressures and velocities should make it a valuable tool for aiding the understanding of glacier dynamics and hydrochemistry. © 1998 John Wiley & Sons, Ltd.  相似文献   

2.
Digital elevation models of the surface and bed of Midtdalsbreen, Norway are used to calculate subglacial hydraulic potential and infer drainage system structure for a series of subglacial water pressure assumptions ranging from atmospheric to ice overburden. A distributed degree‐day model is used to calculate the spatial distribution of melt on the glacier surface throughout a typical summer, which is accumulated along the various drainage system structures to calculate water fluxes beneath the glacier and exiting the portals for the different water pressure assumptions. In addition, 78 dye‐tracing tests were performed from 33 injection sites and numerous measurements of water discharge were made on the main proglacial streams over several summer melt seasons. Comparison of the calculated drainage system structures and water fluxes with dye tracing results and measured proglacial stream discharges suggests that the temporally and spatially averaged steady‐state water pressures beneath the glacier are ~70% of ice overburden. Analysis of the dye return curves, together with the calculated subglacial water fluxes shows that the main drainage network on the eastern half of the glacier consists of a hydraulically efficient system of broad, low channels (average width/height ratio ≈ 75). The smaller drainage network on the west consists of a hydraulically inefficient distributed system, dominated by channels that are exceptionally broad and very low (average width/height ratio ≈ 350). The even smaller central drainage network also consists of a hydraulically inefficient distributed system, dominated by channels that are very broad and exceptionally low (average width/height ratio ≈ 450). The channels beneath the western and central glacier must be so broad and low that they can essentially be thought of as a linked cavity system. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
Bulk runoff and meteorological data suggest the occurrence of two meltwater outburst events at Finsterwalderbreen, Svalbard, during the 1995 and 1999 melt seasons. Increased bulk meltwater concentrations of Cl? during the outbursts indicate the release of snowmelt from storage. Bulk meltwater hydrochemical data and suspended sediment concentrations suggest that this snowmelt accessed a chemical weathering environment characterized by high rock:water ratios and long rock–water contact times. This is consistent with a subglacial origin. The trigger for both the 1995 and 1999 outbursts is believed to be high rates of surface meltwater production and the oversupply of meltwater to areas of the glacier bed that were at the pressure melting point, but which were unconnected to the main subglacial drainage network. An increase in subglacial water pressure to above the overburden pressure lead to the forcing of a hydrological connection between the expanding subglacial reservoir and the ice‐marginal channelized system. The purging of ice blocks from the glacier during the outbursts may indicate the breach of an ice dam during connection. Although subglacial meltwater issued continually from the glacier terminus via a subglacial upwelling during both melt seasons, field observations showed outburst meltwaters were released solely via an ice‐marginal channel. It is possible that outburst events are a seasonal phenomenon at this glacier and reflect the periodic drainage of meltwaters from the same subglacial reservoir from year to year. However, the location of this reservoir is uncertain. A 100 m high bedrock ridge traverses the glacier 6·5 km from its terminus. The overdeepened area up‐glacier from this is the most probable site for subglacial meltwater accumulation. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

4.
Sediment export from glaciated basins involves complex interactions between ice flow, basal erosion and sediment transfer in subglacial and proglacial streams. In particular, we know very little about the processes associated with sediment transfer by subglacial streams. The Haut Glacier d'Arolla (VS, Switzerland) was investigated during the summer melt season of 2015. LiDAR survey revealed positive surface changes in the ablation zone, indicating glacier uplift, at the end of the morning during the period of peak ablation. Instream measures of sediment transport showed that suspended load and bedload responded differently to diurnal flow variability. Suspended load depended on the availability of fine material whereas bedload depended mainly on the competence of the flow. Interpretation of these results allowed development of a conceptual model of subglacial sediment transport dynamics. It is based upon the mechanisms of clogging (deposition) and flushing (transport/erosion) in sub-glacial channels as forced by diurnal flow variability. Through the melt season, the glacier hydrological response evolves from being buffered by glacier snow cover with a poorly developed subglacial drainage system to being dominated by more rapid ice melt with a more hydraulically efficient subglacial channel system. The resultant changes in the shape of diurnal discharge hydrographs, and notably higher peak flows and lower base flows, causes sediment transport to become discontinuous, with overnight clogging and late morning flushing of subglacial channels. Overnight clogging may be sufficient to reduce subglacial channel size, creating temporarily pressurized flow and lateral transfer of water away from the subglacial channels, leading to the late morning glacier surface uplift. However, without further data, we cannot exclude other hypotheses for the uplift. © 2018 John Wiley & Sons, Ltd.  相似文献   

5.
Until now, alpine glacial meltwaters have been assumed to consist of two components, dilute quickflow and concentrated delayed flow, the mixing of which has been regarded as chemically conservative for the major dissolved ions and electrical conductivity. Dye tracing results suggest that this two-component model adequately represents the sub-glacial hydrology of the Haut Glacier d'Arolla, Switzerland. However, laboratory dissolution experiments in which various concentrations of glacial rock flour are placed in dilute solutions show that this rock flour is highly reactive and suggest that bulk meltwaters may acquire significant amounts of solute through rapid chemical reactions with suspended sediment which occur after mixing of the two components. This view is supported by detailed analysis of variations in the hydrochemistry of meltwaters draining from the Haut Glacier d'Arolla over three diurnal cycles during the 1989 melt season. Variations in the composition of bulk meltwaters are controlled by two main factors: dilution of the delayed flow component by quickflow, and the extent of post-mixing reactions. The latter depends on the suspended sediment concentration in bulk meltwaters and on the duration of contact between these waters and suspended sediment. Seasonal changes in the magnitude of these factors result in changes in the character and causes of diurnal variations in meltwater chemistry. In June, these variations reflect discharge-related variations in residence time within a distributed subglacial drainage system; in July, when a channelized drainage system exists beneath the lower glacier, they primarily reflect the dilution of delayed flow by quickflow; in August, when suspended sediment concentrations are particularly high, they reflect varying degrees of solute acquisition by post-mixing reactions with suspended sediment that take place in arterial channels at the glacier bed.  相似文献   

6.
Proglacial suspended sediment transport was monitored at Haut Glacier d'Arolla, Switzerland, during the 1998 melt season to investigate the mechanisms of basal sediment evacuation by subglacial meltwater. Sub‐seasonal changes in relationships between suspended sediment transport and discharge demonstrate that the structure and hydraulics of the subglacial drainage system critically influenced how basal sediment was accessed and entrained. Under hydraulically inefficient subglacial drainage at the start of the melt season, sediment availability was generally high but sediment transport increased relatively slowly with discharge. Later in the melt season, sediment transport increased more rapidly with discharge as subglacial meltwater became confined to a spatially limited network of channels following removal of the seasonal snowpack from the ablation area. Flow capacity is inferred to have increased more rapidly with discharge within subglacial channels because rapid changes in discharge during highly peaked diurnal runoff cycles are likely to have been accommodated largely by changes in flow velocity. Basal sediment availability declined during channelization but increased throughout the remainder of the monitored period, resulting in very efficient basal sediment evacuation over the peak of the melt season. Increased basal sediment availability during the summer appears to have been linked to high diurnal water pressure variation within subglacial channels inferred from the strong increase in flow velocity with discharge. Basal sediment availability therefore appears likely to have been increased by (1) enhanced local ice‐bed separation leading to extra‐channel flow excursions and[sol ]or (2) the deformation of basal sediment towards low‐pressure channels due to a strong diurnally reversing hydraulic gradient between channels and areas of hydraulically less‐efficient drainage. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

7.
Solute and runoff time-series at Finsterwalderbreen, Svalbard, provide evidence for considerable basal routing of water and the existence of at least two contrasting subglacial chemical weathering environments. The hydrochemistry of a subglacial upwelling provides evidence for a snowmelt-fed subglacial reservoir that dominates bulk runoff during recession flow. High concentrations of Cl and crustal ions, high pCO2 and ratios of [*SO2−4/(*SO2−4+HCO3)] close to 0·5 indicate the passage of snowmelt through a subglacial weathering environment characterized by high rock:water ratios, prolonged residence times and restricted access to the atmosphere. At higher discharges, bulk runoff becomes dominated by icemelt from the lower part of the glacier that is conveyed through a chemical weathering environment characterized by low rock:water ratios, short residence times and free contact with atmospheric gases. These observations suggest that icemelt is routed via a hydrological system composed of basal/ice-marginal, englacial and supraglacial components and is directed to the glacier margins by the ice surface slope. Upwelling water flows relatively independently of icemelt to the terminus via a subglacial drainage system, possibly constituting flow through a sediment layer. Cold basal ice at the terminus forces it to take a subterranean routing in its latter stages. The existence of spatially discrete flow paths conveying icemelt and subglacial snowmelt to the terminus may be the norm for polythermal-based glaciers on Svalbard. Proglacial mixing of these components to form the bulk meltwaters gives rise to hydrochemical trends that resemble those of warm-based glaciers. These hydrochemical characteristics of bulk runoff have not been documented on any other glacier on Svalbard to date and have significance for understanding interactions between thermal regime and glacier hydrology. © 1998 John Wiley & Sons, Ltd.  相似文献   

8.
An analysis of temporal variability in proglacial suspended sediment concentration is undertaken using time series data collected from three Svalbard basins which include one largely cold-based glacier (Austre Brøggerbreen), one largely warm-based glacier (Finsterwalderbreen) and one intermediate polythermal glacier (Erdmannbreen). The temporal variability in proglacial suspended sediment concentration is analysed using multiple regression techniques in which discharge is supplemented by other predictors acting as surrogates for variability in sediment supply at diurnal, medium-term and seasonal timescales. These multiple regression models improve upon the statistical explanation of suspended sediment concentration produced by simple sediment rating curves but need to account for additional stochastic elements within the time series before they may be considered successful. An interpretation of the physical processes which are responsible for the regression model characteristics is offered as a basis for comparing the different arctic glaciofluvial suspended sediment transport systems with that of their better known temperate glaciofluvial counterparts. It is inferred that the largely warm-based glacier is dominated by sediment supply from subglacial reservoirs which evolve in a similar manner to temperate glaciers and which cause a pronounced seasonal exhaustion of suspended sediment supply. The largely cold-based glacier, however, is dominated by sediment supply from marginal sources which generate a responsive system at short time scales but no significant seasonal pattern. The intermediate polythermal glacier basin, which was anticipated to be similar to the warm-based glacier, instead shows a highly significant seasonal increase in suspended sediment supply from an unusual subglacial reservoir emerging under pressure in the glacier foreland. The temperate model of glaciofluvial suspended sediment transport is therefore found to be of limited use in an arctic context. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

9.
A global positioning system and ground penetrating radar surveys is used to produce digital elevation models of the surface and bed of Brewster Glacier. These are used to derive maps of subglacial hydraulic potential and drainage system structure using three different assumptions about the subglacial water pressure (Pw): (i) Pw = ice overburden; (ii) Pw = half ice overburden; (iii) Pw = atmospheric. Additionally, 16 dye‐tracing experiments at 12 locations were performed through a summer melt season. Dye return curve shape, together with calculations of transit velocity, dispersivity and storage, are used to infer the likely morphology of the subglacial drainage system. Taken together, the data indicate that the glacier is underlain by a channelised but hydraulically inefficient drainage system in the early summer in which water pressures are close to ice overburden. By mid‐summer, water pressures are closer to half‐ice overburden and the channelised drainage system is more hydraulically efficient. Surface streams that enter the glacier close to the location of major subglacial drainage pathways are routed quickly to the channels and then to the glacier snout. Streams that enter the glacier further away from the drainage pathways are routed slowly to the channels and then to the snout because they first flow through a distributed drainage system. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
The sediment yields of Alpine catchments are commonly determined from streamload measurements made some distance downstream from glaciers. However, this approach indiscriminately integrates erosion processes occurring in both the glacial and proglacial areas. A specific method is required to ascertain the respective inputs from (i) subglacial and supraglacial sediments, (ii) proglacial hillslopes and (iii) proglacial alluvial areas or sandurs. This issue is addressed here by combining high‐resolution monitoring (2 min) of suspended sediment concentrations at different locations within a catchment with discharge gauging and precipitation data. This methodological framework is applied to two proglacial streams draining the Bossons glacier (Mont Blanc massif, France): the Bossons and Crosette streams. For the Bossons stream, discharge and suspended load data were acquired from June to October 2013 at 1.15 and 1.5 km from the glacial terminus, respectively upstream and downstream from a small valley sandur. These hydro‐sedimentary data are compared with the Crosette stream dataset acquired at the outlet of the Bossons glacier subglacial drainage system. A fourfold analysis focusing on seasonal changes in streamload and discharge, multilinear regression modelling, evaluation of the sandur flux balance and probabilistic uncertainty assessment is used to determine the catchment sediment budget and to explain the proglacial sediment dynamics. The seasonal fluctuation of the sediment signal observed is related to the gradual closing of the subglacial drainage network and to the role of the proglacial area in the sediment cascade: the proglacial hillslopes appear to be disconnected from the main channel and the valley sandur acts as a hydrodynamic sediment buffer both daily and seasonally. Our findings show that an understanding of proglacial sediment dynamics can help in evaluating paraglacial adjustment and subglacial erosion processes. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

11.
There are still relatively few hydrochemical studies of glacial runoff and meltwater routing from the high latitudes, where non-temperate glacier ice is frequently encountered. Representative samples of glacier meltwater were obtained from Scott Turnerbreen, a ‘cold-based’ glacier at 78° N in the Norwegian high Arctic archipelago of Svalbard, during the 1993 melt season and analysed for major ion chemistry. Laboratory dissolution experiments were also conducted, using suspended sediment from the runoff. Significant concentrations of crustal weathering derived SO2−4 are present in the runoff, which is characterized by high ratios of SO2−4: (SO2−4+HCO3) and high p(CO2). Meltwater is not routed subglacially, but flows to the glacier terminus through subaerial, ice marginal channels, and partly flows through a proglacial icing, containing highly concentrated interstitial waters, immediately afront the terminus. The hydrochemistry of the runoff is controlled by: (1) seasonal variations in the input of solutes from snow- and icemelt; (2) proglacial solute acquisition from the icing; and (3) subaerial chemical weathering within saturated, ice-cored lateral moraine adjoining drainage channels at the glacier margins, sediment and concentrated pore water from which is entrained by flowing meltwater. Diurnal variations in solute concentration arise from the net effects of variable sediment pore water entrainment and dilution in the ice marginal streams. Explanation of the hydrochemistry of Scott Turnerbreen requires only one major subaerial flow path, the ice marginal channel system, in which seasonally varying inputs of concentrated snowmelt and dilute icemelt are modified by seepage or entrainment of concentrated pore waters from sediment in lateral moraine, and by concentrated interstitial waters from the proglacial icing, supplied by leaching, slow drainage at grain intersections or simple melting of the icing itself. The ice marginal channels are analogous neither to dilute supra/englacial nor to concentrated subglacial flow components. © 1998 John Wiley & Sons, Ltd.  相似文献   

12.
Meltwaters collected from the proglacial stream escaping from Zongo Glacier (2·1 km2), Bolivia (16°S), have been monitored in order to analyse the internal drainage system of an Andean glacier. Electrical conductivity has been measured sporadically between February 1995 and March 1996, during 16 one-day field surveys, under various meteorological conditions in summer and winter. The mixing-model technique based on the electrical conductivity is used for a quantitative separation of discharge which is derived from continuous water level registration. Tracer experiments (mainly uranine dye and NaCl salt) have been carried out from March to June 1997 to obtain information about the internal drainage system. In the tropical Andes, accumulation only occurs in austral summer, whereas ablation occurs throughout the year and is higher during the accumulation season, between November and March. The assumptions involved in the use of mixing models for analysis of glacial drainage structure are applicable for tropical glaciers because glacial conduits do not suffer complete closure, and are permanently supplied by meltwaters, even in wintertime. Two components of discharge are separated: an englacial flow originating from surface meltwater which is routed without chemical enrichment, and offering low electrical conductivity; and a subglacial one routed in contact with bedrock or sediments showing high ionic concentrations. Electrical conductivity of meltwater varies diurnally, inversely to discharge fluctuations. According to this behaviour, total discharge is mainly formed by the englacial component. The drainage structures for englacial and subglacial flow have to be widely interconnected, as indicated by diurnal variations of the subglacial discharge. Comparison of hydrograph separation based on conductivity and on 18O isotope confirms that the subglacial flow is influenced by surface melting. A hydrograph separation of the subglacial flow is proposed, between a diurnal variable component, composed of water coming from the englacial network, and a base flow, which may vary seasonally. The dye tracing experiments confirm the drainage complexity of Zongo Glacier and demonstrate the interest of identifying three main drainage components. © 1998 John Wiley & Sons, Ltd.  相似文献   

13.
Two-hourly suspended sediment concentration variations observed during the summer of 1987 in the proglacial stream draining Midtdalsbreen, Norway are modelled using multiple regression and time series techniques. Suspended sediment fluctuations are influenced by stream discharge variations, diurnal hysteresis effects, medium-term sediment supply and transport variations and the recent suspended sediment concentration history of the stream. They do not appear to be influenced by seasonal exhaustion or rainfall variations. Possible reasons for this are discussed. Large positive residuals from the fitted models are major pulses of suspended sediment unrelated to discharge variations; these sediment flushes correlate with periods of enhanced glacier motion. They cannot be explained by enhanced sediment production by subglacial erosion, but are probably due to the tapping of subglacially stored sediment during sudden changes in the hydraulics and/or configuration of the subglacial hydrological system. Seasonal changes in the lag between glacier motion peaks and suspended sediment flushes suggest that the subglacial hydrological system evolves over the summer from a distributed to a more channelized configuration.  相似文献   

14.
Till deposition by glacier submarginal,incremental thickening   总被引:1,自引:0,他引:1  
Macro‐ and micro‐scale sedimentological analyses of recently deposited tills and complex push/squeeze moraines on the forelands of Icelandic glaciers and in a stacked till sequence at the former Younger Dryas margin of the Loch Lomond glacier lobe in Scotland are used to assess the depositional processes involved in glacier submarginal emplacement of sediment. Where subglacial meltwater is unable to flush out subglacial sediment or construct thick debris‐rich basal ice by cumulative freeze‐on processes, glacier submarginal processes are dictated by seasonal cycles of refreezing and melt‐out of tills advected from up‐ice by a combination of lodgement, deformation and ice keel and clast ploughing. Although individual till layers may display typical A and B horizon deformation characteristics, the spatially and temporally variable mosaic of subglacial processes will overprint sedimentary and structural signatures on till sequences to the extent that they would be almost impossible to classify genetically in the ancient sediment record. At the macro‐scale, Icelandic tills display moderately strong clast fabrics that conform to the ice flow directions documented by surface flutings; very strong fabrics typify unequivocally lodged clasts. Despite previous interpretations of these tills as subglacial deforming layers, micro‐morphological analysis reveals that shearing played only a partial role in the emplacement of till matrixes, and water escape and sediment flowage features are widespread. A model of submarginal incremental thickening is presented as an explanation of these data, involving till slab emplacement over several seasonal cycles. Each cycle involves: (1) late summer subglacial lodgement, bedrock and sediment plucking, subglacial deformation and ice keel ploughing; (2) early winter freeze‐on of subglacial sediment to the thin outer snout; (3) late winter readvance and failure along a decollement plane within the till, resulting in the carriage of till onto the proximal side of the previous year's push moraine; (4) early summer melt‐out of the till slab, initiating porewater migration, water escape and sediment flow and extrusion. Repeated reworking of the thin end of submarginal till wedges produces overprinted strain signatures and clast pavements. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

15.
Evacuation of basal sediment by subglacial drainage is an important mediator of rates of glacial erosion and glacier flow. Glacial erosion patterns can produce closed basins (i.e., overdeepenings) in glacier beds, thereby introducing adverse bed gradients that are hypothesized to reduce drainage system efficiency and thus favour basal sediment accumulation. To establish how the presence of a terminal overdeepening might mediate seasonal drainage system evolution and glacial sediment export, we measured suspended sediment transport from Findelengletscher, Switzerland during late August and early September 2016. Analyses of these data demonstrate poor hydraulic efficiency of drainage pathways in the terminus region but high sediment availability. Specifically, the rate of increase of sediment concentration with discharge was found to be significantly lower than that anticipated if channelized flow paths were present. Sediment availability to these flow paths was also higher than would be anticipated for discrete bedrock-floored subglacial channels. Our findings indicate that subglacial drainage in the terminal region of Findelengletscher is dominated by distributed flow where entrainment capacity increases only marginally with discharge, but flow has extensive access to an abundant sediment store. This high availability maintains sediment connectivity between the glacial and proglacial realm and means daily sediment yield is unusually high relative to yields exhibited by similar Alpine glaciers. We present a conceptual model illustrating the potential influence of ice-bed morphology on subglacial drainage evolution and sediment evacuation mechanics, patterns and yields, and recommend that bed morphology should be an explicit consideration when monitoring and evaluating glaciated basin sediment export rates.  相似文献   

16.
As part of an integrated study of the hydrology, meltwater quality and dynamics of the Haut Glacier d'Arolla, Switzerland, the glacier's drainage network structure was determined from patterns of dye recovery in 342 injection experiments conducted from 47 moulins distributed widely across the glacier. This structure was compared with theoretical predictions based upon reconstructed patterns of water flow governed by (a) the subglacial hydraulic potential surface, and (b) the subglacial bedrock surface. These reconstructions were based on measurements of ice surface and bedrock topography obtained by a combination of ground survey and radio-echo sounding techniques. The two reconstructions simulate the drainage system structures expected for (a) closed channels, in which water is pressurized by the overlying ice, and (b) gravity-driven, open-channel flow. The closed-channel model provides the best fit to the observed structure, even though theoretical calculations suggest that, under summer discharge conditions, open-channel flow may be widespread beneath the glacier. Possible reasons for this apparent discrepancy are discussed.  相似文献   

17.
Subglacial water flow drives the excavation of a variety of bedrock channels including tunnel valleys and inner gorges. Subglacial floods of various magnitudes – events occurring once per year or less frequently with discharges larger than a few hundred cubic metres per second – are often invoked to explain the erosive power of subglacial water flow. In this study we examine whether subglacial floods are necessary to carve bedrock channels, or if more frequent melt season events (e.g. daily production of meltwater) can explain the formation of substantial bedrock channels over a glacial cycle. We use a one‐dimensional numerical model of bedrock erosion by subglacial meltwater, where water flows through interacting distributed and channelized drainage systems. The shear stresses produced drive bedrock erosion by bed‐ and suspended‐load abrasion. We show that seasonal meltwater discharge can incise an incipient bedrock channel a few tens of centimetres deep and several metres wide, assuming abrasion is the only mechanism of erosion, a particle size of D=256 mm and a prescribed sediment supply per unit width. Using the same sediment characteristics, flood flows yield wider but significantly shallower bedrock channels than seasonal meltwater flows. Furthermore, the smaller the shear stresses produced by a flood, the deeper the bedrock channel. Shear stresses produced by seasonal meltwater are sufficient to readily transport boulders as bedload. Larger flows produce greater shear stresses and the sediment is carried in suspension, which produces fewer contacts with the bed and less erosion. We demonstrate that seasonal meltwater discharge can excavate bedrock volumes commensurate with channels several tens of metres to a few hundred metres wide and several tens of metres deep over several thousand years. Such simulated channels are commensurate with published observations of tunnel valleys and inner gorges. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

18.
C. R. Fenn  B. Gomez 《水文研究》1989,3(2):123-135
Hourly, at-a-point samples of suspended sediment taken from the outflow stream of Glacier de Tsidjiore Nouve, Switzerland, over a 60 day sampling period (n = 1440) are shown to be dominantly composed of silt-sized particles. Particle size, SEM, and XRD analyses indicate a subglacial provenance for the suspended sediment. Temporal variations in particle size and sorting correspond poorly to fluctuations in water discharge, being dominated by erratic hour-to-hour fluctuations and clockwise hysteresis over diurnal flow events. Examination of grain size and sorting dynamics over snowmelt- and icemelt-related ablation events, during precipitation events, and during glacier drainage events enables some inferences to be drawn regarding sediment source areas and supply regimes. We conclude that although the bulk of the suspended sediment in the proglacial stream of Glacier de Tsidjiore Nouve is derived directly from subglacial sources (with occasional contributions from the valley train during rapid snowmelt and heavy rainfall periods), a portion of the suspended load undergoes intermittent ‘flush-fall’ transfer through the proglacial zone, which acts as a sediment source during rising flows and as a sink during periods of waning flow.  相似文献   

19.
To improve our understanding of the interactions between hydrology and dynamics in mostly cold glaciers (in which water flow is limited by thermal regime), we analyse short‐term (every two days) variations in glacier flow in the ablation zone of polythermal John Evans Glacier, High Arctic Canada. We monitor the spatial and temporal propagation of high‐velocity events, and examine their impacts upon supraglacial drainage processes and evolving subglacial drainage system structure. Each year, in response to the rapid establishment of supraglacial–subglacial drainage connections in the mid‐ablation zone, a ‘spring event’ of high horizontal surface velocities and high residual vertical motion propagates downglacier over two to four days from the mid‐ablation zone to the terminus. Subsequently, horizontal velocities fall relative to the spring event but remain higher than over winter, reflecting channelization of subglacial drainage but continued supraglacial meltwater forcing. Further transient high‐velocity events occur later in each melt season in response to melt‐induced rising supraglacial meltwater inputs to the glacier bed, but the dynamic response of the glacier contrasts with that recorded during the spring event, with the degree of spatial propagation a function of the degree to which the subglacial drainage system has become channelized. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
Proglacial icings are one of the most common forms of extrusive ice found in the Canadian Arctic. However, the icing adjacent to Fountain Glacier, Bylot Island, is unique due to its annual cycle of growth and decay, and perennial existence without involving freezing point depression of water due to chemical characteristics. Its regeneration depends on the availability of subglacial water and on the balance between ice accretion and hydro‐thermal erosion. The storage and conduction of the glacial meltwater involved in the accretion of the icing were analyzed by conducting topographic and ground penetrating radar surveys in addition to the modelling of the subglacial drainage network and the thermal characteristics of the glacier base. The reflection power analysis of the geophysical data shows that some areas of the lower ablation zone have a high accumulation of liquid water, particularly beneath the centre part of the glacier along the main supraglacial stream. A dielectric permittivity model of the glacier – sediment interface suggests that a considerable portion of the glacier is warm based; allowing water to flow through unfrozen subglacial sediments towards the proglacial outwash plain. All these glacier‐related characteristics contribute to the annual regeneration of the proglacial icing and allow for portions of the icing to be perennial. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号