首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Spatial variability of aridity over northern India (north of 20°N) is studied by examining variations in the arid area. Area with an objectively determined summer monsoon rainfall (June to September total) of less than 500 mm is identified as arid area. The summer monsoon rainfall of 212 rain-gauges from 212 districts of the region for the period 1871–1984 are used in the analysis. An interesting feature of the arid area series is that it shows decreasing trend from beginning of the present century. The summer monsoon rainfall fluctuations over five subjectively divided zones over northern India are examined to understand the association between rainfall and the arid area variations. The rainfall series for northwest India shows a significant increasing trend and that for northeast India a significant decreasing trend from the beginning of this century. Rainfall fluctuations over the remaining zones can be considered intermediate stages of a systematic spatial change in the rainfall pattern. This suggested that the recent decreasing trend in the arid area is due to a westward shift in the monsoon rainfall activities. From correlation analyses it is inferred that perhaps the recent decreasing trend in the arid area and increasing trend in the monsoon rainfall over northwest India are associated with a warming trend of the northern hemisphere.  相似文献   

2.
In this paper, the simultaneous effect of North Atlantic Oscillation (NAO) and Southern Oscillation (SO) on monsoon rainfall over different homogeneous regions/subdivisions of India is studied. The simultaneous effect of both NAO and SO on Indian summer monsoon rainfall (ISMR) is more important than their individual impact because both the oscillations exist simultaneously throughout the year. To represent the simultaneous impact of NAO and SO, an index called effective strength index (ESI) has been defined on the basis of monthly NAO and SO indices. The variation in the tendency of ESI from January through April has been analyzed and reveals that when this tendency is decreasing, then the ESI value throughout the monsoon season (June–September) of the year remains negative andvice versa. This study further suggests that during the negative phase of ESI tendency, almost all subdivisions of India show above-normal rainfall andvice versa. The correlation analysis indicates that the ESI-tendency is showing an inverse and statistically significant relationship with rainfall over 14 subdivisions of India. Area wise, about 50% of the total area of India shows statistically significant association. Moreover, the ESI-tendency shows a significant relationship with rainfall over north west India, west central India, central north east India, peninsular India and India as a whole. Thus, ESI-tendency can be used as a precursor for the prediction of Indian summer monsoon rainfall on a smaller spatial scale.  相似文献   

3.
Large-scale interannual variability of the northern summer southwest monsoon over India is studied by examining its variation in the dry area during the period 1871–1984. On the mean summer monsoon rainfall (June to September total) chart the 800 mm isohyet divides the country into two nearly equal halves, named as dry area (monsoon rainfall less than 800 mm) and wet area (monsoon rainfall greater than 800 mm). The dry area/wet area shows large variations from one year to another, and is considered as an index for assessing the large-scale performance of the Indian summer monsoon. Statistical and fluctuation characteristics of the summer monsoon dry area (SMDA) are reported. To identify possible causes of variation in the Indian summer monsoon, the correlation between the summer monsoon dry area and eleven regional/global circulation parameters is examined. The northern hemisphere surface air temperature, zonal/hemispheric/global surface air and upper air temperatures, Southern Oscillation, Quasi-biennial oscillation of the equatorial lower stratosphere, April 500-mb ridge along 75°E over India, the Indian surface air temperature and the Bombay sea level pressure showed significant correlation. A new predictor parameter that is preceding year mean monsoon rainfall of a few selected stations over India has been suggested in the present study. The stations have been selected by applying the objective technique ‘selecting a subset of few gauges whose mean monsoon rainfall of the preceding year has shown the highest correlation coefficient (CC) with the SMDA’. Bankura (Gangetic West Bengal), Cuddalore (Tamil Nadu) and Anupgarh (West Rajasthan) entered the selection showing a CC of 0.724. Using a dependent sample of 1951–1980 a predictive model (multiple CC = 0.745) has also been developed for the SMDA with preceding year mean monsoon rainfall of the three selected stations and the sea level pressure tendency at Darwin from Jan–Feb to Mar–May as independent parameters.  相似文献   

4.
Meteorological drought during the southwest monsoon season and for the northeast monsoon season over five meteorological subdivisions of India for the period 1901–2015 has been examined using district and all India standardized precipitation index (SPI). Whenever all India southwest monsoon rainfall was less than ?10% or below normal, for those years all India SPI was found as ?1 or less. Composite analysis of SPI for the below normal years, viz., less than ?15% and ?20% of normal rainfall years indicate that during those years more than 30% of country’s area was under drought condition, whenever all India southwest monsoon rainfall was –15% or less than normal. Trend analysis of monthly SPI for the monsoon months identified the districts experiencing significant increase in drought occurrences. Significant positive correlation has been found with the meteorological drought over most of the districts of central, northern and peninsular India, while negative correlation was seen over the districts of eastern India with NINO 3.4 SST. For the first time, meteorological drought analysis over districts and its association with equatorial pacific SST and probability analysis has been done for the northeast monsoon over the affected regions of south peninsular India. Temporal correlation of all India southwest monsoon SPI and south peninsular India northeast monsoon SPI has been done with the global SST to identify the teleconnection of drought in India with global parameters.  相似文献   

5.
Between 1941 and 2002 there has been a decreasing trend in the frequency of monsoon disturbances (MDs) during the summer monsoon season (June–September). This downwards trend is significant at the 99.9% level for the main monsoon phase (July–August) and the withdrawal phase (September); however, it is not significant during the onset phase (June). The variability in rainfall over the homogeneous regions of India on the sub-seasonal scale also shows a significant decreasing trend with respect to the amount of rainfall over Northwest India (NWI) and Central India (CEI) during all three phases of the monsoon. Meteorological observations reveal that there has been an eastward shift of the rainfall belt with time over the Indian region on the seasonal scale and that this shift is more prominent during the withdrawal phase. This decreasing trend in MDs together with its restricted westerly movement seem to be directly related to the decreasing trend in rainfall over CEI during both the main monsoon and withdrawal phases and over NWI during the withdrawal phase. The low-level circulation anomalies observed during two periods (period-I: 1951–1976; period-ii: 1977–2002) are in accordance with the changes in rainfall distribution, with comparatively more (less) rainfall falling over NWI, CEI and Southern Peninsular India (SPI) during period-I (period-ii), and are accompanied by a stronger (weaker) monsoon circulation embedded with an anomalous cyclonic (anti-cyclonic) circulation over CEI during the main monsoon and withdrawal phases. During the onset phase, completely opposite circulation anomalies are observed during both periods, and these are associated with more (less) rainfall over NWI, CEI and SPI during period-ii (period-I).  相似文献   

6.
纵向岭谷区冬、夏水热条件空间分布研究   总被引:20,自引:0,他引:20  
曹杰  何大明  姚平 《地球科学进展》2005,20(11):1176-1182
利用纵向岭谷区内76个测站降水、温度资料和大气环流资料,研究该区冬、夏两季降水的空间分布规律。结果表明:纵向岭谷区多年平均冬季降水空间上沿河流呈纵向分布;但纵向岭谷独特地形对冬季降水变化的空间分布影响不明显;冬季气候平均温度大致呈东西向带状分布,由低纬到高纬温度逐渐递减;在区域上,纵向岭谷独特地形的“通道—阻隔”作用对冬季温度空间分布的影响不明显;但在怒江和澜沧江流域,这种影响则较为明显。纵向岭谷区多年平均夏季降水空间分布主要由纵向岭谷的“阻隔”效应,以及夏季从孟加拉湾来的气流和从南海来的气流在相应迎风坡面辐合,形成两支较强的上升气流所致;而纵向剖面大气环流的变化则较为均匀,显示了纵向岭谷的“通道”效应。纵向岭谷的这种“通道—阻隔”效应使得西南季风和东南季风在区内交汇,并使区内夏季降水空间上及夏季降水的变化沿河流呈纵向分布。地形对怒江、澜沧江流域夏季温度空间分布的“通道—阻隔”作用较明显;对夏季温度变化的“通道—阻隔”作用则在纵向岭谷西北部地区最明显,但其余地区地形的作用则相对较弱。  相似文献   

7.
Although previous literature have considered Southern Oscillation Index (SOI), Indian Dipole, and SST as the major teleconnection patterns to explain the variability of summer monsoon rainfall over India. South Asia low pressure and Indian Ocean high are the centers of action that dominates atmospheric circulations in Indian continent. This paper examines the possible impact of South Asian low pressure distribution on the variability of summer monsoon rainfall of India using centers of action approach. Our analysis demonstrates that the explanation of summer monsoon rainfall variability over Central India is improved significantly if the SOI is replaced by South Asian low heat. This contribution also explains the physical mechanisms to establish the relationships between the South Asian low heat and regional climate by examining composite maps of large-scale circulation fields using NCEP/NCAR Reanalysis data.  相似文献   

8.
Objective analysis of daily rainfall at the resolution of 1° grid for the Indian monsoon region has been carried out merging dense land rainfall observations and INSAT derived precipitation estimates. This daily analysis, being based on high dense rain gauge observations was found to be very realistic and able to reproduce detailed features of Indian summer monsoon. The inter-comparison with the observations suggests that the new analysis could distinctly capture characteristic features of the summer monsoon such as north-south oriented belt of heavy rainfall along the Western Ghats with sharp gradient of rainfall between the west coast heavy rain region and the rain shadow region to the east, pockets of heavy rainfall along the location of monsoon trough/low, over the east central parts of the country, over north-east India, along the foothills of Himalayas and over the north Bay of Bengal. When this product was used to assess the quality of other available standard climate products (CMAP and ECMWF reanalysis) at the gird resolution of 2.5°, it was found that the orographic heavy rainfall along Western Ghats of India was poorly identified by them. However, the GPCC analysis (gauge only) at the resolution of 1° grid closely discerns the new analysis. This suggests that there is a need for a higher resolution analysis with adequate rain gauge observations to retain important aspects of the summer monsoon over India. The case studies illustrated show that the daily analysis is able to capture large-scale as well as mesoscale features of monsoon precipitation systems. This study with data of two seasons (2001 and 2003) has shown sufficiently promising results for operational application, particularly for the validation of NWP models.  相似文献   

9.
In this study, the possible linkage between summer monsoon rainfall over India and surface meteorological fields (basic fields and heat budget components) over monsoon region (30‡E-120‡E, 30‡S30‡N) during the pre-monsoon month of May and summer monsoon season (June to September) are examined. For this purpose, monthly surface meteorological fields anomaly are analyzed for 42 years (1958-1999) using reanalysis data of NCEP/NCAR (National Center for Environmental Prediction/National Center for Atmospheric Research). The statistical significance of the anomaly (difference) between the surplus and deficient monsoon years in the surface meteorological fields are also examined by Student’s t-test at 95% confidence level. Significant negative anomalies of mean sea level pressure are observed over India, Arabian Sea and Arabian Peninsular in the pre-monsoon month of May and monsoon season. Significant positive anomalies in the zonal and meridional wind (at 2 m) in the month of May are observed in the west Arabian Sea off Somali coast and for monsoon season it is in the central Arabian Sea that extends up to Somalia. Significant positive anomalies of the surface temperature and air temperature (at 2 m) in the month of May are observed over north India and adjoining Pakistan and Afghanistan region. During monsoon season this region is replaced by significant negative anomalies. In the month of May, significant positive anomalies of cloud amount are observed over Somali coast, north Bay of Bengal and adjoining West Bengal and Bangladesh. During monsoon season, cloud amount shows positive anomalies over NW India and north Arabian Sea. There is overall reduction in the incoming shortwave radiation flux during surplus monsoon years. A higher magnitude of latent heat flux is also found in surplus monsoon years for the month of May as well as the monsoon season. The significant positive anomaly of latent heat flux in May, observed over southwest Arabian Sea, may be considered as an advance indicator of the possible behavior of the subsequent monsoon season. The distribution of net heat flux is predominantly negative over eastern Arabian Sea, Bay of Bengal and Indian Ocean. Anomaly between the two extreme monsoon years in post 1980 (i.e., 1988 and 1987) shows that shortwave flux, latent heat flux and net heat flux indicate reversal in sign, particularly in south Indian Ocean. Variations of the heat budget components over four smaller sectors of Indian seas, namely Arabian Sea, Bay of Bengal and west Indian Ocean and east Indian Ocean show that a small sector of Arabian Sea is most dominant during May and other sectors showing reversal in sign of latent heat flux during monsoon season.  相似文献   

10.
Precipitation over India is driven by the Indian monsoon. Although changes in this atmospheric circulation are caused by the differential seasonal diabatic heating of Asia and the Indo-Pacific Ocean, it is so far unknown how global warming influences the monsoon rainfalls regionally. Herein, we present a Miocene pollen flora as the first direct proxy for monsoon over southern India during the Middle Miocene Climate Optimum. To identify climatic key parameters, such as mean annual temperature, warmest month temperature, coldest month temperature, mean annual precipitation, mean precipitation during the driest month, mean precipitation during the wettest month and mean precipitation during the warmest month the Coexistence Approach is applied. Irrespective of a ~ 3–4 °C higher global temperature during the Middle Miocene Climate Optimum, the results indicate a modern-like monsoonal precipitation pattern contrasting marine proxies which point to a strong decline of Indian monsoon in the Himalaya at this time. Therefore, the strength of monsoon rainfall in tropical India appears neither to be related to global warming nor to be linked with the atmospheric conditions over the Tibetan Plateau. For the future it implies that increased global warming does not necessarily entail changes in the South Indian monsoon rainfall.  相似文献   

11.
In this article, the interannual variability of certain dynamic and thermodynamic characteristics of various sectors in the Asian summer monsoon domain was examined during the onset phase over the south Indian peninsula (Kerala Coast). Daily average (0000 and 1200 UTC) reanalysis data sets of the National Centre for Environmental Prediction/National Centre for Atmospheric Research (NCEP/NCAR) for the period 1948–1999 were used. Based on 52 years onset date of the Indian summer monsoon, we categorized the pre-onset, onset, and post-onset periods (each an average of 5 days) to investigate the interannual variability of significant budget terms over the Arabian Sea, Bay of Bengal, and the Indian peninsula. A higher difference was noticed in low-level kinetic energy (850 hPa) and the vertically integrated generation of kinetic energy over the Arabian Sea from the pre-onset, onset, and post-onset periods. Also, significant changes were noticed in the net tropospheric moisture and diabatic heating over the Arabian Sea and Indian peninsula from the pre-onset to the post-onset period. It appears that attaining the magnitude of 40 m2 s−2 and then a sharp rise in kinetic energy at 850 hPa is an appropriate time to declare the onset of the summer monsoon over India. In addition to a sufficient level of net tropospheric moisture (40 mm), a minimum strength of low-level flow is needed to trigger convective activity over the Arabian Sea and the Bay of Bengal. An attempt was also made to develop a location-specific prediction of onset dates of the summer monsoon over India based on energetics and basic meteorological parameters using multivariate statistical techniques. The regression technique was developed with the data of May and June for 42 years (1948–1989) and validated with 10 years NCEP reanalysis from 1990 to 1999. It was found that the predicted onset dates from the regression model are fairly in agreement with the observed onset dates obtained from the Indian Meteorology Department.  相似文献   

12.
Using the satellite derived sea surface temperature (SST) data for 1979 (bad monsoon) and 1983 (good monsoon), the SST variability for two contrasting monsoon seasons is studied. The study indicates that large negative anomalies off the Somali and Arabian coasts are associated with good monsoon rainfall over India. The strong monsoonal cooling in these regions can be attributed to strong low level winds and intense upwelling. The reappearance of 27°C isotherm off Somali coast in May/June coincides with the onset of southwest monsoon over India. Further, the influence of zonal anomaly of SST off Somalia Coast (SCZASST) and Central Indian Ocean Zonal Anomaly of SST (CIOZASST) with monsoon rainfall over India is brought out. The former is negatively related to the monsoon rainfall over western and central parts of India, whilst CIOZASST is positively related.  相似文献   

13.
The relative impacts of the ENSO and Indian Ocean dipole (IOD) events on Indian summer (June–September) monsoon rainfall at sub-regional scales have been examined in this study. GISST datasets from 1958 to 1998, along with Willmott and Matsuura gridded rainfall data, all India summer monsoon rainfall data, and homogeneous and sub-regional Indian rainfall datasets were used. The spatial distribution of partial correlations between the IOD and summer rainfall over India indicates a significant impact on rainfall along the monsoon trough regions, parts of the southwest coastal regions of India, and also over Pakistan, Afghanistan, and Iran. ENSO events have a wider impact, although opposite in nature over the monsoon trough region to that of IOD events. The ENSO (IOD) index is negatively (positively) correlated (significant at the 95% confidence level from a two-tailed Student t-test) with summer monsoon rainfall over seven (four) of the eight homogeneous rainfall zones of India. During summer, ENSO events also cause drought over northern Sri Lanka, whereas the IOD events cause surplus rainfall in its south. On monthly scales, the ENSO and IOD events have significant impacts on many parts of India. In general, the magnitude of ENSO-related correlations is greater than those related to the IOD. The monthly-stratified IOD variability during each of the months from July to September has a significant impact on Indian summer monsoon rainfall variability over different parts of India, confirming that strong IOD events indeed affect the Indian summer monsoon.
Karumuri AshokEmail:
  相似文献   

14.
Some statistical properties of the summer monsoon seasonal rainfall for India during the last 100 years (1881–1980) are presented. The most recent decade of 1971–1980 shows the lowest value of standard-decadal average monsoon rainfall (86.40 cm) and is also characterised by the second highest value of coefficient of variation in monsoon rainfall (12.4 %). The combined last two standard-decadal period of 1961–1980 was the period of the largest coefficient of variation and the lowest average monsoon rainfall for India. The possible influence of global climatic variability on the performance of the monsoon is also examined. Analyses of correlation coefficient show that a statistically significant positive relationship with a time-lag of about six months exists between monsoon rainfall and northern hemispheric surface air temperature. A cooler northern hemisphere during January/February leads to a poor monsoon. All the major drought years during the last 3 decades had much cooler January/February periods over the northern hemisphere—1972 having the coldest January/February with a temperature departure of −0.94°C and the most disastrous monsoon failure.  相似文献   

15.
Using a historical database (1952–2007) of sea surface temperature (SST) from a subtropical high-controlled area (110°E–140°E, 15°N–35°N) of the west Pacific Ocean and the precipitation over Hunan Province of southeast China, we analyzed time series variations of precipitation in relation to the East Asian summer monsoon and a global warming setting. The results show that there has been a significant increase in SST of the subtropical high-controlled area in the recent 50 years. Although the increase in annual summer monsoon precipitation during the same period has been subtle over Hunan province, seasonal rainfall distribution has obviously changed, represented by a reduction in May, but a significant increase through June to August, especially in July. We suggest that the mechanism of seasonal redistribution of monsoon precipitation is primarily due to the increasing SST that delays the intrusion of the west Pacific Subtropical High, therefore leading to a postponing of migration of the East Asian summer monsoon rainfall belt inland and northward.  相似文献   

16.
There is a close relationship between interannual variability of the Indian summer monsoon rainfall and the El Niño/Southern Oscillation (ENSO) (drought conditions over India accompany warm ENSO events and vice versa). However, recent observations suggest a weakening of this ENSO-monsoon relationship that may be linked to global warming. We report here an analysis of the ENSO-monsoon relationship within the framework of a 1000-year control simulation of the MRI-coupled general circulation model (GCM), MRI-CGCM2.2. An overall correlation between the June-July-August (JJA) Nino3.4 sea surface temperature and the JJA Indian monsoon rainfall is –0.39, with reasonable circulation characteristics associated with the modeled ENSO. The simulated ENSO-monsoon relationship reveals long-term variations, from –0.71 to +0.07, in moving 31-year windows. This modulation in the ENSO-monsoon relationship is associated with decadal variability of the climate system.  相似文献   

17.
Summer monsoon rainfall was simulated by a global 20 km-mesh atmospheric general circulation model (AGCM), focusing on the changes in the summer monsoon rainfall of Bangladesh. Calibration and validation of AGCM were performed over Bangladesh for generating summer monsoon rainfall scenarios. The model-produced summer monsoon rainfall was calibrated with a ground-based observational data in Bangladesh during the period 1979–2003. The TRMM 3B43 V6 data are also used for understanding the model performance. The AGCM output obtained through validation process made it confident to be used for near future and future summer monsoon rainfall projection in Bangladesh. In the present-day (1979–2003) climate simulations, the high-resolution AGCM produces the summer monsoon rainfall better as a spatial distribution over SAARC region in comparison with TRMM but magnitude may be different. Summer monsoon rainfall projection for Bangladesh was experimentally obtained for near future and future during the period 2015–2034 and 2075–2099, respectively. This work reveals that summer monsoon rainfall simulated by a high-resolution AGCM is not directly applicable to application purpose. However, acceptable performance was obtained in estimating summer monsoon rainfall over Bangladesh after calibration and validation. This study predicts that in near future, summer monsoon rainfall on an average may decrease about ?0.5 % during the period 2015–2034 and future summer monsoon rainfall may increase about 0.4 % during the period 2075–2099.  相似文献   

18.
Sea-breeze-initiated convection and precipitation have been investigated along the east coast of India during the Indian southwest monsoon season. Sea-breeze circulation was observed on approximately 70–80% of days during the summer months (June–August) along the Chennai coast. Average sea-breeze wind speeds are greater at rural locations than in the urban region of Chennai. Sea-breeze circulation was shown to be the dominant mechanism initiating rainfall during the Indian southwest monsoon season. Approximately 80% of the total rainfall observed during the southwest monsoon over Chennai is directly related to convection initiated by sea-breeze circulation.  相似文献   

19.
In this paper an attempt has been made to search a new parameter for the prediction of the Indian summer monsoon rainfall. For this purpose the relationship of the global surface-air temperature of four standard seasons viz., Winter (December-January-February), Spring (March-April-May), Summer (June-July-August), Autumn (September-October-November) with the Indian summer monsoon rainfall has been carried out. The same analysis is also carried out with surface-air temperature anomalies within the tropical belt (30°S to 30°N) and Indian summer monsoon rainfall. For the present study data for 30 years period from 1958 to 1988 have been used. The analysis reveals that there is a strong inverse relationship between the monsoon activity and the tropical belt temperature.  相似文献   

20.
隋伟辉  赵平 《第四纪研究》2005,25(5):645-654
文章利用Zhao等的模拟结果,进一步研究了在末次盛冰期(LGM)情景下汪品先和CLIMAP两种重建海洋表面温度(SST)资料差异对亚洲夏季风的影响。模拟结果表明:在LGM情景下西太平洋海域SST资料的不同对模拟的亚洲夏季风有着十分重要的作用。夏季,与CLGM方案相比,在WLGM方案中,当热带西太平洋SST较暖时,印度地区的大气热量出现显著增加,大气热量的这种变化,使得南非高压、南印度洋经向Hadley环流加强,伴随着索马里越赤道气流加强,也导致了印度季风区纬向季风环流的加强,从而造成了印度夏季风增强、降水增多;与较暖的热带西太平洋相对应,澳大利亚高压和120°E附近越赤道气流减弱,东亚季风区20°N以南经向季风环流加强、20°N以北经向季风环流减弱,指示着一个强的南海夏季风和较弱东亚副热带大陆夏季风。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号