首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A shock-wave compression experiment using synthesized silica gel was investigated as a model for a comet impact event on the Earth’s surface. The sample shocked at 20.7 GPa showed considerable structural changes, a release of water molecules, and the dehydration of silanol (Si–OH) that led to the formation of a new Si–O–Si network structure containing larger rings (e.g., six-membered ring of SiO4 tetrahedra). The high aftershock temperature at 20.7 GPa, which could be close to 800 °C, influenced the sample structure. However, some silanols, which were presumed to be the mutually hydrogen-bonded silanol group, remained at pressures >20.7 GPa. This type of silanol along with a small number of water molecules may remain even after shock compression at 30.9 GPa, although the intermediate structure of the sample recovered was similar to that of silica glass.  相似文献   

2.
The short range distribution of interatomic distances in three feldspar glasses has been determined by X-ray radial distribution analysis. The resulting radial distribution functions (RDF's) are interpreted by comparison with RDF's calculated for various quasi-crystalline models of the glass structure.The experimental RDF's of the alkali feldspar glasses were found to be inconsistent with the four-membered rings of tetrahedra associated with crystalline feldspars; the structures of these glasses are probably based on interconnected six-membered rings of the type found in tridymite, nepheline, or kalsilite. In contrast, the RDF of calcic feldspar glass is consistent with a four-membered ring structure of the type found in crystalline anorthite. T-O bond lengths (T = Si,Al) increase from 1.60 Å in SiO2 glass [J. H. Konnert and J. Karle (1973) Acta Cryst.A29, 702–710] to 1.63 Å in the alkali feldspar glasses to 1.66 Å in the calcic feldspar glass due to the substitution of Al for Si in the tetrahedra] sites. The T-O-T bond angles inferred from the RDF peak positions are 151° in SiO2 glass (see reference above), 146° in the alkali feldspar glasses, and 143° in the calcic feldspar glass. Detail in the RDF at distances greater than 5 Å suggests that the alkali feldspar glasses have a higher degree of long range order than the calcic feldspar glasses.Assuming that the structural details of our feldspar glasses are similar to those of the melts, the observed structural differences between the alkali feldspar and calcic feldspar glasses helps explain the differences in crystallization kinetics of anhydrous feldspar composition melts. Structural interpretations of some thermodynamic and rheologic phenomena associated with feldspar melts are also presented based on these results.  相似文献   

3.
Recently, near infrared spectroscopy in combination with double derivative technique has been effectively used by Christy (Vib Spectrosc 54:42–49, 2010) to study and differentiate between free and hydrogen bonded silanol groups on silica gel surface. The method has given some insight into the type of functionalities, their location in silica gel samples, and the way the water molecules bind onto the silanol groups. The important information in this respect comes from the overtones of the OH groups of water molecules hydrogen-bonded to free silanol groups, and hydrogen-bonded silanol groups absorbing in the region 5,500–5,100 cm−1. Chemically, opal minerals are hydrated silica and the same approach was adapted to study the state of water molecules, silanol functionalities, and their locations in opal samples from Slovakia. Twenty opal samples classified into CT and A classes and one quartz sample were used in this work. The samples were crushed using a hydraulic press and powderized. Each sample was then subjected to evacuation process to remove surface-adsorbed water at 200°C, and the near infrared spectrum of each sample was measured using a Perkin Elmer NTS FT-NIR spectrometer equipped with a transflectance accessory and a DTGS detector. The samples were also heated to 750°C to remove the hydrogen-bonded silanol groups on the surface to reveal their locality. Second derivative profiles of the near infrared reflectance spectra were obtained using the instrument’s software and used in the detailed analysis of the samples. The analysis of the near infrared spectra and their second derivative profiles had the aim in finding relationships between the surface chemical structure and the classification of opal samples. The dry opal samples were also tested for their surface adsorption effectivity toward water molecules. The results indicate that the opal samples contain (1) surface-adsorbed water, (2) free and hydrogen-bonded silanol groups on the surface, (3) trapped water molecules in the bulk, and (4) free and hydrogen-bonded silanol groups in the cavity surfaces in the bulk. A part of the water molecules in the bulk of opal minerals are found as free molecules and the rest are found in hydrogen-bonded state to either free or vicinal or geminal silanol groups.  相似文献   

4.
 Cordierite precursors were prepared by a sol-gel process using tetraethoxysilane, aluminum sec.-butoxide, and Mg metal flakes as starting materials. The precursors were treated by 15-h heating steps in intervals of 100 °C from 200 to 900 °C; they show a continuous decrease in the analytical water content with increasing preheating temperatures. The presence of H2O and (Si,Al)–OH combination modes in the FTIR powder spectra prove the presence of both H2O molecules and OH groups as structural components, with invariable OH concentrations up to preheating temperatures of 500 °C. The deconvolution of the absorptions in the (H2O,OH)-stretching vibrational region into four bands centred at 3584, 3415, 3216 and 3047 cm−1 reveals non-bridging and bridging H2O molecules and OH groups. The precursor powders remain X-ray amorphous up to preheating temperatures of 800 °C. Above this temperature the precursors crystallize to μ-cordierite; at 1000 °C the structure transforms to α-cordierite. Close similarities exist in the pattern of the 1400–400 cm−1 lattice vibrational region for precursors preheated up to 600 °C. Striking differences are evident at preheating temperatures of 800 °C, where the spectrum of the precursor powder corresponds to that of conventional cordierite glass. Bands centred in the “as-prepared” precursor at 1137 and 1020 cm−1 are assigned to Si–O-stretching vibrations. A weak absorption at 872 cm−1 is assigned to stretching modes of AlO4 tetrahedral units and the same assignment holds for a band at 783 cm−1 which appears in precursors preheated at 600 °C. With increasing temperatures, these bands show a significant shift to higher wavenumbers and the Al–O stretching modes display a strong increase in their intensities. (Si,Al)–O–(Si,Al)-bending modes occur at 710 cm−1 and the band at 572 cm−1 is assigned to stretching vibrations of AlO6 octahedral units. A strong band around 440 cm−1 is essentially attributed to Mg–O-stretching vibrations. The strongly increasing intensity of the 872 and 783 cm−1 bands demonstrates a clear preference of Al for a fourfold-coordinated structural position in the precursors preheated at high temperatures. The observed band shift is a strong indication for increasing tetrahedral network condensation along with changes in the Si–O and Al–O distances to tetrahedra dimensions similar to those occurring in crystalline cordierite. These structural changes are correlated to the dehydration process starting essentially above 500 °C, clearly demonstrating the inhibiting role of H2O molecules and especially of OH groups. Received: 1 March 2002 / Accepted: 26 June 2002  相似文献   

5.
The average local structure of a rhyolitic composition glass has been determined at 25°C using X-ray radial distribution analysis (RDA) and quasi-crystalline modelling and is best described as similar to that in a stuffed framework composed principally of six-membered rings of Si and Al tetrahedra (basically a stuffed tridymite-like model). Using this model it is possible to calculate a density (2.41 g/cm3) which compares well with the measured density (2.40 g/cm3); a structural model based on four-membered rings (an albite-like model) results in a substantially higher calculated density (2.60 g/cm3). We suggest that the rhyolite glass structural model is appropriate for rhyolitic melts, based on evidence from the recent literature. New viscosity data for an anhydrous rhyolite composition measured between 1200°C and 1500°C are presented and interpreted in terms of our proposed structural model and previous melt structure models for the major normative components of rhyolite. A mechanism for diffusion and viscous flow in framework silicate melts (including rhyolite composition) is proposed on the basis of recent molecular orbital calculations and molecular dynamics simulations of silicate and fluoride melts.  相似文献   

6.
The high-temperature thermoelastic behavior of a natural cancrinite has been investigated by in situ single-crystal X-ray diffraction. The unit-cell volume variation as a function of temperature (T) exhibits a continuous trend up to 748 K (hydrous expansion regime). The unit-cell edges expansion clearly shows an anisotropic expansion scheme (α a  < α c ). At 748 K, a dehydration process takes place, and a series of unit-cell parameter measurements at constant temperature (748 K) for a period of 12 days indicate that the dehydration process continued for the entire period of time, until the cell parameters were found to be constant. After the dehydration process is completed, the structure expands almost linearly with increasing temperature up to 823 K, where a sudden broadening of the diffraction peaks, likely due to the impending decomposition, did not allow the collection of further data points. Even with a very limited temperature range for the anhydrous regime, we observed that the behavior of the two (i.e., hydrous and anhydrous) high-temperature structures is similar in terms of (1) volume thermal expansion coefficient and (2) thermoelastic anisotropy. The structure refinements based on the data collected at 303, 478 and 748 K (after the dehydration), respectively, showed a change in the mechanism of tilting of the quasi-rigid (Si,Al)O4 tetrahedra, following the loss of H2O molecules, ascribable to the high-temperature Na+ coordination environment within the cages.  相似文献   

7.
 The densification and structural changes in SiO2 glass compressed up to 43.4 GPa by shock experiments are investigated quantitatively by the X-ray diffraction technique. Direct structural data (average Si–O and Si–Si distances and Si–O–Si angles, coordination number of the Si atom) of these shock-densified SiO2 glasses have been obtained by analyzing the radial distribution function curves, RDF(r), calculated with X-ray diffraction data. The coordination number of all densified glasses is about 4 and shows almost no pressure variation. The SiO2 glass has shown density increase of 11% at a shock compression of 26.3 GPa. This density evolution could not be explained by the coordination change. The reduction of the average Si–O–Si angle (144° at 0 GPa to 136° at 26.3 GPa) obtained from RDF(r) data may account for this density increase. This Si–O–Si angle change may be caused by shrinkage of the network structure and the increase of small rings of SiO4 tetrahedra. For higher shock pressure, a decrease in the Si–O–Si angle to 140° was observed. This is consistent with the decrease in density at 32.0 and 43.2 GPa. This decrease in the Si–O–Si angle and density could be attributed to an annealing effect due to high after-shock residual temperature. This pressure dependence of average Si–O–Si angles in shock-densified SiO2 glass agrees with the results of our previous Raman spectroscopic study. On the other hand, the pressure variation for the first sharp diffraction peak (FSDP) was analyzed to estimate the evolution of intermediate range structures. It is suggested that the mean d value (d m ) obtained from the position of FSDP strongly depends on the shock and residual temperature, as well as shock pressure. Received: 29 June 2001 / Accepted: 14 November 2001  相似文献   

8.
The thermal behaviour of silica rocks upon heat treatment is dependent on the constituent minerals and petrographic texture types. These constituents can be shown to be mainly quartz in the form of two types of chalcedony (Length-fast (LF) chalcedony and Length-slow (LS) chalcedony, the latter also being termed quartzine) and moganite. Even though the thermal behaviour of LF-chalcedony is well understood, major uncertainties persist concerning the high-temperature behaviour of LS-chalcedony and moganite. We present here a comparative study of these three constituents of common silica rocks. Our results show that the chemical reaction is the same in all three, Si–OH + HO–Si → Si–O–Si + H2O, but that the reaction kinetics and activation temperatures are very different. LS-chalcedony begins to react from 200 °C upwards, that is at temperatures 50 °C below the ones observed in LF-chalcedony, and shows the fastest reaction kinetics of this ‘water’ loss. Chemically bound water (SiOH) in moganite is more stable at high temperatures and no specific activation temperature is necessary for triggering the temperature-induced ‘water’ loss. Moganite is also found to act as a stabilizer in silica rocks preventing them from temperature-induced fracturing. These findings have implications for the study of potential heat treatment temperatures of silica rocks (in industry and heritage studies), but they also shed light on the different structures of SiO2 minerals and the role of OH impurities therein.  相似文献   

9.
The phase assemblages and compositions in a K-free lherzolite + H2O system were determined between 4 and 6 GPa and 700–800°C, and the dehydration reactions occurring at subarc depth in subduction zones were constrained. Experiments were performed on a rocking multi-anvil apparatus using a diamond-trap setting. The composition of the fluid phase was measured using the recently developed cryogenic LA–ICP–MS technique. Results show that, at 4 GPa, the aqueous fluid coexisting with residual lherzolite (~85 wt% H2O) doubles its solute load when chlorite transforms to the 10-Å phase between 700 and 750°C. The 10-Å phase breaks down at 4 and 5 GPa between 750 and 800°C and at 6 GPa between 700 and 750°C, leaving a dry lherzolite coexisting with a fluid phase containing 58–67 wt% H2O, again doubling the total dissolved solute load. The fluid fraction in the system increases from 0.2 when a hydrous mineral is present to 0.4 when coexisting with a dry lherzolite. Our data do not reveal the presence of a hydrous peridotite solidus below 800°C. The directly measured fluid compositions demonstrate a fundamental change in the (MgO + FeO) to SiO2 mass ratio of fluid solutes occurring at a depth of ca. 120–150 km (in the temperature window of 700–800°C), from (MgO–FeO)-dominated at 4 GPa [with (MgO + FeO)/SiO2 ratio of 1.41–1.56] to SiO2-dominated at 5–6 GPa (ratios of 0.61–0.82). The mobility of Al2O3 increases by more than one order of magnitude across this P–T interval and demonstrates that Al2O3 is compatible in an aqueous fluid coexisting with the anhydrous ol-opx-cpx ± grt assemblage. This shift in the fluid composition correlates with changes in the phase assemblage of the residual silicates. The hitherto unknown fundamental change in (MgO + FeO)/SiO2 ratio and prominent increase in Al2O3 of the aqueous fluid with progressive subduction will likely inspire novel concepts on mantle wedge metasomatism by slab fluids.  相似文献   

10.
We performed in situ infrared spectroscopic measurements of OH bands in a forsterite single crystal between ?194 and 200 °C. The crystal was synthesized at 2 GPa from a cooling experiment performed between 1,400 and 1,275 °C at a rate of 1 °C per hour under high silica-activity conditions. Twenty-four individual bands were identified at low temperature. Three different groups can be distinguished: (1) Most of the OH bands between 3,300 and 3,650 cm?1 display a small frequency lowering (<4 cm?1) and a moderate broadening (<10 cm?1) as temperature is increased from ?194 to 200 °C. The behaviour of these bands is compatible with weakly H-bonded OH groups associated with hydrogen substitution into silicon tetrahedra; (2) In the same frequency range, two bands at 3,617 and 3,566 cm?1 display a significantly anharmonic behaviour with stronger frequency lowering (42 and 27 cm?1 respectively) and broadening (~30 cm?1) with increasing temperature. It is tentatively proposed that the defects responsible for these OH bands correspond to H atoms in interstitial position; (3) In the frequency region between 3,300 and 3,000 cm?1, three broad bands are identified at 3,151, 3,178 and 3,217 cm?1, at ?194 °C. They exhibit significant frequency increase (~20 cm?1) and broadening (~70 cm?1) with increasing temperature, indicating moderate H bonding. These bands are compatible with (2H)Mg defects. A survey of published spectra of forsterite samples synthesized above 5 GPa shows that about 75 % of the incorporated hydrogen belongs to type (1) OH bands associated with Si substitution and 25 % to the broad band at 3,566 cm?1 (type (2); 3,550 cm?1 at room temperature). The contribution of OH bands of type (3), associated to (2H)Mg defects, is negligible. Therefore, solubility of hydrogen in forsterite (and natural olivine compositions) cannot be described by a single solubility law, but by the combination of at least two laws, with different activation volumes and water fugacity exponents.  相似文献   

11.
Structural changes during dehydration and subsequent decomposition in thaumasite Ca3Si(SO4)(CO3)(OH)6·12 H2O were studied by in situ synchrotron powder diffraction between 303 and 1,098 K. Evolution of the crystal structure was observed through 28 structure refinements, by full profile Rietveld analysis performed in the P63 space group, between 300 and 417 K, whereupon the thaumasite structure was observed to breakdown. Within this temperature range, the cell parameters of thaumasite increased as a function of temperature in a nearly linear fashion up to about 393 K, at which temperature, a slight slope change was observed. Above 400 K, the thermogravimetric analysis revealed that the dehydration process proceeded very rapidly while the refined occupancy of water molecules dropped below a critical level, leading to instability in the thaumasite structure. At a same time, a remarkable change in the unit cell parameters occurring at about 417 K indicated that the crystal structure of thaumasite collapsed on losing the crystallization water and it turned amorphous. This result indicated that the dehydration/decomposition of thaumasite was induced by the departure of the crystallization water. At about 950 K, anhydrite and cristobalite crystallized from the thaumasite glass.  相似文献   

12.
Infrared absorption spectroscopy of quenched charges provided information on the progressive breakdown of the structure of two basic rock melts with increasing temperature. The spectra exhibited a gradual loss of absorption peaks and at the highest temperatures (1400–1500°C) only peaks representing the strongest bonds survived. SiO4 tetrahedra and possibly larger groups may have been present in the melts at the highest temperatures.  相似文献   

13.
Single crystals of C–Na2Si2O5 have been synthesized from the hydrothermal recrystallization of a glass. The title compound is monoclinic, space group P21/c with Z= 8 and unit-cell parameters a= 4.8521 (4)Å, b=23.9793(16)Å, c=8.1410(6)Å, β=90.15(1)° and V=947.2(2)Å3. The structure has been determined by direct methods and belongs to the group of phyllosilicates. It is based on layers of tetrahedra with elliptically six-membered rings in chair conformation. The sequence of directedness within a single ring is UDUDUD. The sheets are parallel to (010) with linking sodium cations in five- and sixfold coordination. Concerning the shape and the conformation of the rings, C–Na2Si2O5 is closely related to β-Na2Si2O5. However, both structures differ in the stacking sequences of the layers. A possible explanation for the frequently observed polysynthetic twinning of phase C is presented. In the 29Si MAS-NMR spectrum of C–Na2Si2O5 four well-resolved lines of equal intensity are observed at ?86.0, ?86.3, ?87.4, and ?88.2?ppm. The narrow range of isotropic chemical shifts reflects the great similarity of the environments of the different Si sites. This lack of pronounced differences in geometry renders a reliable assignment of the resonance lines to the individual sites on the basis of known empiric correlations and geometrical features impossible.  相似文献   

14.
Crystals of sodium trisilicate (Na2Si3O7) have been grown in the presence of melt at 9 GPa, 1200 °C using the MA6/8 superpress at Edmonton, and the X-ray structure determined at room pressure (R=2.0%). Na2Si3O7 is monoclinic with a=8.922(2) Å, b= 4.8490(5) Å, c=11.567(1) Å, β=102.64(1)° (C2/c), D x = 3.295 g·cm-3. Silicon occurs in both tetrahedral and octahedral coordination ([6]Si∶[4]Si = l∶2). The SiO4 tetrahedra form a diorthosilicate [Si2O7] group and are linked by the isolated SiO6 octahedra via shared corners into a framework of 6-membered ([4]Si-[4]Si-[6]Si[4]Si-[4] Si-[6]Si) and 4-membered ([4]Si-[6]Si-[4]Sr-[6]Si) rings: 〈[6]Si-O〉=1.789 Å, 〈[4]Si-O〉= 1.625 Å, [4]Si-O-[4]Si=132.9° and the bridging oxygen is overbonded (s = 2.22). Channels parallel to b-axis and [110] accommodate Na in irregular 6-fold coordination: 〈Na-O〉 = 2.511 Å.  相似文献   

15.
The crystal structure of a natural triclinic talc (1Tc polytype) [with composition: (Mg2.93Fe0.06)Σ2.99(Al0.02Si3.97)Σ3.99O10(OH)2.10] has been investigated by single-crystal X-ray diffraction at 223 and 170 K and by single-crystal neutron diffraction at 20 K. Both the anisotropic X-ray refinements (i.e. at 223 and 170 K) show that the two independent tetrahedra are only slightly distorted. For the two independent Mg-octahedra, the bond distances between cation-hydroxyl groups are significantly shorter than the others. The ditrigonal rotation angle of the six-membered ring of tetrahedra is modest (α ~ 4°). The neutron structure refinement shows that the hydrogen-bonding scheme in talc consists of one donor site and three acceptors (i.e. trifurcated configuration), all the bonds having O···O ≤ 3.38 Å, H···O ~ 2.8 Å, and O–H···O ~ 111–116°. The three acceptors belong to the six-membered ring of tetrahedra juxtaposed to the octahedral sheet. The vibrational regime of the proton site appears being only slightly anisotropic. The elastic behavior of talc was investigated by means of in situ synchrotron single-crystal diffraction up to 16 GPa (at room temperature) using a diamond anvil cell. No evidence of phase transition has been observed within the pressure range investigated. PV data fit, with an isothermal third-order Birch-Murnaghan equation of state, results as follows: V 0 = 454.7(10) Å3, K T0 = 56(3) GPa, and K′ = 5.4(7). The “Eulerian finite strain” versus “normalized stress” plot yields: Fe(0) = 56(2) GPa and K′ = 5.3(5). The compressional behavior of talc is strongly anisotropic, as reflected by the axial compressibilities (i.e. β(a):β(b):β(c) = 1.03:1:3.15) as well as by the magnitude and orientation of the unit-strain ellipsoid (with ε 1:ε 2:ε 3 = 1:1.37:3.21). A comparison between the elastic parameters of talc obtained in this study with those previously reported is carried out.  相似文献   

16.
High temperature infrared spectra of hydrous microcrystalline quartz   总被引:1,自引:0,他引:1  
A series of in-situ high temperature infrared (IR) measurements of water in an agate sample and in a milky quartz has been conducted in order to understand the nature of water in silica at high temperatures (50–700?°C) and the dehydration behavior. IR absorption bands of water molecules trapped in the milky quartz showed a systematic decrease in intensities and a shift from 3425?cm?1 at 50?°C toward 3590?cm?1 at 700?°C without any loss of water. This indicates a change in IR absorption coefficients corresponding to different polymeric states of water at different temperatures. The broad 3430?cm?1 band in the agate sample also showed a systematic decrease in IR intensity and a band shift toward higher frequency with increasing temperature (~700?°C). This indicates that the agate sample also contains fluid inclusion-like water. For this agate sample, a dehydration of loosely hydrogen-bonded molecular water occurred at lower temperatures (<200?°C). At higher temperatures (>400?°C), sharp bands around 3660 and 3725?cm?1 (3740?cm?1 at 50?°C) due to surface silanols, appeared. This indicates dehydration of H2O molecules that are hydrogen bonded to surface silanols. SiOH species in the agate are divided into three groups, namely SiOH group located at structural defects, surface silanols hydrogen bonded to each other and free surface silanols. Former two dehydrate below 700?°C and the dehydration rate of the SiOH at structural defects is faster than the other. IR spectra show that SiOH species decrease continuously even after the dehydration of most of H2O molecules. All these results provide realistic bases for the change in physicochemical states of different OH species in silica at high temperatures.  相似文献   

17.
The dehydration of a natural goethite to hematite is accompanied by a systematic hydrogen isotope fractionation. Closed system dehydration at, and below, 250°C results in a significantly greater degree of isotopic fractionation than does open system dehydration. This relationship is apparently reversed at 300°C. Both processes produce a progressive decrease in the DH ratio of the mineral hydrogen with increasing degree of dehydration. At temperatures of 160°C to 250°C the closed system mineralvapor fractionation factor is independent of temperature, while above 250°C, it varies strongly with temperature. The mineral-vapor fractionation factor associated with open system dehydration appears to be independent of temperature over the interval 160°C to 300°C. The closed system DH fractionation suggests that natural goethite undergoing dehydration in the presence of water can isotopically exchange with that water.CO2 loss from goethite during dehydration is correlated with the loss of H2O. The CO3 is thought to be present in carbonates which exist as impurities in the goethite. Loss of both H2O and CO2 appears to be diffusion-controlled.  相似文献   

18.
The diffusion, substitution mechanism and solubility limits of Zr and Hf in synthetic forsterite (Mg2SiO4) and San Carlos olivine (Mg0.9Fe0.1)2SiO4 have been investigated between 1,200 and 1,500 °C as a function of the chemical potentials of the components in the system MgO(FeO)–SiO2–ZrO2(HfO2). The effect of oxygen fugacity and crystallographic orientation were also investigated. The solubilities of Zr in forsterite are highest and diffusion fastest when the coexisting three-phase source assemblage includes ZrSiO4 (zircon) or HfSiO4 (hafnon), and lower and slower, respectively, when the source assemblage includes MgO (periclase). This indicates that Zr and Hf substitute on the octahedral sites in olivine, charge balanced by magnesium vacancies. Diffusion is anisotropic, with rates along the crystal axes increasing in the order a < b < c. The generalized diffusion relationship as a function of chemical activity (as \(a_{{{\text{SiO}}_{2} }}\)), orientation and temperature is: \(logD_{\text{Zr}} = \frac{1}{4}loga_{{{\text{SiO}}_{2} }} + logD_{0} - \left( {\frac{{368 \pm 17\;{\text{kJ}}\;{\text{mol}}^{ - 1} }}{{2.303\;{\text{RT}}}}} \right)\) where the values of log D 0 are ?3.8(±0.5), ?3.4(±0.5) and ?3.1(±0.5) along the a, b and c axes, respectively. Most experiments were conducted in air (fO2 = 10?0.68 bars), but one at fO2 = 10?11.2 bars at 1,400 °C shows no resolvable effect of oxygen fugacity on Zr diffusion. Hf is slightly more soluble in olivine than Zr, but diffuses slightly slower. Diffusivities of Zr in experiments in San Carlos olivine at 1,400 °C, fO2 = 10?6.6 bars are similar to those in forsterite at the same conditions, showing that the controls on diffusivities are adequately captured by the simple system (nominally iron-free) experiments. Diffusivities are in good agreement with those measured by Spandler and O’Neill (Contrib Miner Petrol 159:791–818, 2010) in San Carlos olivine using silicate melt as the source at 1,300 °C, and fall within the range of most measurements of Fe–Mg inter-diffusion in olivine at this temperature. Forsterite–melt partitioning experiments in the CaO–MgO–Al2O3–SiO2–ZrO2/HfO2 show that the interface concentrations from the diffusion experiments represent true equilibrium solubilities. Another test of internal consistency is that the ratios of the interface concentrations between experiments buffered by Mg2SiO4 + Mg2Si2O6 + ZrSiO4 or Mg2SiO4 + ZrSiO4 + ZrO2 (high silica activity) to those buffered by Mg2SiO4 + MgO + ZrO2 (low silica activity) agree well with the ratios calculated from thermodynamic data. This study highlights the importance of buffering chemical potentials in diffusion experiments to provide constraints on the interface diffusant concentrations and hence validate the assumption of interface equilibrium.  相似文献   

19.
Diffusion of Al in synthetic forsterite was studied at atmospheric pressure from 1100 to 1500 °C in air along [100] with activities of SiO2, MgO and Al2O3 (aSiO2, aMgO and aAl2O3) buffered. At low aSiO2, the buffer was forsterite + spinel + periclase (fo + sp + per) at all temperatures, while at high aSiO2 and subsolidus conditions a variety of three-phase assemblages containing forsterite and two other phases from spinel, cordierite, protoenstatite or sapphirine were used at 1100–1350 °C. Experiments at high aSiO2 and 1400 °C used forsterite + protoenstatite + melt (fo + en + melt), and at 1500 °C, fo + melt. The resulting diffusion profiles were analysed by LA–ICP–MS in scanning mode. Diffusion profiles in the high aSiO2 experiments were generally several hundred microns in length, but diffusion at low aSiO2 was three orders of magnitude slower than in high aSiO2 experiments carried out at the same temperature, producing short profiles only a few microns in length and close to the spatial resolution of the analytical method. Interface concentrations of Al in the forsterite, obtained by extrapolating the diffusion profiles to the crystal/buffer interface, were only a fraction of those expected at equilibrium, and varied among the differing buffer assemblages according to (aAl2O3)1/2 and (aSiO2)3/4, pointing to the substitution of Al in forsterite by an octahedral-site, vacancy-coupled (OSVC) component with the stoichiometry Al 4/3 3+ vac2/3SiO4, whereas the main substitution expected from previous equilibrium studies would be the coupled substitution of 2 Al for Mg + Si, giving the stoichiometry MgAl2O4. It is proposed that this latter substitution is not seen on the length scales of the present experiments because it requires replacement of Si by Al on tetrahedral sites, and is accordingly rate-limited by the slow diffusivity of Si. Instead, diffusion of Al by the OSVC mechanism is relatively fast, and at high aSiO2, even faster than Fe–Mg interdiffusion.  相似文献   

20.
We determined the melting phase relations, melt compositions, and melting reactions of carbonated peridotite on two carbonate-bearing peridotite compositions (ACP: alkali-rich peridotite + 5.0 wt % CO2 and PERC: fertile peridotite + 2.5 wt % CO2) at 10–20 GPa and 1,500–2,100 °C and constrain isopleths of the CO2 contents in the silicate melts in the deep mantle. At 10–20 GPa, near-solidus (ACP: 1,400–1,630 °C) carbonatitic melts with < 10 wt % SiO2 and > 40 wt % CO2 gradually change to carbonated silicate melts with > 25 wt % SiO2 and < 25 wt % CO2 between 1,480 and 1,670 °C in the presence of residual majorite garnet, olivine/wadsleyite, and clinoenstatite/clinopyroxene. With increasing degrees of melting, the melt composition changes to an alkali- and CO2-rich silicate melt (Mg# = 83.7–91.6; ~ 26–36 wt % MgO; ~ 24–43 wt % SiO2; ~ 4–13 wt % CaO; ~ 0.6–3.1 wt % Na2O; and ~ 0.5–3.2 wt % K2O; ~ 6.4–38.4 wt % CO2). The temperature of the first appearance of CO2-rich silicate melt at 10–20 GPa is ~ 440–470 °C lower than the solidus of volatile-free peridotite. Garnet + wadsleyite + clinoenstatite + carbonatitic melt controls initial carbonated silicate melting at a pressure < 15 GPa, whereas garnet + wadsleyite/ringwoodite + carbonatitic melt dominates at pressure > 15 GPa. Similar to hydrous peridotite, majorite garnet is a liquidus phase in carbonated peridotites (ACP and PERC) at 10–20 GPa. The liquidus is likely to be at ~ 2,050 °C or higher at pressures of the present study, which gives a melting interval of more than 670 °C in carbonated peridotite systems. Alkali-rich carbonated silicate melts may thus be produced through partial melting of carbonated peridotite to 20 GPa at near mantle adiabat or even at plume temperature. These alkali- and CO2-rich silicate melts can percolate upward and may react with volatile-rich materials accumulate at the top of transition zone near 410-km depth. If these refertilized domains migrate upward and convect out of the zone of metal saturation, CO2 and H2O flux melting can take place and kimberlite parental magmas can be generated. These mechanisms might be important for mantle dynamics and are potentially effective metasomatic processes in the deep mantle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号