首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A.P Singh  D.M Mall   《Tectonophysics》1998,290(3-4):285-297
In 1967 a major earthquake in the Koyna region attracted attention to the hitherto considered stable Indian shield. The region is covered by a thick pile of Deccan lava flows and characterized by several hidden tectonic features and complex geophysical signatures. Although deep seismic sounding studies have provided vital information regarding the crustal structure of the Koyna region, much remains unknown. The two available DSS profiles in the region have been combined along the trend of Bouguer gravity anomalies. Unified 2-D density modelling of the Koyna crust/mantle suggests a ca. 3 km thick and 40 km wide high velocity/high density anomalous layer at the base of the crust along the coastline. The thickness of this anomalous layer decreases gradually towards the east and ahead of the Koyna gravity low the layer ceases to be visible. Based on the seismic and gravity data interpretation in the geodynamical/rheological boundary conditions the anomalous layer is attributed to igneous crustal accretion at the base of the crust. It is suggested that the underplated layer is the imprint of the magmatism caused by the deep mantle plume when the northward migrating Indian plate passed over the Reunion hotspot.  相似文献   

2.
A narrow strip of Gondwana basins separates the Rajmahal traps from the peninsular shield in eastern India. This part of the shield margin is associated with a conspicuous gravity high of 100 km wavelength and 48 mGal amplitude over an area of 25,000 km2. Second order residual anomalies due to Gondwana sediments and traps are superposed on this wider gravity high. Gravity interpretation, partly constrained by seismic data, suggests that the wider high is caused by a denser metamorphic layer (amphibolite and granulite) up to 3.5 km thick. The metamorphic layer also extends below the eastern Rajmahal hills where the Gondwanas, traps and younger sediments have covered it. The Gondwanas are downfaulted against the shield edge and are preserved over an irregular basin floor whose deepest part underlies the eastern flank of the Rajmahal hills adjacent to the Bengal basin. It is inferred that the Gondwanas were deposited over a rifted and highly faulted shield margin that was intruded by the Rajmahal traps nearly 100 m.y. ago. High-grade metamorphism along the shield edge presumably preceded the continental rifting, perhaps occurring in the Precambrian as a part of the Eastern Ghats orogeny, along the east coast of India.  相似文献   

3.
汪洋  程素华 《地学前缘》2013,20(1):182-189
根据均衡原理制约的地热计算得到中国西部及邻区岩石圈的温度分布状态,以40、100km和莫霍面深度等温线图的形式表示,同时计算了以1 350℃等温面深度表示的中国西部及邻区的热岩石圈厚度。结果显示:中国大陆西北部地区、哈萨克斯坦东部地区以及上扬子地块、蒙古中西部地区和青藏高原中部的深部地温较低,青藏高原北部、东部以及天山褶皱带中部的深部地温高。在中国西部及邻区范围内,岩石圈厚度在180km以上的地区包括准噶尔盆地,塔里木盆地核心部位,西藏东部、中部以及祁连山地区。上扬子地块(四川盆地)岩石圈厚度为160km或更多,蒙古中西部地区以及哈萨克斯坦东部地区的岩石圈厚度为140~180km。青藏高原东部边缘和藏北地区以及天山中部吉尔吉斯伊塞克湖地区的岩石圈厚度较薄(<140km)。地热计算得到的结果与地震层析成像研究结果之间相互吻合。采用湿的上地幔流变学模型的计算结果表明,青藏高原及其东部边缘、天山褶皱带中部和蒙古中西部地区的岩石圈流变学强度模型为"奶油蛋糕(crèmebrlée)"型,其强度剖面显示强地壳而弱地幔的特点;上扬子地块(四川盆地)、准噶尔盆地、塔里木盆地和哈萨克斯坦东部地区岩石圈流变学强度模型为"果冻三明治(jelly sandwich)"型。  相似文献   

4.
Modelling of gravity and airborne magnetic data integrated with seismic studies suggest that the linear gravity and magnetic anomalies associated with Moyar Bhavani Shear Zone (MBSZ) and Palghat Cauvery Shear Zone (PCSZ) are caused by high density and high susceptibility rocks in upper crust which may represent mafic lower crustal rocks. This along with thick crust (44–45 km) under the Southern Granulite Terrain (SGT) indicates collision of Dharwar craton towards north and SGT towards south with N–S directed compression during 2.6–2.5 Ga. This collision may be related to contemporary collision northwards between Eastern Madagascar–Western Dharwar Craton (WDC) and Eastern Dharwar Craton (EDC). Arcuate shaped N and S-verging thrusts, MBSZ-Mettur Shear and PCSZ-Gangavalli Shear, respectively across Cauvery Shear zone system (CSZ) in SGT also suggest that the WDC, EDC and SGT might have collided almost simultaneously during 2.6–2.5 Ga due to NW–SE directed compressional forces with CSZ as central core complex in plate tectonics paradigm preserving rocks of oceanic affinity. Gravity anomalies of schist belts of WDC suggest marginal and intra arc basin setting.The gravity highs of EGFB along east coast of India and regional gravity low over East Antarctica are attributed to thrusted high-density lower crustal/upper mantle rocks at a depth of 5–6 km along W-verging thrust, which is supported by high seismic velocity and crustal thickening, respectively. It may represent a collision zone at about 1.0 Ga between India and East Antarctica. Paired gravity anomalies in the central part of Sri Lanka related to high density intrusives under western margin of Highland Complex and crustal thickening (40 km) along eastern margin of Highland Complex with several arc type magmatic rocks of about 1.0 Ga in Vijayan Complex towards the east may represent collision between them with W-verging thrust as in case of EGFB. The gravity high of Sri Lanka in the central part falls in line with that of EGFB, in case it is fitted in Gulf of Mannar and may represent the extension of this orogeny in Sri Lanka.  相似文献   

5.
Eastern Anatolia consisting of an amalgamation of fragments of oceanic and continental lithosphere is a current active intercontinental contractional zone that is still being squeezed and shortened between the Arabian and Eurasian plates. This collisional and contractional zone is being accompanied by the tectonic escape of most of the Anatolian plate to the west by major strike-slip faulting on the right-lateral North Anatolian Transform Fault Zone (NATFZ) and left-lateral East Anatolian Transform Fault Zone (EATFZ) which meet at Karlıova forming an east-pointing cusp. The present-day crust in the area between the easternmost part of the Anatolian plate and the Arabian Foreland gets thinner from north (ca 44 km) to south (ca 36 km) relative to its eastern (EAHP) and western sides (central Anatolian region). This thinner crustal area is characterized by shallow CPD (12–16 km), very low Pn velocities (< 7.8 km/s) and high Sn attenuation which indicate partially molten to eroded mantle lid or occurrence of asthenospheric mantle beneath the crust. Northernmost margin of the Arabian Foreland in the south of the Bitlis–Pötürge metamorphic gap area is represented by moderate CPD (16–18 km) relative to its eastern and western sides, and low Pn velocities (8 km/s). We infer from the geophysical data that the lithospheric mantle gets thinner towards the Bitlis–Pötürge metamorphic gap area in the northern margin of the Arabian Foreland which has been most probably caused by mechanical removal of the lithospheric mantle during mantle invasion to the north following the slab breakoff beneath the Bitlis–Pötürge Suture Zone. Mantle flow-driven rapid extrusion and counterclockwise rotation of the Anatolian plate gave rise to stretching and hence crustal thinning in the area between the easternmost part of the Anatolian plate and the Arabian Foreland which is currently dominated by wrench tectonics.  相似文献   

6.
A two-dimensional model of the crust and uppermost mantle for the western Siberian craton and the adjoining areas of the Pur-Gedan basin to the north and Baikal Rift zone to the south is determined from travel time data from recordings of 30 chemical explosions and three nuclear explosions along the RIFT deep seismic sounding profile. This velocity model shows strong lateral variations in the crust and sub-Moho structure both within the craton and between the craton and the surrounding region. The Pur-Gedan basin has a 15-km thick, low-velocity sediment layer overlying a 25-km thick, high-velocity crystalline crustal layer. A paleo-rift zone with a graben-like structure in the basement and a high-velocity crustal intrusion or mantle upward exists beneath the southern part of the Pur-Gedan basin. The sedimentary layer is thin or non-existent and there is a velocity reversal in the upper crust beneath the Yenisey Zone. The Siberian craton has nearly uniform crustal thickness of 40–43 km but the average velocity in the lower crust in the north is higher (6.8–6.9 km/s) than in the south (6.6 km/s). The crust beneath the Baikal Rift zone is 35 km thick and has an average crustal velocity similar to that observed beneath the southern part of craton. The uppermost mantle velocity varies from 8.0 to 8.1 km/s beneath the young West Siberian platform and Baikal Rift zone to 8.1–8.5 km/s beneath the Siberian craton. Anomalous high Pn velocities (8.4–8.5 km/s) are observed beneath the western Tunguss basin in the northern part of the craton and beneath the southern part of the Siberian craton, but lower Pn velocities (8.1 km/s) are observed beneath the Low Angara basin in the central part of the craton. At about 100 km depth beneath the craton, there is a velocity inversion with a strong reflecting interface at its base. Some reflectors are also distinguished within the upper mantle at depth between 230 and 350 km.  相似文献   

7.
Group velocity dispersion data of fundamental-mode Rayleigh and Love waves for 12 wave paths within southeastern China have been measured by applying the multiple-filter technique to the properly rotated three-component digital seismograms from two Seismic Research Observatory stations, TATO and CHTO. The generalized surface wave inversion technique was applied to these group velocity dispersion data to determine the S-wave velocity structures of the crust and upper mantle for various regions of southeastern China. The results clearly demonstrate that the crust and upper mantle under southeastern China are laterally heterogeneous. The southern China region south of 25°N and the eastern China region both have a crustal thickness of 30 km. The eastern Tibet plateau along the 100°E meridian has a crustal thickness of 60 km. Central China, consisting mainly of the Yangtze and Sino-Korean platforms, has a crustal thickness of 40 km. A distinct S-wave low-velocity layer at 10–20 km depth in the middle crust was found under wave paths in southeastern China. On the other hand, no such crustal low-velocity layer is evident under the eastern Tibet plateau. This low-velocity layer in the middle crust appears to reflect the presence of a sialic low-velocity layer perhaps consisting of intruded granitic laccoliths, or possibly the remnant of the source zone of widespread magmatic activities known to have taken place in these regions since the late Carboniferous.  相似文献   

8.
Abstract We have deduced the steady-state lithospheric geotherm at c. 1 Ga in the south Indian shield area using the available data on the concentration of radioactive elements, and the P-T conditions of Proterozoic mantle xenoliths in the south Indian kimberlites as constraints. The geotherm was adjusted back to 2.5 Ga by keeping the surface temperature constant and calculating the temperature change at the top of convecting upper mantle. The reduced or mantle heat flux, which was treated as an adjustable parameter, was 20.9–21.3 mW/m2 at 1–2.5 Ga. Comparison of the calculated steady-state geotherm with the available P-T data of the Archaean (c. 2.5 Ga) charnockites and granulites from southern India suggests that the granulite facies metamorphism in this region had resulted from a major thermal perturbation, which was c. 400° C at 25 km. Seismic tomographic and gravity data essentially preclude any significant magma underplating of the granulitic crust in southern India. Previous workers have suggested that the formation of charnockites in this region was associated with copious CO2 influx from a deep-seated source, possibly the mantle. In this work, we have evaluated both the transient and steady-state thermal effects of the heat convected by CO2 outgassing from upper mantle. It is shown that the thermobarometric array of charnockites and granulites can be produced by the convective perturbation of the steady-state geotherm, and that a flux of CO2 of ±90 mol/m2 yr (corresponding to Darcy velocity of ±0.30 cm/yr) for a period of ±30 Ma was needed to produce the required perturbation. This is c. 150 times the average CO2 flux through the tectonically active area of the Earth's crust at the present time. There is, however, an uncertainty of a factor of 3 in this value. Seismic tomographic and gravity data independently suggest thickening of the crust beneath the granulite terrane compared with the adjacent Dharwar craton. This suggests thermal perturbation due to overthrusting as a major potential cause for the granulite facies metamorphism in south India. Overthrusting of a 30–35-km-thick thrust block was needed to produce the required thermal effect. The estimated thickness of the original crust from geobarometric and seismic tomographic data south of the orthopyroxene isograd or ‘transition zone’is compatible with the emplacement of a thrust block of this magnitude. However, the latter fails to match the estimated pre-uplift crustal thickness at the transition zone, if it is assumed that the crust has not thinned by non-erosional processes since the Archaean. Thus, we propose a combination of overthrusting and CO2 fluxing from a deep-seated source as the cause for the formation of charnockites in this zone. The required focusing of CO2 in this case is c. 40% of that estimated in the model where CO2 fluxing was considered to be the sole reason for thermal perturbation. This combined thrusting—CO2 fluxing model also helps explain the development of patchy charnockites in the transition zone from amphibolite facies rocks.  相似文献   

9.
New gravity data from the Adamawa Uplift region of Cameroon have been integrated with existing gravity data from central and western Africa to examine variations in crustal structure throughout the region. The new data reveal steep northeast-trending gradients in the Bouguer gravity anomalies that coincide with the Sanaga Fault Zone and the Foumban Shear Zone, both part of the Central African Shear Zone lying between the Adamawa Plateau and the Congo Craton. Four major density discontinuities in the lithosphere have been determined within the lithosphere beneath the Adamawa Uplift in central Cameroon using spectral analysis of gravity data: (1) 7–13 km; (2) 19–25 km; (3) 30–37 km; and (4) 75–149 km. The deepest density discontinuities determined at 75–149 km depth range agree with the presence of an anomalous low velocity upper mantle structure at these depths deduced from earlier teleseismic delay time studies and gravity forward modelling. The 30–37 km depths agree with the Moho depth of 33 km obtained from a seismic refraction experiment in the region. The intermediate depth of 20 km obtained within region D may correspond to shallower Moho depth beneath parts of the Benue and Yola Rifts where seismic refraction data indicate a crustal thickness of 23 km. The 19–20 km depths and 8–12 km depths estimated in boxes encompassing the Adamawa Plateau and Cameroon Volcanic Line may may correspond to mid-crustal density contrasts associated with volcanic intrusions, as these depths are less than depths of 25 and 13 km, respectively, in the stable Congo Craton to the south.  相似文献   

10.
P.K. Khan   《Gondwana Research》2005,8(2):271-276
The seismic parameter ‘b’ has been computed over rectangular grid of dimension 0.3° ' 0.8° at four depths range: 0-13 km (first layer), 13.1-26 km (second layer), 26.1-39 km (third layer) and 39.1-52 km (fourth layer) beneath the Shillong Plateau area. The four depths were carefully selected based on the crustal structure and distribution of hypocentres. The dimension of each grid was chosen so as to have enough events that can represent the b-value at the respective layer. Finally, two-dimensional mapping was done at these depth-levels considering the respective b-value over each grid. This analysis includes viz., low b-value all through the first layer, and a trend of increasing b-value, which was initially towards north, changes to northwest. Eastern and western parts of the second and third layers document almost moderate b-values, whereas the north-south-oriented central part of layer second is apparently dominated by low b-values, which seems to divide the area broadly into three parallel zones based on b-values. In the deeper part (fourth layer) beneath the Shillong Plateau a moderate b-value that was initially trending towards north becomes high near the northeastern part. This phenomenon may be associated with higher heterogeneity of the medium, and interestingly, this region lies between the lower crust and upper mantle, possibly documents lower degree of seismic coupling, where the Shillong Plateau is being supported by the strong Indian lithosphere at these depths. In addition, minima were noted towards the southern parts of layers first, second and third, which may presumably be related with steeply Bouguer gravity anomaly. It is thus less clear that the occurrence of earthquakes beneath the Shillong Plateau whether is attributed to faults or lineaments at intermediate to deeper level. However, a correlation between high b-values in few parts of each layer and deep-seated minor faults cannot be ruled out.  相似文献   

11.
The crust-mantle transition zone (CMTZ) is an important site for mass and energy exchange between the lower crust and upper mantle. Several kinds of CMTZ exist beneath the continent of China, which show different seismic reflection characteristics and are composed of different rock associations. In this paper, we identify three types of CMTZ in the continent of China. (a) The CMTZ beneath the Tibet Plateau exhibits a grid-shaped seismic reflection characterized by random and reticular high and low seismic velocity lamellae. It is about 30 km thick, comprising both mafic granulites of lower crust and ultramafic rocks of upper mantle. Such lithological association and seismic velocity structure were inherited from the crustal overthrust and overlapping during the Cenozoic collision between the Indian and Euro-Asian continents; The corresponding crust movement is still very intense in this region. (b) The CMTZ underneath North China Block is usually composed of a thinner strong positive velocity gradient l  相似文献   

12.
通过横穿青藏高原近 80 0 0km长的 4条天然地震层析剖面 ,获得 4 0 0km深度以上的地壳和地幔速度图像及地震波各向异性 ,揭示了青藏高原 4 0 0km深度范围内的地壳和地幔结构特征。地幔速度图像显示 ,青藏高原腹地的深地幔中存在以大型低速异常体为特征的地幔羽 ,其可能通过热通道与大面积分布的可可西里新生代高钾碱性火山作用有成因联系 ;阿尔金、康西瓦、金沙江、嘉黎及雅鲁藏布江等走滑断裂可下延至 30 0~ 4 0 0km深度 ,显示了低速高热物质组成的垂向低速异常带特征及大型超岩石圈或地幔剪切带的产出 ;发现康西瓦、东昆仑—金沙江、班公湖—怒江和雅鲁藏布缝合带下部存在不连续的高速异常带 ,可以解释为青藏高原地体拼合及碰撞过程中可能保留的加里东、古特提斯和中特提斯大洋岩石圈“化石”残片 ,是“拆沉”的地球物理证据。印度大陆岩石圈的巨厚俯冲板片以 15~ 2 0°倾角向北插入唐古拉山下 30 0km深处 ,并被高热物质组成的地幔剪切带分开。结合新的横穿喜马拉雅及青藏高原的地幔层析资料 ,提出青藏高原碰撞动力学新模式 :青藏高原南部印度岩石圈板片的翻卷式陆内超深俯冲 ,北缘克拉通向南的陆内俯冲 ,腹地深部的地幔羽上涌 ,以及地幔范围内的高原“右旋隆升”及物质向东及北东方向运动及挤出。  相似文献   

13.
The Rwenzori mountains in western Uganda, with a maximum elevation of more than 5,000 m, are located within the Albertine rift valley. We have deployed a temporary seismic network on the Ugandan side of the mountain range to study the seismic velocity structure of the crust and upper mantle beneath this section of the rift. We present results from a receiver-function study revealing a simple crustal structure along the eastern rift flank with a more or less uniform crustal thickness of about 30 km. The complexity of inner-crustal structures increases drastically within the Rwenzori block. We apply different inversion techniques to obtain reliable results for the thickness of the crust. The observations expose a significantly thinner crust beneath the Rwenzori range with thickness values ranging from about 20–28 km beneath northern and central parts of the mountains. Our study therefore indicates the absence of a crustal root beneath the Rwenzori block. Beneath the Lake Edward and Lake George basins we detect the top of a layer of significantly reduced S-wave velocity at 15 km depth. This low-velocity layer may be attributed to the presence of partial melt beneath a region of recent volcanic activity.  相似文献   

14.
A three-component broadband seismograph is in operation since January 2007 at the Indian School of Mines (ISM) campus, Dhanbad. We have used the broadband (BB) seismograms of 17 teleseismic events (M ≥ 5.8) recorded by this single BB station during 2008–09 to estimate the crust and upper mantle discontinuities in Dhanbad area which falls in the peninsular India shield. The converted wave technique and the Receiver function analysis are used. A 1-D velocity model has been derived using inversion. The Mohorovicic (Moho) discontinuity (crustal thickness) below the ISM observatory is estimated to be ∼41 km, with an average Poisson ratio of ∼0.28, suggesting that the crust below the Dhanbad area is intermediate to mafic in nature. The single station BB data shed new light to the estimate of crustal thickness beneath the eastern India shield area, which was hitherto elusive. Further, it is observed that the global upper mantle discontinuity at 410 km is delayed by ∼0.6 sec compared to the IASP-91 global model; this may be explained by a slower/hotter upper mantle; while the 660 km discontinuity is within the noise level of data.  相似文献   

15.
Compilation of new and existing gravity data were undertaken to assess the nature of the crust beneath the East African Rift System. Using 3D gravity modeling code crustal model of gravity profiles across two sectors of the rift were computed. The results are discussed in light of the structure of the rift system.The results of the 3D modeling of gravity profiles across the two rift zones revealed northward thinning of the crust. The maximum crustal attenuation occurs beneath the Afar depression, indicating the Afar rift undergoes an intense fragmentation of the crust resulting from faulting and magmatic activity. However, our computed crustal thickness below the Afar depression falls within an upper bound compared to elsewhere below tectonically active rift zones. This can be explained in terms of crustal accretion resulting from an impact of the Afar mantle plume since 30 Ma ago.The residual gravity obtained using high-cut filtering techniques reveals significant density contrast between the northern and southern sectors of the rift. The northern part of the rift is characterized by regular patterns of positive gravity anomalies, which can be interpreted in terms of a zone of crustal thinning through which relatively dense materials have intruded the overlying crust. In contrast, south of the Main Ethiopian Rift, the anomalies are characterized by random patterns and low amplitudes. The along-rift-axis variation in gravity anomalies implies that the style of crustal deformation changed progressively, beginning with regionally distributed crustal deformation, such as the one we observe within the more juvenile and wider southern segment of the rift, to localized deformation within the active and narrow rift zones of the northern sector of the Ethiopian Rift. We suggest that the key parameters controlling along-rift-axis variation in gravity anomalies are the rate of crustal extension, faulting and magmatic activities.  相似文献   

16.
By compiling wide-angle seismic velocity profiles along the 400-km-long Lofoten–Vesterålen continental margin off Norway, and integrating them with an extensive seismic reflection data set and crustal-scale two-dimensional gravity modelling, we outline the crustal margin structure. The structure is illustrated by across-margin regional transects and by contour maps of depth to Moho, thickness of the crystalline crust, and thickness of the 7+ km/s lower crustal body. The data reveal a normal thickness oceanic crust seaward of anomaly 23 and an increase in thickness towards the continent–ocean boundary associated with breakup magmatism. The southern boundary of the Lofoten–Vesterålen margin, the Bivrost Fracture Zone and its landward prolongation, appears as a major across-margin magmatic and structural crustal feature that governed the evolution of the margin. In particular, a steeply dipping and relatively narrow, 10–40-km-wide, Moho-gradient zone exists within a continent–ocean transition, which decreases in width northward along the Lofoten–Vesterålen margin. To the south, the zone continues along the Vøring margin, however it is offset 70–80 km to the northwest along the Bivrost Fracture Zone/Lineament. Here, the Moho-gradient zone corresponds to a distinct, 25-km-wide, zone of rapid landward increase in crustal thickness that defines the transition between the Lofoten platform and the Vøring Basin. The continental crust on the Lofoten–Vesterålen margin reaches a thickness of 26 km and appears to have experienced only moderate extension, contrasting with the greatly extended crust in the Vøring Basin farther south. There are also distinct differences between the Lofoten and Vesterålen margin segments as revealed by changes in structural style and crustal thickness as well as in the extent of elongate potential-field anomalies. These changes may be related to transfer zones. Gravity modelling shows that the prominent belt of shelf-edge gravity anomalies results from a shallow basement structural relief, while the elongate Lofoten Islands belt requires increased lower crustal densities along the entire area of crustal thinning beneath the islands. Furthermore, gravity modelling offers a robust diagnostic tool for the existence of the lower crustal body. From modelling results and previous studies on- and off-shore mid-Norway, we postulate that the development of a core complex in the middle to lower crust in the Lofoten Islands region, which has been exhumed along detachments during large-scale extension, brought high-grade, lower crustal rocks, possibly including accreted decompressional melts, to shallower levels.  相似文献   

17.
The Brasília belt, in central Brazil, experienced a broad range of tectonic events, including several periods of compressional and extensional deformations during the Proterozoic. Magnetotelluric data were collected at 27 sites along a profile crossing the northern part of the belt. Strike analysis and distortion decomposition indicated that most of the data are two-dimensional (2D) and fit a regional geoelectric strike angle of N20E, parallel to the tectonic grain. 2D conductivity model is constrained by available gravity and seismic refraction data and reveals the cumulative effects of the multiple tectonomagmatic episodes that affected the area in the past on current crustal and upper mantle structure. The results show that the resistive lithospheric root of the São Francisco cratonic plate is restricted to the easternmost part of the profile and does not extend westward beneath the Brasília belt. The external zone of the fold belt, composed of slightly metamorphosed rocks at the surface, presents crustal conductors that can be tentatively interpreted as regions with fossil fluid flows at mid-crust depth beneath a gold mineralization zone and as a very shallow mineralized zone within the metamorphic rocks. The external zone is separated to the west from the Goiás massif by a strong conductivity contrast, indicative of a suture zone along the Rio Maranhão fault system. Crustal conductivity structure under the Niquelândia complex is distinct from what is observed in other parts of the Goiás massif, in agreement with the proposal of the complex being an allochthonous block. In spite of the large tectonothermal events that affected the Goiás magmatic arc there are no significant conductive anomalies at crustal depths in its eastern side. The most prominent feature detected in the geoelectric model is a huge high conductivity anomaly below the entire Goiás massif in the central part of the belt, mainly concentrated at the uppermost mantle but also affecting mid to lower crustal depths. It can be interpreted as associated with thermal events either related to Mesoproterozoic and/or Neoproterozoic continental rifting processes or to delamination and detachment processes at the end of the evolution of the belt, in the Neoproterozoic. Effects related to oceanic lithosphere subduction during the collision and accretion of the Goiás massif and Goiás magmatic arc to the western passive margin of the São Francisco cratonic plate in the Neoproterozoic may alternatively explain the anomaly.  相似文献   

18.
A 1000-km-long lithospheric transect running from the Variscan Iberian Massif (VIM) to the oceanic domain of the Northwest African margin is investigated. The main goal of the study is to image the lateral changes in crustal and lithospheric structure from a complete section of an old and stable orogenic belt—the Variscan Iberian Massif—to the adjacent Jurassic passive margin of SW Iberia, and across the transpressive and seismically active Africa–Eurasia plate boundary. The modelling approach incorporates available seismic data and integrates elevation, gravity, geoid and heat flow data under the assumptions of thermal steady state and local isostasy. The results show that the Variscan Iberian crust has a roughly constant thickness of 30 km, in opposition to previous works that propose a prominent thickening beneath the South Portuguese Zone (SPZ). The three layers forming the Variscan crust show noticeable thickness variations along the profile. The upper crust thins from central Iberia (about 20 km thick) to the Ossa Morena Zone (OMZ) and the NE region of the South Portuguese Zone where locally the thickness of the upper crust is <8 km. Conversely, there is a clear thickening of the middle crust (up to 17 km thick) under the Ossa Morena Zone, whereas the thickness of the lower crust remains quite constant (6 km). Under the margin, the thinning of the continental crust is quite gentle and occurs over distances of 200 km, resembling the crustal attitude observed further north along the West Iberian margins. In the oceanic domain, there is a 160-km-wide Ocean Transition Zone located between the thinned continental crust of the continental shelf and slope and the true oceanic crust of the Seine Abyssal Plain. The total lithospheric thickness varies from about 120 km at the ends of the model profile to less than 100 km below the Ossa Morena and the South Portuguese zones. An outstanding result is the mass deficit at deep lithospheric mantle levels required to fit the observed geoid, gravity and elevation over the Ossa Morena and South Portuguese zones. Such mass deficit can be interpreted either as a lithospheric thinning of 20–25 km or as an anomalous density reduction of 25 kg m−3 affecting the lower lithospheric levels. Whereas the first hypothesis is consistent with a possible thermal anomaly related to recent geodynamics affecting the nearby Betic–Rif arc, the second is consistent with mantle depletion related to ancient magmatic episodes that occurred during the Hercynian orogeny.  相似文献   

19.
Seismic reflection and refraction data were collected west of New Zealand's South Island parallel to the Pacific–Australian Plate boundary. The obliquely convergent plate boundary is marked at the surface by the Alpine Fault, which juxtaposes continental crust of each plate. The data are used to study the crustal and uppermost mantle structure and provide a link between other seismic transects which cross the plate boundary. Arrival times of wide-angle reflected and refracted events from 13 recording stations are used to construct a 380-km long crustal velocity model. The model shows that, beneath a 2–4-km thick sedimentary veneer, the crust consists of two layers. The upper layer velocities increase from 5.4–5.9 km/s at the top of the layer to 6.3 km/s at the base of the layer. The base of the layer is mainly about 20 km deep but deepens to 25 km at its southern end. The lower layer velocities range from 6.3 to 7.1 km/s, and are commonly around 6.5 km/s at the top of the layer and 6.7 km/s at the base. Beneath the lower layer, the model has velocities of 8.2–8.5 km/s, typical of mantle material. The Mohorovicic discontinuity (Moho) therefore lies at the base of the second layer. It is at a depth of around 30 km but shallows over the south–central third of the profile to about 26 km, possibly associated with a southwest dipping detachment fault. The high, variable sub-Moho velocities of 8.2 km/s to 8.5 km/s are inferred to result from strong upper mantle anisotropy. Multichannel seismic reflection data cover about 220 km of the southern part of the modelled section. Beneath the well-layered Oligocene to recent sedimentary section, the crustal section is broadly divided into two zones, which correspond to the two layers of the velocity model. The upper layer (down to about 7–9 s two-way travel time) has few reflections. The lower layer (down to about 11 s two-way time) contains many strong, subparallel reflections. The base of this reflective zone is the Moho. Bi-vergent dipping reflective zones within this lower crustal layer are interpreted as interwedging structures common in areas of crustal shortening. These structures and the strong northeast dipping reflections beneath the Moho towards the north end of the (MCS) line are interpreted to be caused by Paleozoic north-dipping subduction and terrane collision at the margin of Gondwana. Deeper mantle reflections with variable dip are observed on the wide-angle gathers. Travel-time modelling of these events by ray-tracing through the established velocity model indicates depths of 50–110 km for these events. They show little coherence in dip and may be caused side-swipe from the adjacent crustal root under the Southern Alps or from the upper mantle density anomalies inferred from teleseismic data under the crustal root.  相似文献   

20.
Whole-rock Sm–Nd isotope systematics of 79 Archean granitoids from the eastern Kaapvaal craton, southern Africa, are used to delineate lithospheric boundaries and to constrain the timescale of crustal growth, assembly and geochemical differentiation c. 3.66–2.70 Ga. Offsets in εNd values for 3.2–3.3 Ga granitoids across the Barberton greenstone belt (BGB) are consistent with existing models for c. 3.23 Ga accretion of newly formed lithosphere north of the BGB onto pre-existing c. 3.66 Ga lithosphere south of the BGB along a doubly verging subduction margin. The Nd isotopic signature of c. 3.3–3.2 Ga magmatic rocks show that significant crustal growth occurred during subduction–accretion. After c. 3.2 Ga, however, the Nd signature of intrusive rocks c. 3.1 and 2.7 Ga is dominated by intracrustal recycling rather than by new additions from the mantle, signalling cratonic stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号