首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biodegradation of polycyclic aromatic hydrocarbons (PAHs) in contaminated sediment is an attractive remediation technique and its success depends on biodegradation kinetics, and the optimal condition for the PAH-degrading isolates; however, information on this aspect is still scarce. The effects of multi-factors on biodegradation of phenanthrene, a 3-ring model PAH, in contaminated sediment slurry by Sphingomonas sp. a bacterial strain isolated from surface mangrove sediment, were investigated using the orthogonal experimental design (form L(16)(4(5))). The most significant factors were salinity and inoculum size, while the effects of phenanthrene concentrations, nutrient addition and temperatures were insignificant. The optimal biodegradation condition in contaminated mangrove sediment slurry was 30 degrees C, 15 ppt salinity, a carbon/nitrogen ratio of 100:1 (the background ratio in sediment) and an inoculum size of 10(6) most probable number g(-1) sediment. The phenanthrene biodegradation could be best described by the first order rate model, C=C(0)e(-kt), where k (the rate constant) is equaled to 0.1185, under the optimal condition. The kinetic model was verified and its validity in predicting biodegradation by Sphingomonas sp. at various phenanthrene concentrations was proved by experimental data.  相似文献   

2.
The effect of nutrient and surfactant addition on the biodegradation of phenanthrene was studied in a batch scale soil–slurry system using isolated Mycoplana sp. MVMB2strain. The study was conducted using an artificially phenanthrene spiked and as well as contaminated soil from petrochemical industrial site. Maximum phenanthrene degradation and subsequent high microbial growth were observed at optimum pH (pH 6) and C/N/P ratio (100:20:3). To investigate maximum substrate degradation potential of Mycoplana sp. MVMB2, very high concentrations of phenanthrene (50–200 mg/kg soil) were used. The organism was capable of degrading >60% for a concentration below 20 mg/kg soil and >40% for concentrations up to 200 mg/kg within 8 days. Further the influence of five different surfactants namely Span 80, Tween 20, Triton X‐100, cetyl trimethyl ammonium bromide, and sodium dodecyl sulfate were tested at their critical micelle concentration (CMC) levels for phenanthrene degradation in the soil. The addition of surfactant enhanced the biodegradation and a maximum of 84.49% was obtained for Triton X‐100. Complete phenanthrene degradation by Mycoplana sp. MVMB2 was observed at 3 CMC concentration of Triton X‐100. The optimized parameters obtained were used for the degradation of phenanthrene present in the contaminated soil and 98.6% biodegradation was obtained. Thus, the results obtained in the study suggested that biodegradation of phenanthrene by Mycoplana sp. MVMB2 appeared to be feasible to remediate phenanthrene rich contaminated sites.  相似文献   

3.
Elevated concentrations of polycyclic aromatic hydrocarbons (PAHs) have been found in mangrove sediments due to anthropogenic pollution, and microbial degradation has been suggested as the best way to remove PAHs from contaminated sediments. The degradation of phenanthrene, a model PAH compound by bacteria, either the enriched mixed culture or individual isolate isolated from surface mangrove sediments was examined. The effects of salinity, initial phenanthrene concentrations and the addition of glucose on biodegradation potential were also investigated. Results show that surface sediments collected from four mangrove swamps in Hong Kong had different degree of PAH contamination and had different indigenous phenanthrene-degrading bacterial consortia. The enriched bacteria could use phenanthrene as the sole carbon source for growth and degrade this PAH compound accordingly. A significant positive relationship was found between bacterial growth and percentages of phenanthrene degradation. The phenanthrene biodegradation ability of the enriched mixed bacterial culture was not related to the degree of PAH contamination in surface sediments. The growth and biodegradation percentages of the enriched mixed culture were not higher than that of the individual isolate especially at low salinity (0 and 10 ppt). High salinity (35 ppt) inhibited growth and biodegradation of phenanthrene of a bacterial isolate but less inhibitory effect was found on the mixed culture. The inhibitory effects of salinity could be reduced with the addition of glucose.  相似文献   

4.
Accumulation rates of marine and terrigenous organic carbon in the continental margin sediments off southwestern Taiwan were estimated from the measured concentrations and isotopic compositions of total organic carbon (TOC) and previously reported sedimentation rates. Surficial sediments were collected from the study area spanning from the narrow shelf near the Kaoping River mouth to the deep slope with depths reaching almost 3000 m. The average sediment loading of Kaoping River is 17 Mt/yr, which yields high sediment accumulation rates ranging from 0.08 to 1.44 g cm−2 yr−1 in the continental margin. About half of the discharged sediments were deposited on the margin within 120 km of the river mouth. Carbon isotopic compositions of terrestrial and marine end-members of organic matter were determined, respectively, based on suspended particulate matter (SPM) collected from three major rivers in the southwestern Taiwan and from an offshore station. All samples were analyzed for the TOC content and its isotopic composition (δ13Corg). The SPM samples were also analyzed for the total nitrogen (TN) content. TOC content in marine sediments ranges from 0.45% to 1.35% with the highest values on the upper slope near the Kaoping River mouth. The TOC/TN ratio of the SPM samples from the offshore station is 6.8±0.6, almost identical to the Redfield ratio, indicating their predominantly marine origin; their δ13Corg values are also typically marine with a mean of −21.5±0.3‰. The riverine SPM samples exhibit typical terrestrial δ13Corg values around −25‰. The δ13Corg values of surficial sediments range from −24.8‰ to −21.2‰, showing a distribution pattern influenced by inputs from the Kaoping River. The relative contributions from marine and terrestrial sources to sedimentary organic carbon were determined by the isotope mixing model with end-member compositions derived from the riverine and marine SPM. High fluvial sediment inputs lead to efficient trapping of organic carbon over a wide range of water depth in this continental margin. The marine organic accumulation rate ranges from 1.6 to 70 g C m−2 yr−1 with an area weighted mean of 4.2 g C m−2 yr−1, which is on a par with the mean terrestrial contribution and accounts for 2.3% of mean primary production. The depth-dependent accumulation rate of marine organic carbon can be simulated with a function involving primary productivity and mineral accumulation rate, which may be applicable to other continental margins with high sedimentation rates. Away from the nearshore area, the content of terrigenous organic carbon in surficial sediments decreases with distance from the river mouth, indicating its degradation in marine environments.  相似文献   

5.
Radiotracer 210Pb and contaminant copper were used to estimate sediment accumulation rates in 4 cores from the Ajkwa River estuary and mangrove tidal channels in western Irian Jaya. Mass accumulation rates (4.5–13 kg dry wt m−2 yr−1) were within the envelope of expectations for a region of high rainfall, great river catchment relief, and rapid tectonic uplift of mountains. Copper accumulation rates were enhanced 40 fold in surface sediments, compared to pre-1950 sections of the sediment cores. These recent sediments with enhanced copper concentrations come from Freeport Indonesia mine tailings over the last 27 years. Variations in sediment core profiles of Al, Fe, and organic carbon were small, indicating no great change in bulk sediment composition. Sulfur concentrations decline toward the sediment surface, suggesting a decline in rates of microbial sulfate reduction. Enhanced sediment copper concentrations will be a useful tracer of sediment dispersal from the Ajkwa River estuary along this coast.  相似文献   

6.
The change in community diversity and structure of the indigenous, dominant, polycyclic aromatic hydrocarbon (PAH)-degrading bacterial genera, Sphingomonas and Mycobacterium, due to contamination in the environment is not very well known. A combination of PCR-DGGE with specific primers and a cultivation-dependent microbiological method was used to detect different populations of Sphingomonas and Mycobacterium in mangrove sediments. The structure of the entire bacterial community (including Sphingomonas) did not show a shift due to environmental contamination, whereas the diversity of Mycobacterium populations in mangrove sediments with higher PAH contamination increased from exposure between Day 0 and Day 30. The isolated Mycobacterium strains migrated to the same position as the major bands of the bacterial communities in Mycobacterium-specific DGGE. A dioxygenase gene system, nidA, which is commonly found in PAH-degrading Mycobacterium strains, was also detected in the more highly contaminated sediment slurries. The present study revealed that Mycobacterium species were the dominant PAH-degraders and played an important role in degrading PAHs in contaminated mangrove sediments.  相似文献   

7.
A self-contained, field-portable recirculating seawater flume was designed and constructed in order to measure in situ the erodibility of cohesive estuarine muds. The flume can be easily deployed by one person and is designed for subaerial use only. Bed shear stresses up to 0.6 Nm−2 can be generated by the flume. Rates of sediment erosion are assessed in terms of the mass of particulate material eroded with time. Flow calibrations yield a drag coefficient (CD) of 4.5 × 10−3 which enables single mid-depth velocity measurements to be related directly to the imposed bed stress. Water motions within the flume are complex, but secondary (radial) circulations are not considered sufficiently competent to dominate sediment erosion. Stratification effects due to high levels of suspended sediment ( 1.5 gl−1) are negligible. However, the drag-reducing properties of the sediment suspension are uncertain.  相似文献   

8.
In order to study the sediment response to different addition of organic matter, we added cultures of the dinoflagellates Scrippsiella hangoei and Woloszynskia halophila and the diatom Pauliella taeniata to aquaria containing natural sediment. The biomass added was 1550–3260 mg C m−2, and in the control, no biomass was added (n=3). Oxygen profiles at the sediment–water interface and inorganic nutrients in the near bottom water were determined once a week. In the additions of P. taeniata and W. halophila the sediment quickly became anoxic, and subsequently there was a flux of >1 mmol PO43− m−2 d−1 out of the sediment in these treatments. The majority of the released P came from P stored in the sediment and not from the organic phosphorus added. The result was very different for the S. hangoei addition. This species underwent a life cycle change to form temporary cysts. During this process there was a net uptake of nutrients. After the formation of cysts the concentration of inorganic nutrient was similar to that of the control. Cysts generally survive for long periods in the sediment (months to years) before germinating, but can also be permanently buried in the sediment. The novel idea presented here is that the phytoplankton composition may directly affect sediment processes such as oxygen consumption and phosphorus release, through species-specific life cycle changes and yields of resting stages produced prior to sedimentation. This can be an important aspect of nutrient cycling in eutrophic waters, like the Baltic Sea, where there is large year-to-year difference in the amount of resting stages settling at the sea floor, mainly due to differences in abundance of diatoms and dinoflagellates during the spring bloom. If yields of resting stages change, e.g. due to changes in the phytoplankton community, it may lead to alterations in the biogeochemical cycling of nutrients.  相似文献   

9.
Desorption and bioaccumulation of Cd, Zn, and Pb were studied using naturally contaminated sediment from a brackish water pond in the Sunderban Biosphere Reserve in India. Pattern of desorption of the metals from the sediment and bioaccumulation in fingerlings of the teleost Oreochromis mossambicusand postlarvae of the shrimp Penaeus monodon were studied as a function of salinity and loading of detritus of a mangrove plant. Effects of both salinity and loading of detritus on bioaccumulation of the metals were studied under two conditions: either the animals were allowed free access to the sediment or access was denied. Ninety‐six hour experiments showed that desorption of Cd and Pb from sediment into water increased with salinity of the medium while desorption of Zn decreased. Salinity of the medium also had a significant effect on the bioaccumulation of metals by fish; Cd and Pb accumulation decreased in saline medium while the accumulation of Zn increased. Conditions of access to sediment had no effect on the bioaccumulation of metals by fish; effect of interaction between salinity and access condition was also insignificant. The access conditions, however, significantly influenced accumulation of metal by the shrimp postlarvae. The effect of interaction between salinity and access condition was insignificant in influencing the bioaccumulation of all metals except Zn. The accumulation of Zn increased as a function of the salinity of the medium when shrimp postlarvae were allowed access to the sediment. Desorption of metals from sediment to water were below detection limits when detritus of a mangrove plant was added to the medium. Both the level of detritus and the conditions of access influenced accumulation of metals by fish, but the effect of interaction between the two factors were found to be insignificant. Shrimp postlarvae showed net accumulation only of Pb in the presence of detritus and the accumulation of Pb increased when the larvae were separated from the sediment. The results are important in understanding the mobility of metals between solid and aqueous phases in brackish water environments that experience periodic fluctuations in salinity and fluxes of organic load in the form of mangrove detritus.  相似文献   

10.
The eddy covariance technique and the cuvette method were used to investigate water use efficiency in an irrigated winter wheat (Triticum asetivum L.)/summer maize (Zea mays L.) rotation system in the North China Plain. The results show that ecosystem water use efficiency (WUEe) changed diurnally and seasonally. Daily maximal WUEe appeared in the morning. WUEe generally peaked in late April in wheat field and in late July/early August in maize field. From 2003 to 2006, seasonal mean WUEe was 6.7–7.4 mg CO2 g−1 H2O for wheat and 8.4–12.1 mg CO2 g−1 H2O for maize. WUEe was much lower than canopy water use efficiency (WUEc) under small leaf area index (LAI) but very close to WUEc under large LAI. With the increase in LAI, WUEe enlarged rapidly under low LAI but slowly when LAI was higher than one. WUEe was greater on the cloudy days than on the sunny days. Under the same solar radiation, WUEe was higher in the morning than in the afternoon. The ratio of internal to ambient CO2 partial pressure (Ci/Ca) decreased significantly with the increase in photosynthetically active radiation (PAR) when PAR was lower than the critical values (around 500 and 1000 μmol m−2 s−1 for wheat and maize, respectively). Beyond critical PAR, Ci/Ca was approximately constant at 0.69 for wheat and 0.42 for maize. Therefore, when LAI and solar radiation was large enough, WUEe has negative correlation with vapor pressure deficit in both of irrigated wheat and maize fields.  相似文献   

11.
We used regression analyses of water samples from 18 lakes, nine rivers, and one spring in Ethiopia to (a) test the hypothesis that water bodies of relatively higher salinity (K25>1000 μS cm−1) have a different conductivity to salinity relationship than waters of lower salinity (K25 < 1000 μS cm−1), and (b) develop models to predict total cations and salinity from conductivity that can be used for Ethiopian waters and other African aquatic systems of similar chemical composition. We found no statistical difference in the bilogarithmic relationships (total cations vs. conductivity; salinity vs. conductivity) for waters of higher salinity (K25 > 1000 μS cm−1) and waters of lower salinity (K25 < 1000 μS cm−1). However, comparison among our models and models from the literature suggests that developing separate equations for low and high salinity water bodies has some merit. We believe that the equations developed in this study can be used for Ethiopian waters and other African waters within the range of conductivity in this study.  相似文献   

12.
《Marine pollution bulletin》2009,58(6-12):707-715
Sixteen sediment samples collected from eight transects in a mangrove swamp of the Jiulong River Estuary, Fujian, China were investigated for their content of polycyclic aromatic hydrocarbons (PAHs) and the biodegradation potential of the indigenous microorganisms. The bacterial community structures in the mangrove sediments and in enrichment cultures were also investigated. The results showed that the total PAHs concentration of mangrove sediments ranged from 280 to 1074 ng g−1 dry weight, that the PAHs composition pattern in the mangrove sediments was dominated by high molecular weight PAH components (4–6 rings), and that Benzo[ghi]perylene and Indeno[1,2,3-cd]pyrene were the most dominant at different stations. Abundant PAH-degrading bacteria were found in all the stations, the values of phenanthrene-degrading bacteria ranged from 5.85 × 104 to 7.80 × 105 CFU g−1 dry weight, fluoranthene-degrading bacteria ranged from 5.25 × 104 to 5.79 × 105 CFU g−1 dry weight, pyrene-degrading bacteria ranged from 3.10 × 104 to 6.97 × 105 CFU g−1 dry weight and the benzo(a)pyrene-degrading bacteria ranged from 5.25 × 104 to 7.26 × 105 CFU g−1 dry weight. DGGE analysis of PCR-amplified 16S rDNA gene fragments confirmed that there was a remarkable shift in the composition of the bacterial community due to the addition of the different model PAH compound phenanthrene (three ring PAH), fluoranthene(four ring PAH), pyrene(four ring PAH) and benzo(a)pyrene(five ring PAH) during enrichment batch culture. Eleven strains were obtained with different morphology and different degradation ability. The presence of common bands for microbial species in the cultures and in the native mangrove sediment DNA indicated that these strains could be potential in situ PAH-degraders.  相似文献   

13.
This study presents the degradation of phenanthrene by Mycoplana sp. MVMB2 isolated from petroleum contaminated soil and the media optimization by factorial design experiments. The Plackett–Burman design was used to evaluate the effects of eight variables (potassium dihydrogen phosphate, disodium hydrogen phosphate, magnesium sulfate, calcium chloride, ferrous sulfate, glucose, inoculum concentration, and phenanthrene concentration) on phenanthrene degradation. Based on the results, the critical medium components having significant influence on the degradation were found to be disodium hydrogen phosphate, magnesium sulfate, ferrous sulfate, and phenanthrene. Furthermore, these four variables were used as central composite design parameters. The optimum minimal salt medium composition obtained by conventional and factorial design experiments for the degradation of phenanthrene by Mycoplana sp. MVMB2 at pH 6.5 and 30°C were found to be, potassium 2.5 g/L dihydrogen phosphate, 0.3505 g/L disodium hydrogen phosphate, 0.5501 g/L magnesium sulfate, 0.02 g/L calcium chloride, 0.0261 g/L ferrous sulfate, 0.6756 g/L phenanthrene, 0.5 g/L glucose, 0.5 g/L ammonium sulfate, and inoculum 5% v/v. The phenanthrene degradation was confirmed by analyzing the metabolites formed.  相似文献   

14.
Sediment traps were deployed in the Gulf of Papua in June–July 1997, to determine fluxes of organic matter and inorganic elements from the photic zone to deeper waters at the base of the continental slope and in the northern Coral Sea. Three stations, ranging from 900 to 1500 m depth, had “shallow” traps at 300 m below the water surface and “deep” traps set 100 m above the bottom. Infiltrex II water samplers collected particulate and dissolved organic matter from the Fly, Purari and Kikori rivers, and near-surface water from the shelf of the Gulf of Papua. Samples were analysed for molecular organic biomarkers to estimate the sources of organic carbon and its cycling processes.Dry weight fluxes from the shallow traps ranged from 115 to 181 mg m−2 day−1 and particulate organic carbon (POC) fluxes ranged from 1.2 to 1.9 mM OC m−2 d−1 with molar organic carbon to particulate nitrogen ratios (C/N) ranging from 6.0 to 6.5. Fluxes in deep traps were likely influenced by both early diagenesis and entrapment of resuspended shelf sediments. Dry weight fluxes in deep traps ranged from 106 to 574 mg m−2 day−1 and POC fluxes ranged from 0.6 to 1.5 mM OC m−2 d−1, with C/N ratios ranging from 8.5 to 10.8. 13C/12C ratios were −20.2‰ to −21.7‰ in all trap samples, indicating that most of the settling POC was “marine-derived”. Shallow traps had δ15N values of 6.3‰ to 7.2‰ while the values in deep traps were 4.9–5.0‰, indicating the N-rich near-surface OC was less degraded than that in the deep traps. The biogenic lipids consisted of hydrocarbon, sterol and fatty acid biomarkers indicative of marine zooplankton, phytoplankton and bacteria. Sterol markers for diatoms and dinoflagellates were abundant in the water samples. Highly branched isoprenoid alkenes, usually attributable to diatoms, were also detected in both water and shallow traps. Traces of C26–C34 n-alcohols indicative of land–plant biomarkers, were found in river water samples and in the shallow sediment traps. A large unresolved complex mixture (UCM) of hydrocarbons, and a uniform distribution of n-alkanes, indicative of petroleum hydrocarbons, were also detected in the traps. Hopane and sterane biomarkers detected in the trap oil were characteristic of a marine carbonate source, and the aromatic hydrocarbon composition distinguished at least two different oil signatures.We concluded that mass and POC fluxes were similar to those reported for other continental shelves and marginal oceans in tropical and subtropical regions. There was a dramatic decrease in POC as particles sank, due to zooplankton repackaging and photochemical and bacterial decomposition. Carbon isotopic and biomarker patterns showed most of the POC in the sediment traps was marine-sourced with only traces of terrestrial input. There was a significant flux of petroleum, which may signal the existence of natural petroleum seeps in this region.  相似文献   

15.
《Marine pollution bulletin》2012,64(5-12):385-395
The influence of different environmental stresses, including salinity (5–35‰), tidal cycle (6/6, 12/12 and 24/24 h of high/low tidal regimes) and nutrient addition (1–6 times background nitrogen and phosphorus content) on Bruguiera gymnorrhiza and Aegiceras corniculatum grown in sediment contaminated with spent lubricating oil (7.5 L m−2) were investigated. The oil-treated 1-year-old mangrove seedlings subject to low (5‰) and high (35‰) salinity had significantly more reduction in growth, more release of superoxide radical (O2) and higher activity of superoxide dismutase (SOD) than those subject to moderate salinity (15‰). Extended flooding (24/24 h of high/low tidal regime) enhanced O2 release and malondialdehyde (MDA) content in both oil-treated species but had little negative effects on biomass production (P > 0.05) except the stem of A. corniculatum (P = 0.012). The addition of nutrients had no beneficial or even posed harmful effects on the growth and cellular responses of the oil-treated seedlings.  相似文献   

16.
Pressure–volume–temperature relations have been measured to 32 GPa and 2073 K for natural magnesite (Mg0.975Fe0.015Mn0.006Ca0.004CO3) using synchrotron X-ray diffraction with a multianvil apparatus at the SPring-8 facility. A least-squares fit of the room-temperature compression data to a third-order Birch–Murnaghan equation of state (EOS) yielded K0 = 97.1 ± 0.5 GPa and K′ = 5.44 ± 0.07, with fixed V0 = 279.55 ± 0.02 Å3. Further analysis of the high-temperature compression data yielded the temperature derivative of the bulk modulus (∂KT/∂T)P = −0.013 ± 0.001 GPa/K and zero-pressure thermal expansion α = a0 + a1T with a0 = 4.03 (7) × 10−5 K−1 and a1 = 0.49 (10) × 10−8 K−2. The Anderson–Grüneisen parameter is estimated to be δT = 3.3. The analysis of axial compressibility and thermal expansivity indicates that the c-axis is over three times more compressible (KTc = 47 ± 1 GPa) than the a-axis (KTc = 157 ± 1 GPa), whereas the thermal expansion of the c-axis (a0 = 6.8 (2) × 10−5 K−1 and a1 = 2.2 (4) × 10−8 K−2) is greater than that of the a-axis (a0 = 2.7 (4) × 10−5 K−1 and a1 = −0.2 (2) × 10−8 K−2). The present thermal EOS enables us to accurately calculate the density of magnesite to the deep mantle conditions. Decarbonation of a subducting oceanic crust containing 2 wt.% magnesite would result in a 0.6% density reduction at 30 GPa and 1273 K. Using the new EOS parameters we performed thermodynamic calculations for magnesite decarbonation reactions at pressures to 20 GPa. We also estimated stability of magnesite-bearing assemblages in the lower mantle.  相似文献   

17.
During four surveys at spring and neap tides in July and November 2005, continuous observations were conducted at four stations adjacent to the Changjiang (Yangtze River) mouth. The observation times lasted for 26 h that covered two consecutive semidiurnal cycles. Resuspension events and subsequently enhancements of suspended particulate matter (SPM) were commonly observed within a tidal cycle. Although nutrients (SiO32−, NO3, and PO43−) were primarily governed by salinity, their statistically significant correlations with SPM could always be extracted after partial correlation analysis. Three parameter (salinity, SPM, nutrients) regressions generally produced better results of simulating nutrient concentrations than two parameter (salinity and nutrients) regressions, although compared to the latter, the former R2 values were elevated by no more than 13%. The partial correlation between SPM and a specific nutrient could be either positive or negative in different surveys, suggesting SPM influenced the nutrients in different ways under various conditions. The minor (albeit statistically significant) impacts of highly dynamic SPM on nutrients might be ascribed to the short duration time of resuspension events and estuarine mixing process, together with the complex nature of circulation in the Changjiang plume seawater.  相似文献   

18.
Magnetic Resonance Sounding (MRS) is nowadays accepted as a new geophysical method that can be used for a reliable determination of the ground water content distribution in the top 150 m. A great effort has also been made in MRS development to deduce the hydraulic transmissivity, based on empiric relationships of the permeability with a factor F which is calculated with NMR parameters measured at laboratory scale. To use this relationship under field conditions a calibration coefficient CT = Tpt / F has to be previously established, which demands the knowledge of the transmissivity Tpt evaluated in the pumping test. The transmissivity can then be calculated at any other site of the same aquifer using the relation Tmrs = CTF. The CT values reported suggest a certain relationship with the lithology, but with a great dispersion and contradictory results. MRS surveys carried out in alluvial aquifers in Spain have shown that the value of CT evaluated at one site may not be valid at another place of the same aquifer, because of the great heterogeneity of this kind of geological environment. The demand of a pumping test at each site where a MRS is measured invalidates the method actually used for MRS transmissivity evaluation. More than 50 MRS have been used to propose a new methodology. The aquifers visited cover a great range of transmissivities (from 2 × 10− 6 to 9 × 10− 3 m2/s). The MRS signal amplitude varies between 20 and 1400 nV, the signal/noise ratio is in the range from 0.6 to 42, and the value of the decay time constant varies from 200 to 800 ms. It has been demonstrated that when the transmissivity increases, the value of F decreases, and CT increases, except for certain groups of MRS taken at the same aquifer or part of one aquifer, for which F increases with Tpt, keeping CT constant. A function CT(F) of the type CT = mF− n has been obtained that allows the transmissivity evaluation without the need of Tpt. Considering that both values of transmissivity, Tpt and Tmrs, are subjected to deviations due to the experimental errors as well as due to evaluation errors, the prediction achieved by the proposed equation is rather good. To perform a better evaluation of the values of the coefficients m and n it is necessary to have a greater number of MR soundings of good quality and with a trustworthy inversion at locations where a really comparable and good performed pumping test is available, covering a sufficient range of transmissivities. Though the data we have used do not always fulfil these conditions, the result is promising. Once a trustable function is available, the forecast of the transmissivity using MRS will not need the existence of any pumping test in the area. The general extension of this methodology demands the availability of MRS taken at all kinds of geological and hydrogeological environments, which is impossible without the existence of a universal MRS data base.  相似文献   

19.
We consider 3D steady flow of fresh water over a salt water body in a confined aquifer of constant thickness D, with application to a pumping well in a coastal aquifer. With neglect of mixing, a sharp interface separates the two fluid bodies and an existing analytical solution, based on the Dupuit assumption, is adopted. The aim is to solve for the mixing between the fresh and salt waters for αT/D  1 (αT transverse dispersivity), as field studies indicate that αT = O(10−3 − 10−2 m). The mixing zone around the interface is narrow and solutions by existing codes experience numerical difficulties. The problem is solved by the boundary layer (BL) approximation, extending a method, applied previously to two-dimensional flows. The BL equations of variable-density flow are solved by using the Von Karman integral method, to determine the BL thickness and the rate of entrainment of salt water along the interface. Application to the pumping well problem yields the salinity of the pumped water, as function of the parameters of the problem (well discharge, seaward discharge, well distance from the coast and density difference).  相似文献   

20.
The fate of polycyclic aromatic hydrocarbon (PAH) contamination in a mangrove swamp (Yi O) in Hong Kong after an oil spill accident was investigated. The concentrations and profiles of PAHs in surface sediments collected from five quadrats (each of 10 m×10 m) covering different degrees of oil contamination and the most contaminated mangrove leaves were examined in December 2000 (30 days after the accident) and March 2001 (126 days later). The concentrations of total PAHs in surface sediments ranged from 138 to 2135 ng g−1, and PAHs concentrations decreased with time. In the most contaminated sediments, total PAHs dropped from 2135 (30 days) to 1196 ng g−1 (120 days), and the decrease was smaller in less contaminated sediments. The percentage reduction in sediment PAHs over three months (44%) was less significant than that in contaminated leaves (85%), indicating PAH in or on leaves disappeared more rapidly. The PAH profiles were very similar in sediments collected from quadrats Q1 and Q2 with benzo[a]anthracene and pyrene being the most abundant PAH compounds, but were different in the other three quadrats. The proportion of the light molecular weight PAHs to total PAHs increased after three months, especially phenanthrene. Results suggest that physical and photo-chemical weathering (tidal washing and photo-oxidation) of crude oil in surface sediments and on plant leaves were important processes in the first few months after the oil spill. The PAH contamination in Yi O swamp came from both petrogenic and pyrolytic sources. The petrogenic characteristic in the most contaminated sediment was confirmed with high values of phenanthrene to anthracene ratio (>10) and low values of fluoranthene to pyrene ratio (0.3–0.4).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号