首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
The Bloomington meteorite, a 67.8 gram veined, brecciated chondrite, fell during the summer of 1938 in Bloomington, Illinois. Its olivine, orthopyroxene and metal compositions (fo69, en74 and Fe52 Ni48 respectively) and its texture identify it as a brecciated LL6 chondrite of shock facies d. Shock melt glasses occur in Bloomington as sparse melt pockets and veins in clasts and as isolated masses in the black, clast-rich matrix. The vein glasses chemically resemble bulk LL-group chondrites and thus appear to reflect total melting of the host meteorite. The melt pocket and matrix glasses, like those described previously in L-group chondrites, have more varied compositions and are typically enriched in normative plagioclase. All glasses that we analyzed in Bloomington have FeO/MgO and Na/Al ratios similar to those of LL-group chondrites, indicating that melting of this meteorite involved neither a significant change in the oxidation state of iron nor loss of sodium to a vapor phase. Bloomington is a monomict breccia whose components formed in place as a result of a single episode of shock and attendant melting.  相似文献   

2.
The brecciation and shock classification of 2280 ordinary chondrites of the meteorite thin section collection at the Institut für Planetologie (Münster) has been determined. The shock degree of S3 is the most abundant shock stage for the H and LL chondrites (44% and 41%, respectively), while the L chondrites are on average more heavily shocked having more than 40% of rocks of shock stage S4. Among the H and LL chondrites, 40–50% are “unshocked” or “very weakly shocked.” Considering the petrologic types, in general, the shock degree is increasing with petrologic type. This is the case for all meteorite groups. The main criteria to define a rock as an S6 chondrite are the solid‐state recrystallization and staining of olivine and the melting of plagioclase often accompanied by the formation of high‐pressure phases like ringwoodite. These characteristics are typically restricted to local regions of a bulk chondrite in or near melt zones. In the past, the identification of high‐pressure minerals (e.g., ringwoodite) was often taken as an automatic and practical criterion for a S6 classification during chondrite bulk rock studies. The shock stage classification of many significantly shocked chondrites (>S3) revealed that most ringwoodite‐bearing rocks still contain more than 25% plagioclase (74%). Thus, these bulk chondrites do not even fulfill the S5 criterion (e.g., 75% of plagioclase has to be transformed into maskelynite) and have to be classified as S4. Studying chondrites on typically large thin sections (several cm2) and/or using samples from different areas of the meteorites, bulk chondrites of shock stage S6 should be extremely rare. In this respect, the paper will discuss the probability of the existence of bulk rocks of S6.  相似文献   

3.
Abstract— A shock experiment has been devised to produce large shear in a single crystal sample of olivine. The recovered sample exhibits macroscopic shear faults resembling shock veins in ordinary chondrites. Examination with transmission electron microscopy reveals a high density of dislocations in the bulk olivine. The shear faults appear as thin veins containing small grains of olivine and pockets of glass. The microstructure and composition of the material in the veins point to fractional crystallization of a melt. An order of magnitude calculation is consistent with the idea that the veins were produced by shear melting. These results support the view that shock veins in meteorites are the result of shear heating rather than of pressure heterogeneities.  相似文献   

4.
Magnetic properties are sensitive proxies to characterize FeNi metal phases in meteorites. We present a data set of magnetic hysteresis properties of 91 ordinary chondrite falls. We show that hysteresis properties are distinctive of individual meteorites while homogeneous among meteorite subsamples. Except for the most primitive chondrites, these properties can be explained by a mixture of multidomain kamacite that dominates the induced magnetism and tetrataenite (both in the cloudy zone as single‐domain grains, and as larger multidomain grains in plessite and in the rim of zoned taenite) dominates the remanent magnetism, in agreement with previous microscopic magnetic observations. The bulk metal contents derived from magnetic measurements are in agreement with those estimated previously from chemical analyses. We evidence a decreasing metal content with increasing petrologic type in ordinary chondrites, compatible with oxidation of metal during thermal metamorphism. Types 5 and 6 ordinary chondrites have higher tetrataenite content than type 4 chondrites. This is compatible with lower cooling rates in the 650–450 °C interval for higher petrographic types (consistent with an onion‐shell model), but is more likely the result of the oxidation of ordinary chondrites with increasing metamorphism. In equilibrated chondrites, shock‐related transient heating events above approximately 500 °C result in the disordering of tetrataenite and associated drastic change in magnetic properties. As a good indicator of the amount of tetrataenite, hysteresis properties are a very sensitive proxy of the thermal history of ordinary chondrites, revealing low cooling rates during thermal metamorphism and high cooling rates (e.g., following shock reheating or excavation after thermal metamorphism). Our data strengthen the view that the poor magnetic recording properties of multidomain kamacite and the secondary origin of tetrataenite make equilibrated ordinary chondrites challenging targets for paleomagnetic study.  相似文献   

5.
Abstract— Black ordinary chondrite meteorites sample the spectral effects of shock on ordinary chondrite material in the space environment. Since shock is an important regolith process, these meteorites may provide insight into the spectral properties of the regoliths on ordinary chondrite parent bodies. To determine how common black chondrites are in the meteorite collection and, by analogy, the frequency of shock-alteration in ordinary chondrites, several of the world's major meteorite collections were examined to identify black chondrites. Over 80% of all catalogued ordinary chondrites were examined and, using an optical definition, 61 black chondrites were identified. Black chondrites account for approximately 13.7% of ordinary chondrite falls. If the optically altered gas-rich ordinary chondrites are included, the proportion of falls that exhibit some form of altered spectral properties increases to 16.7%. This suggests that optical alteration of asteroidal material in the space environment is a relatively common process.  相似文献   

6.
We review our procedures for selecting, preparing and analyzing meteorite samples, present new analyses of 16 ordinary chondrites, and discuss variations of Fe, S and Si in the L-group. A tendency for Fe/Mg, S/Mg and Si/Mg to be low in L chondrites of fades d to f testifies that post-metamorphic shock melting played a significant role in the chemical diversification of the L-group. However, these ratios also vary widely and sympathetically in melt-free chondrites, indicating that much of the L-group's chemical variation arose prior to thermal metamorphism and is in that sense primary. If all L-chondrites come from one parent body, type-correlated chemical trends suggest: 1) that the body had a traditional “onion skin” structure, with metamorphic intensity increasing with depth; and 2) that it formed from material that became more homogeneous, slightly poorer in iron, and significantly richer in sulfur as accretion proceeded.  相似文献   

7.
Abstract— The Machinga, southern Malawi, Africa, L6 chondrite (observed fall, 22 January 1981) contains accessory phases of metal, troilite, chromite, and native Cu (which is associated with limonite and found in zones of aqueous alteration). Rare accessory phases are apatite and pentlandite, which are uncommon in L6 chondrites. Major mineral constituents (olivine, orthopyroxene, and plagioclase) indicate shock effects at a level of about 15–20 GPa shock pressure. The meteorite is thus classified to be of L6d type. Melt pockets of widely variable composition are abundant.  相似文献   

8.
Abstract— A large number of ordinary chondrites contains micron-sized particles of metal and/or troilite dispersed in their silicate grains. Such metallic phases are responsible for the so-called darkening of the silicate grains and might be either precipitates, which formed during reduction of the silicates, or inclusions injected as a melt during a shock event. We have investigated these tiny foreign phases by analytical transmission electron microscopy in three unweathered, metamorphosed ordinary chondrites (Saint Séverin, LL6, Tsarev, L6 and Kernouvé, H6). We also looked for remnant shock indices. Our TEM observations suggest the following sequence of events in the three meteorites. First, a number of relatively strong shock events occurred on the parent body/bodies producing an Fe-FeS melt that was injected into silicate grains along a dense network of open fractures. Most of these shock defects were subsequently erased by high-temperature (700–900 °C) thermal metamorphism. Some remnants of the shock events are the observed trails of tiny metal and/or sulfide inclusions that formed as a result of fracture healing. Chemical homogenization of the silicates and limited oxidation of the metallic blebs also occurred during this high-temperature annealing event, resulting in Ni-rich inclusions. This effect was especially pronounced in the L and LL-chondrites studied. During subsequent cooling of the body/bodies, inclusions of chromite and phosphate precipitated, nucleating preferentially on lattice defects (dislocations, subgrain boundaries) and on the metal and sulfide inclusions. A later shock event of moderate intensity, probably corresponding to the separation of the meteorite from its parent body, produced new shock features in the silicate grains of the Saint Séverin meteorite, including mechanical twins in diopside and straight free screw dislocations in olivine.  相似文献   

9.
Abstract— On July 21, 2002, a meteorite fall occurred over the Thuathe plateau of western Lesotho. The well‐defined strewn field covers an area of 1.9 times 7.4 km. Many of the recovered specimens display a brecciated texture with leucocratic, angular to subrounded clasts in a somewhat darker groundmass. Mineralogical and chemical data, as well as oxygen isotopic analysis, indicate that Thuathe is an H4/5, S2/3 meteorite, with local H3 or H6 character. A number of anomalous features include somewhat high Co contents of kamacite and taenite relative to normal H‐group chondrites. Oxygen isotopic data plot at the edge of the normal H chondrite data field. Variable contents of metallic mineral phases and troilite result in a heterogeneous bulk composition (e.g., with regard to Si, Fe, and Mg), resulting in a spread of major element ratios that is not consistent with previously accepted H‐group composition. Trace element abundances are generally consistent with H chondritic composition, and Kr and Xe isotopic data agree with an H4 classification for this meteorite. Noble gas analysis gave U, Th‐4He gas retention and K‐Ar ages typical for H chondrites; no major thermal event affected this material since ~3.7 Ga. The exposure age for Thuathe is 5 Ma, somewhat lower than for other H chondrites. Cosmogenic nuclide analysis indicates a pre‐atmospheric radius of this meteorite between 35 and 40 cm. In the absence of evidence for solar gases, we classify Thuathe as a fragmental breccia. Numerous narrow, black veins cut across samples of Thuathe and are the result of a brittle deformation event that also caused local melting, especially in portions rich in sulfide. The formation of these veinlets is not the result of locally enhanced shock pressures (i.e., of shock melting) but rather of shearing under brittle conditions with local, friction‐related temperature excursions causing melting mostly of Fe‐sulfide and FeNi‐metal but also, locally, of silicate minerals. Frictional temperature excursions must have attained values in excess of 1500 °C to permit complete melting of forsteritic olivine.  相似文献   

10.
Abstract– Six chondritic clasts in the Cumberland Falls polymict breccia were examined: four texturally resemble ordinary chondrites (OCs) and two are impact melt breccias containing shocked OC clasts adjacent to a melt matrix. The six chondritic clasts are probably remnants of a single OC projectile that was heterogeneously shocked when it collided with the Cumberland Falls host. Mayo Belwa is the first known aubrite impact melt breccia. It contains coarse enstatite grains exhibiting mosaic extinction; the enstatite grains are surrounded by a melt matrix composed of 3–16 μm‐size euhedral and subhedral enstatite grains embedded in sodic plagioclase. Numerous vugs, ranging from a few micrometers to a few millimeters in size, constitute ~5 vol% of the meteorite. They occur nearly exclusively within the Mayo Belwa matrix; literature data show that some vugs are lined with bundles of acicular grains of the amphibole fluor‐richterite. This phase has been reported previously in only two other enstatite meteorites (Abee and St. Sauveur), both of which are EH‐chondrite impact melt breccias. It seems likely that in Mayo Belwa, volatiles were vaporized during an impact event and formed bubbles in the melt. As the melt solidified, the bubbles became cavities; plagioclase and fluor‐richterite crystallized at the margins of these cavities via reaction of the melt with the vapor.  相似文献   

11.
Abstract— Portales Valley (PV) is an unusual metal‐veined meteorite that has been classified as an H6 chondrite. It has been regarded either as an annealed impact melt breccia, as a primitive achondrite, or as a meteorite with affinities to silicated iron meteorites. We studied the petrology of PV using a variety of geochemical‐mineralogical techniques. Our results suggest that PV is the first well‐documented metallic‐melt meteorite breccia. Mineral‐chemical and other data suggest that the protolith to PV was an H chondrite. The composition of FeNi metal in PV is somewhat fractionated compared to H chondrites and varies between coarse vein and silicate‐rich portions. It is best modeled as having formed by partial melting at temperatures of ?940–1150 °C, with incomplete separation of solid from liquid metal. Solid metal concentrated in the coarse vein areas and S‐bearing liquid metal concentrated in the silicate‐rich areas, possibly as a result of a surface energy effect. Both carbon and phosphorus must have been scavenged from large volumes and concentrated in metallic liquid. Graphite nodules formed by crystallization from this liquid, whereas phosphate formed by reaction between P‐bearing metal and clinopyroxene components, depleting clinopyroxene throughout much of the meteorite and growing coarse phosphate at metal‐silicate interfaces. Some phosphate probably crystallized from P‐bearing liquids, but most probably formed by solid‐state reaction at ?975‐725 °C. Phosphate‐forming and FeO‐reduction reactions were widespread in PV and entailed a change in the mineralogy of the stony portion on a large scale. Portales Valley experienced protracted annealing from supersolidus to subsolidus temperatures, probably by cooling at depth within its parent body, but the main differences between PV and H chondrites arose because maximum temperatures were higher in PV. A combination of a relatively weak shock event and elevated pre‐shock temperatures probably produced the vein‐and‐breccia texture, with endogenic heating being the main heat source for melting, and with stress waves from an impact event being an essential trigger for mobilizing metal. Portales Valley is best classified as an H7 metallic‐melt breccia of shock stage S1. The meteorite is transitional between more primitive (chondritic) and evolved (achondrite, iron) meteorite types and offers clues as to how differentiation could have occurred in some asteroidal bodies.  相似文献   

12.
Abstract— Densities and porosities for 285 ordinary chondrites have been assembled and analyzed. Measured chondrite porosities are bimodal; finds have an average porosity of <3%, whereas fall porosities average 7% but range from zero to >30%. We conclude that mild degrees of weathering fill pore spaces, lowering grain densities and porosities without significantly changing the bulk size or mass of the sample. By assuming an original pristine grain density (as a function of the meteorite's mineralogy—determined by its class), we can derive model pristine porosities. These model porosities cluster around an average value of 10% for all classes of ordinary chondrites. Ordinary chondrites do not show any correlation of porosity (model or measured) with petrographic grade or sample size (over a range from 0.2 g to 2 kg). However, we do see a correlation between shock state and porosity. Shock-blackened meteorites are less porous than other meteorites. Furthermore, less severely shocked meteorites show a much broader range of porosities, with the maximum porosity seen among meteorites of a given shock class falling linearly as a function of that shock class. This is consistent with the idea that shock compresses and closes pore space. Analysis of meteorite porosity provides a lower bound to the fine-scale porosity of asteroids. Our densities, even with 10% primordial porosity, are significantly higher than inferred densities of possible asteroid parent bodies. These asteroids are probably loose piles of rubble.  相似文献   

13.
Abstract– Weathering of meteorites at the scale of the entire Antarctic Search for Meteorites program population is studied by analyzing the recent version of the online Antarctic meteorite classification database that includes information about 15,263 meteorites. This paper updates, supplements, and expands on the last Antarctic meteorite weathering census by Velbel (1988 , Meteoritics 23:151–159). On average 5% of all Antarctic meteorites are indicated as evaporite bearing in the Antarctic Meteorite Database. Evaporite formation depends on compositional group. Evaporites are much more common on C chondrites than on ordinary chondrites, supporting previous findings. Ordinary chondrites of petrologic type 3 more often have evaporites on their surface than meteorites of other petrologic types. Contrary to previous findings, there is no apparent relation between evaporite formation and meteorite rustiness. Some meteorite‐bearing fields influence the frequency of evaporite‐mineral formation on meteorites. The influence of location is apparently related to differences in environmental conditions, most probably microclimate or/and hydrologic conditions. There is no relation between abundance of evaporite‐bearing meteorites and distance from the sea. Evaporite formation varies with year of collection; however, it was not possible to distinguish whether this is related to annual changes in environment or an artifact of sample categorization or curation.  相似文献   

14.
We studied textures and compositions of sulfide inclusions in unzoned Fe,Ni metal particles within CBa Gujba, CBa Weatherford, CBb HH 237, and CBb QUE 94411 in order to constrain formation conditions and secondary thermal histories on the CB parent body. Unzoned metal particles in all four chondrites have very similar metal and sulfide compositions. Metal particles contain different types of sulfides, which we categorize as: homogeneous low‐Cr sulfides composed of troilite, troilite‐containing exsolved daubreelite lamellae, arcuate sulfides that occur along metal grain boundaries, and shock‐melted sulfides composed of a mixture of troilite and Fe, Ni metal. Our model for formation proposes that the unzoned metal particles were initially metal droplets that formed from splashing by a partially molten impacting body. Sulfide inclusions later formed as a result of precipitation of excess S from solid metal at low temperatures, either during single stage cooling or during a reheating event by impacts. Sulfides containing exsolution lamellae record temperatures of ?600 °C, and irregular Fe‐FeS intergrowth textures suggest localized shock melting, both of which are indicative of heterogeneous heating by impact processes on the CB parent body. Our study shows that CBa and CBb chondrites formed in a similar environment, and also experienced similar secondary impact processing.  相似文献   

15.
Abstract— Metal‐troilite textures are examined in metamorphosed and impact‐affected ordinary chondrites to examine the response of these phases to rapid changes in temperature. Complexly intergrown metal‐troilite textures are shown to form in response to three different impact‐related processes. (1) During impacts, immiscible melt emulsions form in response to spatially focused heating. (2) Immediately after impact events, re‐equilibration of heterogeneously distributed heat promotes metamorphism adjacent to zones of maximum impact heating. Where temperatures exceed ~850 ° C, this post‐impact metamorphism results in melting of conjoined metal‐troilite grains in chondrites that were previously equilibrated through radiogenic metamorphism. When the resulting Fe‐Ni‐S melt domains crystallize, a finely intergrown mixture of troilite and metal forms, which can be zoned with kamacite‐rich margins and taenite‐rich cores. (3) At lower temperatures, post‐impact metamorphism can also cause liberation of sulfur from troilite, which migrates into adjacent Fe‐Ni metal, allowing formation of troilite and occasionally copper within the metal during cooling. Because impact events cause heating within a small volume, post‐impact metamorphism is a short duration event (days to years) compared with radiogenic metamorphism (>106 years). The fast kinetics of metal‐sulfide reactions allows widespread textural changes in conjoined metal‐troilite grains during post‐impact metamorphism, whereas the slow rate of silicate reactions causes these to be either unaffected or only partially annealed, except in the largest impact events. Utilizing this knowledge, information can be gleaned as to whether a given meteorite has suffered a post‐impact thermal overprint, and some constraints can be placed on the temperatures reached and duration of heating.  相似文献   

16.
Abstract— Mössbauer spectroscopy is a very useful tool for identifying ferric iron weathering products in meteorites because of the capability to quantify the relative amounts of ferric iron in them. Mössbauer measurements were made of 33 Antarctic H chondrites (predominately H5) and two paired Antarctic CR chondrites. The primary goals of this study are to determine if Mössbauer spectroscopy can be used to determine which phases are weathering in Antarctic meteorites and if the relative amounts of ferric iron correlate with terrestrial age. Determining which minerals are weathering in ordinary chondrites appears very difficult due to variations in composition for different ordinary chondrites of the same meteorite class and possible problems in preparing homogeneous samples. The analysis of the two paired CR chondrites appears to indicate that metallic iron is predominately weathering to produce ferric iron for this class of meteorite. No correlation is seen between the relative amounts of ferric iron and terrestrial age for ordinary chondrites. One Antarctic H5 chondrite (ALHA77294) with a short 14C age of 135 ± 200 years from the dating of interior carbonate weathering products does have a relatively low amount of ferric iron, which is consistent with this meteorite being exposed on the surface for a relatively short time.  相似文献   

17.
Abstract— A large (≥4.5 × 7 × 4 mm), igneous-textured clast in the Bovedy (L3) chondrite is notable for its high bulk SiO2 content (57.5 wt%). The clast consists of normally zoned orthopyroxene (83.8 vol%), tridymite (6.2 %), an intergrowth of feldspar (5.8 %) and sodic glass (3.1 %), pigeonite (1.0 %), and small amounts of chromite (0.2 %), augite, and Fe, Ni-metal; it is best described as a silica-rich orthopyroxenite. The oxygen-isotopic composition of the clast is similar, but not identical, to Bovedy and other ordinary chondrites. The clast has a superchondritic Si/Mg ratio, but has Mg/(Mg + Fe) and Fe/Mn ratios that are similar to ordinary chondrite silicate. The closest chemical analogues to the clast are radial-pyroxene chondrules, diogenites, pyroxene-silica objects in ordinary chondrites, and silicates in the IIE iron meteorite Weekeroo Station. The clast crystallized from a siliceous melt that cooled fast enough to prevent complete attainment of equilibrium but slow enough to allow nearly complete crystallization. The texture, form, size and composition of the clast suggest that it is an igneous differentiate from an asteroid or planetesimal that formed in the vicinity of ordinary chondrites. The melt probably cooled in the near-surface region of the parent object. It appears that in the source region of the clast, metallic and silicate partial melt were largely-to-completely lost during a relatively low degree of melting, and that during a higher degree of melting, olivine and low-Ca pyroxene separated from the remaining liquid, which ultimately solidified to form the clast. While these fractionation steps could not have all occurred at the same temperature, they could have been accomplished in a single melting episode, possibly as a result of heating by radionuclides or by electromagnetic induction. Fractionated magmas can also account for other Si-rich objects in chondrites.  相似文献   

18.
Abstract— Metallic Cu of moderately high purity (~985 mg/g Cu, ~15 mg/g Ni) occurs in at least 66% of ordinary chondrites (OC) as heterogeneously distributed, small (typically ≤20 μm) rounded to irregular grains. The mean modal abundance of metallic Cu in H, L and LL chondrites is low: 1.0 to 1.4 × 10?4 vol%, corresponding to only 4–5% of the total Cu in OC whole rocks. In more than 75% of the metallic-Cu-bearing OC, at least some metallic Cu occurs at metallic-Fe-Ni-troilite grain boundaries. In some cases it also occurs within troilite, within metallic Fe-Ni, or at the boundaries these phases form with silicates or chromite. Ordinary chondrites that contain a relatively large number of occurrences of metallic Cu/mm2 have a tendency to have experienced moderately high degrees of shock. Shock processes can cause local melting and transportation of metallic Fe-Ni and troilite; because metallic Cu is mainly associated with these phases, it also gets redistributed during shock events. In the most common petrographic assemblage containing metallic Cu, the Cu is adjacent to small irregular troilite grains surrounded by taenite plus tetrataenite; this assemblage resembles fizzed troilite and may have formed by localized shock melting or remelting of a metal-troilite assemblage.  相似文献   

19.
In analyzing a thin section of the NWA 6604 CK4 meteorite, only altered chondrules and various components that are probably left behind the destruction of former chondrules can be observed. We suggest that melting, grain size decrease, resorption of the original chondrules, and crystallization of opaque minerals were the main processes that destroyed the chondrules. Four different events could be identified as having occurred during this alteration. First, opaques crystallized along former fractures producing chains of separated grains. Later, opaques and Ca‐rich minerals crystallized together in veins and large melt pockets; this was the strongest recrystallization phase involving the largest volume of melt. This occurred along different fractures than the first phase above. During the third phase, only Ca‐rich plagioclase crystallized along thin veins, and in a fourth phase, fractures formed again, partly along those formed during the second phases but without substantial mineral infill. Two simple possible case models should be considered for this meteorite: alteration by purely impact‐driven processes or mainly by melt‐driven processes. Although for CK4 chondrites, the shock‐produced alteration driven by impact is the more accepted and widespread approach, melting is also compatible with the observed textural characteristics of chondrule destruction. During melting, recrystallization took place producing iron‐rich minerals earlier and Ca‐Si‐rich ones later. The penetration of melts into veins contributed in the chondrule destruction. The stress directions also changed during these alterations, and minerals that formed later filled differently oriented fractures than the earlier ones. From our observations, we favor a view where heat‐driven melting and recrystallization produced the destruction and uniform mineralogy in the sample.  相似文献   

20.
Ordinary chondrite meteorites contain silicates, Fe,Ni‐metal grains, and troilite (FeS). Conjoined metal‐troilite grains would be the first phase to melt during radiogenic heating in the parent body, if temperatures reached over approximately 910–960 °C (the Fe,Ni‐FeS eutectic). On the basis of two‐pyroxene thermometry of 13 ordinary chondrites, we argue that peak temperatures in some type 6 chondrites exceeded the Fe,Ni‐FeS eutectic and thus conjoined metal‐troilite grains would have begun to melt. Melting reactions consume energy, so thermal models were constructed to investigate the effect of melting on the thermal history of the H, L, and LL parent asteroids. We constrained the models by finding the proportions of conjoined metal‐troilite grains in ordinary chondrites using high‐resolution X‐ray computed tomography. The models show that metal‐troilite melting causes thermal buffering and inhibits the onset of silicate melting. Compared with models that ignore the effect of melting, our models predict longer cooling histories for the asteroids and accretion times that are earlier by 61, 124, or 113 kyr for the H, L, and LL asteroids, respectively. Because the Ni/Fe ratio of the metal and the bulk troilite/metal ratio is higher in L and LL chondrites than H chondrites, thermal buffering has the greatest effect in models for the L and LL chondrite parent bodies, and least effect for the H chondrite parent. Metal‐troilite melting is also relevant to models of primitive achondrite parent bodies, particularly those that underwent only low degrees of silicate partial melting. Thermal models can predict proportions of petrologic types formed within an asteroid, but are systematically different from the statistics of meteorite collections. A sampling bias is interpreted to explain these differences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号