首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
This paper presents a robust H∞ output feedback control approach for structural systems with uncertainties in model parameters by using available acceleration measurements and proposes conditions for the existence of such a robust output feedback controller. The uncertainties of structural stiffness, damping and mass parameters are assumed to be norm-bounded. The proposed control approach is formulated within the framework of linear matrix inequalities, for which existing convex optimization techniques, such as the LMI toolbox in MATLAB, can be used effectively and conveniently. To illustrate the effectiveness of the proposed robust H∞ strategy, a six-story building was subjected both to the 1940 El Centro earthquake record and to a suddenly applied Kanai-Tajimi filtered white noise random excitation. The results show that the proposed robust H∞ controller provides satisfactory results with or without variation of the structural stiffness, damping and mass parameters.  相似文献   

2.
In this paper, a simple two-dimensional soil–structure interaction model, based on Biot's theory of wave propagation in fluid saturated porous media, is used to explain the observed increase of the apparent frequencies of Millikan library in Pasadena, California, during heavy rainfall and recovery within days after the rain. These variations have been measured for small amplitude response (to microtremors and wind excitation), for which Biot's linear theory is valid. The postulated hypothesis is that the observed increases in frequency are due to the water saturation of the soil. The theoretical model used to explore this hypothesis consists of a shear wall supported by a circular foundation embedded in a poroelastic half-space. This rigid foundation model may be appropriate only for the NS response of Millikan library. This paper presents results for the foundation stiffness, and for the system response for model parameters similar to those for Millikan library (located on alluvium with shear wave velocity of about 300 m/s). The foundation impedance matrix, foundation input motion and system response are compared for dry and fully saturated half-space, with permeable and impermeable foundation. The results show that for embedded foundations, the effects of saturation on the horizontal foundation stiffness are as significant as for the vertical stiffness, contrary to what has been known for surface foundations investigated by other authors. Further, the results suggest a 1–2% increase in system frequency of the first two modes of vibration, depending on the drainage condition along the foundation–soil interface. Such increases agree qualitatively with the observations.  相似文献   

3.
During strong ground motions, structural members made of reinforced concrete undergo cyclic deformations and experience permanent damage. Members may lose their initial stiffness as well as strength. Recently, Los Alamos National Laboratory has performed experiments on scale models of shear wall structures subjected to recorded earthquake signals. In general, the results indicated that the measured structural stiffnesses decreased with increased levels of excitation in the linear response region. Furthermore, a significant reduction in strength as well as in stiffness is also observed in the inelastic range. Since the in-structure floor response spectra which are used to design and qualify safety equipment have been based on calculated structural stiffness and frequencies, it is possible that certain safety equipment could experience greater seismic loads than were specified for qualification due to stiffness reduction.In this research, a hysteresis model based on the concept of accumulated damage has been developed to account for this stiffness degradation both in the linear and inelastic ranges. Single and three-degrees-of-freedom seismic Category I structures were analysed and compared with equivalent linear stiffness degradation models in terms of maximum displacement responses, permanent displacement, and floor response spectra. The results indicate significant differences in response between the hysteresis model and equivalent linear stiffness degradation model at PGA levels of greater than 0.8 g. The hysteresis model is used in the analysis of reinforced concrete shear-wall structures to obtain the in-structure response spectra. Results of both cumulative and one shot tests are compared.  相似文献   

4.
This paper presents a theoretical analysis of the effect of duration on the damage of structures subjected to earthquakes. The earthquake excitation is modelled by a non-stationary random process whose response spectrum is probabilistically consistent with a design response spectrum specified independently of the duration. Damage is assumed to accumulate with the cyclic application of large strains in the structural members. Two types of structure are examined: one representative of a steel structure and the other reprsentative of a reinforced concrete structure. The level of expected damage is found to be a strong function of both the ductility of the response and the duration of the excitation. Results are presented for systems with linear stiffness and a particular form of softening behaviour.  相似文献   

5.
This paper presents random vibrations of the Baltic drilling platform subjected to water waves and wind loads. The platform structure is discretized by the finite element method. Linear beam or truss elements can be used. The structure parameters (i.e. mass, damping and stiffness) are assumed as deterministic. Soil is modelled as an elastic half-space that possesses deterministic or random parameters. Soil–structure interaction is idealized as a system of spring–dashpot elements connecting the structure and subsoil. The parameters of these elements can be random or deterministic. The sea surface is described by the one-dimensional wave spectrum that was proposed by Striekalov and Massel24 for inland seas. It is suitable for the Baltic Sea. The wind velocity is described by the well-known Davenport spectrum. The water and wind loads are treated as stationary ergodic processes. Gaussian distributions and zero means of these processes are assumed. In addition to this, waves and wind loads are considered as independent. Such an assumption corresponds to the situation when the storm sea is fully developed. A frequency-domain random-vibration approach is utilized to obtain the dynamic response of the platform. The equations of motion of the problem were solved using modal reduction. The numerical calculations were made with a specially written computer program. From the results obtained, it is concluded that the wind influence on the response of the platform can be neglected. If random parameters are assumed for the subsoil, then the response of the system describes in a more realistic way the dynamic behaviour of the platform. The velocity coupling due to soil and hydrodynamical damping is negligible. This paper is a condensation of the author's Ph.D. thesis presented at the Technical University of Gdańsk in July 1985.  相似文献   

6.
This paper presents how soil–structure interaction affects the seismic performance of Tuned Mass Dampers (TMD) when installed on flexibly based structures. Previous studies on this subject have led to inconsistent conclusions since the soil and structure models employed considerably differ from each other. A generic frequency-independent model is used in this paper to represent a general soil–structure system, whose parameters cover a wide spectrum of soil and structural characteristics. The model structure is subjected to a stationary random excitation and the root-mean-square responses of engineering interest are used to measure the TMD's performance. Extensive parametric studies have shown that strong soil–structure interaction significantly defeats the seismic effectiveness of TMD systems. As the soil shear wave velocity decreases, TMD systems become less effective in reducing the maximum response of structures. For a structure resting on soft soil, the TMD system can hardly reduce the structural seismic response due to the high damping characteristics of soil–structure systems. The model structure is further subjected to the NS component of the 1940 El Centro, California earthquake to confirm the TMD's performance in a more realistic environment. Copyright © 1999 John Wiley & Sons Ltd.  相似文献   

7.
A control algorithm has been developed for controlling Active Variable Stiffness (AVS) structures. This algorithm analyses information of an observed seismic excitation, estimates the future structural responses and determines how to alter the structure stiffness. An objective structure is assumed to possess N on-off elements whose states are controlled by the proposed algorithm. That is, at a given moment tk, (1) seismic excitation information is expressed by an Auto Regressive (AR) model as the identification model; (2) future excitation information is predicted using the AR model; (3) future responses due to predicted excitation are estimated; (4) based on the initial condition at tk, the responses of 2N possible structural states from tk, to tk+L are calculated; (5) the state which minimizes the input energy during tL is selected; and (6) immediately after tk, on-off elements are set up and subjected to the selected states. The effectiveness of the induced algorithm is confirmed by numerical experiments on a model of a three-storey building under sine and seismic excitations.  相似文献   

8.
A study on the transient response of a circular cylindrical shell of finite length embedded in a homogeneous, isotropic and linear elastic half-space is presented. The soil-structure system is subjected to suddenly applied explosion waves. The numerical method employed is a combination of the time domain semi-analytical boundary element method used for the semi-infinite soil medium and the finite strip method used for the circular cylindrical shell. The two methods are combined through equilibrium and compatibility conditions at the soil-structure interface. The dynamic responses at the interface between the soil medium and the structure for every time step are obtained. Numerical examples are presented in detail to demonstrate the use and versatility of the proposed method. The following parameters are found to affect the response: (1) the slenderness ratio of the length over the diameter of the shell, L/D; (2) the relative wall thickness, h/a; (3) the relative stiffness ratio between the shell and the medium, Es/Em; and (4) the incidence angle of the explosion wave, α.  相似文献   

9.
A control strategy is proposed for variable damping elements (VDEs) used together with auxiliary stiffness elements (ASEs) that compose a time‐varying non‐linear Maxwell (NMW) element, considering near‐future excitation influence. The strategy first composes a state equation for the structural dynamics and the mechanical balance in the NMW elements. Next, it establishes a cost function for estimating future responses by the weighted quadratic norms of the state vector, the controlled force and the VDEs' damping coefficients. Then, the Euler equations for the optimum values are introduced, and also approximated by the first‐order terms under the autoregressive (AR) model of excitation information. Thus, at each moment tk, the strategy conducts the following steps: (1) identify the obtained seismic excitation information to an AR model, and convert it to a state equation; and (2) determine VDEs' damping coefficients under the initial conditions at tk and the final state at tk+L, using the first‐order approximation of the Euler equations. The control effects are examined by numerical experiments. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

10.
A discrete model to represent the unbounded soil (halfspace) in a soil–structure interaction analysis in the time domain is developed. For each dynamic degree of freedom of the foundation node, the discrete model consists of a mass M0 which is attached to a rigid support with a spring K and with a damper C0. In addition, a free node with the mass M1 is introduced, which is connected to the foundation node with a damper C1. All coefficients are frequency-independent. The discrete model is semi-empirical. It is based on a semi-infinite truncated cone, whereby, after enforcing the static stiffness, the remaining parameters are modified to achieve an optimal fit of the dynamic-stiffness coefficient in the frequency domain. The spring K is equal to the static stiffness. The coefficients appearing in the equations for the dampers C0, C1 and the masses M0, M1 are specified (assuming a homogeneous halfspace) for the disc, the embedded cylinder, the rectangle (also embedded) and the strip. A square on a layer whose stiffness increases with depth resting on a homogeneous halfspace is also treated. For an embedded foundation, eccentricities arise. Material damping increases the damper C0 and the mass M0.  相似文献   

11.
孙臻  刘伟庆 《地震工程学报》2020,42(6):1369-1376
为了研究不同设计参数条件下基础隔震结构非线性响应的概率密度演化特征,采用两质点模型来模拟基础隔震结构,隔震层与上部结构分别采用Bouc-Wen模型与刚度退化的Bouc-Wen模型来描述其非线性特征,运用概率密度演化理论,进行隔震结构非线性随机地震响应的概率密度演化分析。采用基于物理的随机地震动模型生成人工地震动,提出基础隔震结构非线性随机地震响应的概率密度演化分析的基本步骤。通过改变基础隔震结构的设计参数,同时考虑激励的随机性,研究基础隔震结构非线性随机地震响应的概率密度演化规律。结果表明,基础隔震结构的阻尼比、周期比和屈重比取合理范围,能使隔震结构上部和下部的位移可控。  相似文献   

12.
The dynamic response of a finite number of flexible surface foundations subjected to harmonic incident Rayleigh or SH waves is presented. The foundations are assumed to be resting on an elastic half-space. The results show that the foundation stiffness has a marked effect on the vertical response, while there is only a minor effect on the horizontal displacements. In general, the dynamic response decreases with increasing foundation stiffness. In cases of Rayleigh wave incidence, the existence of an adjacent foundation generates a certain amount of horizontal response in the direction perpendicular to the incident wave and subsequently causes the system to undergo a torsional motion; while in cases of horizontally incident SH waves, a vertical response has been observed and its magnitude is comparable to the response in the direction of the incident wave.  相似文献   

13.
The objective of this paper is to identify the first mode ground period Tg, at each interesting site along Taiwan High Speed Rail (THSR) route, and further, to determine the site-dependent design response spectrum for particular sites with Tg larger than 1 s. In this paper, a linear model of shear wave propagating in a multi-layered half-space is developed to identify the first mode ground period Tg of an interesting site on the basis of the field bore hole data. Furthermore, for each one of the strong ground motion observation stations within the Chiayi-Tainan area, the first mode ground period Tg was identified by either coda waves or pre-event ambient vibrations from the seismograms. In addition, the site-specific parameter Cv in defining the normalized response spectrum was also determined based on the observed strong ground motions at the specified observation station, and hence the empirical function between Tg and Cv can be regressed for this interesting area. Therefore, for a particular site along THSR route within the Chiayi-Tainan area, the site-specific parameter Cv can be determined from the regressed empirical function by the identified first mode ground period Tg, and further, used to develop the site-dependent design response spectrum.  相似文献   

14.
Abstract

This paper describes the linear response of an inviscid two‐layer model of a deep ocean on an f‐plane to a hurricane translating across the surface at constant speed. The forcing is a localized, radially‐symmetric pattern of positive wind stress curl and negative pressure anomaly. Only the steady state response is considered. The principal result is the identification of an internal wake in the lee of the storm, present when the translation speed of the storm exceeds the baroclinic long wave speed. The amplitude of the wake depends on the length of time over which the stress is experienced at a given point. The angle of the wedge filled by the wake is small, an effect due to the fact that the scale of a hurricane is typically larger than the baroclinic radius of deformation. After the wake disperses, a geostrophically balanced baroclinic ridge remains along the storm track.  相似文献   

15.
In this paper a centrifuge model that is capable of realistically representing soil-structure systems subjected to earthquake-like excitation is used to create a data pool which demonstrates the influence of (i) the frequencies of the structure, (ii) the foundation embedment and (iii) the foundation shape on radiation damping and soil-structure interaction effects for a structure on a semi-infinite soil layer over bedrock. The centrifuge model used in this study was developed and validated by the authors in an earlier publication,1 and employs an internal method of earthquake simulation, and the clay-like material, Duxseal, to absorb wave reflections at the boundary of the soil sample. The results of the experimental study are used to compute damping and stiffness values of a two-degree-of-freedom piecewise-linear numerical model of the soil-structure systems. The experimental parameter values are then compared to the values computed using classical text book formulae. The analysis demonstrates the value of the experimental data in validating and developing soil-structure interaction theory, and confirms the accuracy of classical text book formulae in the linear range.  相似文献   

16.
17.
Numerical simulations of a single‐degree‐of‐freedom (SDOF) structure, rigidly supporting a tuned liquid damper (TLD) and subjected to both real and artificially generated earthquake ground motions, show that a properly designed TLD can significantly reduce the structure's response to these motions. The TLD is a rigid, rectangular tank with shallow water in it. Its fundamental linear sloshing frequency is tuned to the structure's natural frequency. The TLD is more effective in reducing structural response as the ground excitation level increases. This is because it then dissipates more energy due to sloshing and wave breaking. A larger water‐depth to tank‐length ratio than previous studies suggested, which still falls within the constraint of shallow water theory, is shown to be more suitable for excitation levels expected in strong earthquake motions. A larger water‐mass to structure‐mass ratio is shown to be required for a TLD to remain equally effective as structural damping increases. Furthermore, the reduction in response is seen to be fairly insensitive to the bandwidth of the ground motion but is dependent on the structure's natural frequency relative to the significant ground frequencies. Finally, a practical approach is suggested for the design of a TLD to control earthquake response. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

18.
The response of buried pipelines to random excitation by earthquake forces is obtained using a lumped mass model. The earthquake is considered as a stationary random process characterized by a power spectral density function (PSDF). The cross spectral density function between two random inputs along the length of the pipe is defined with the help of the local earthquake PSDF which is the same for all points, and a frequency dependent exponentially decaying (with distance) function. Soil resistance to dynamic excitation along the pipelength is obtained in an approximate manner with the help of frequency independent impedance functions derived from half-space analysis and Mindlin's static stresses within the soil due to point loads. The proposed method has the advantage that it can take into consideration the cross terms in soil stiffness and damping matrices and can consider any boundary condition that needs to be satisfied at the ends of the pipe. A parametric study is also made to show the influence of cross terms in the soil stiffness and damping matrices on the response of the pipe.  相似文献   

19.
Recognizing that soil–structure interaction affects appreciably the earthquake response of highway overcrossings, this paper compares approximate analytical solutions and finite element results to conclude on a simple procedure that allows for the estimation of the kinematic response functions and dynamic stiffnesses of approach embankments. It is shown that the shear‐wedge model yields realistic estimates for the amplification functions of typical embankments and reveals the appropriate levels of dynamic strains which are subsequently used to estimate the stiffness and damping coefficients of embankments. The shear‐wedge model is extended to a two‐dimensional model in order to calculate the transverse static stiffness of an approach embankment loaded at one end. The formulation leads to a sound closed‐form expression for the critical length, Lc, that is the ratio of the transverse static stiffness of an approach embankment and the transverse static stiffness of a unit‐width wedge. It is shown through two case studies that the transverse dynamic stiffness (‘spring’ and ‘dashpot’) of the approach embankment can be estimated with confidence by multiplying the dynamic stiffness of the unit‐width wedge with the critical length, Lc. The paper concludes that the values obtained for the transverse kinematic response function and dynamic stiffness can also be used with confidence to represent the longitudinal kinematic response function and dynamic stiffness, respectively. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

20.
This paper describes the development and numerical verification of a test method to realistically simulate the seismic structural response of full‐scale buildings. The result is a new field testing procedure referred to as the linear shaker seismic simulation (LSSS) testing method. This test method uses a linear shaker system in which a mass mounted on the structure is commanded a specified acceleration time history, which in turn induces inertial forces in the structure. The inertia force of the moving mass is transferred as dynamic force excitation to the structure. The key issues associated with the LSSS method are (1) determining for a given ground motion displacement, xg, a linear shaker motion which induces a structural response that matches as closely as possible the response of the building if it had been excited at its base by xg (i.e. the motion transformation problem) and (2) correcting the linear shaker motion from Step (1) to compensate for control–structure interaction effects associated with the fact that linear shaker systems cannot impart perfectly to the structure the specified forcing functions (i.e. the CSI problem). The motion transformation problem is solved using filters that modify xg both in the frequency domain using building transfer functions and in the time domain using a least squares approximation. The CSI problem, which is most important near the modal frequencies of the structural system, is solved for the example of a linear shaker system that is part of the NEES@UCLA equipment site. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号