首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT The early Pleistocene Laguna and Turlock Lake Formations and China Hat and Arroyo Seco Gravels along the east side of the San Joaquin Valley, California, were deposited in alluvial fans and marginal lakes. Upward-coarsening sequences of silt-sand-gravel record westward progradation of glacial outwash fans from the Sierra Nevada into proglacial lakes in the San Joaquin Valley. Distinctive sedimentary features delineate lacustrine, prodelta, and delta-front facies within fan-margin deposits and lower, middle, and upper-fan facies within alluvial-fan deposits. The lacustrine facies consists of a few metres of thinly and evenly bedded, rhythmically laminated claystone and clayey siltstone in varved couplets. Draped lamination, sinusoidal lamination, and load and pillar structures occur in some beds. Siltstone and claystone grade upward to slightly thicker wavy beds of siltstone and very fine-grained unconsolidated sand deposited in a prodelta setting. Convolute laminae within deformed steeply dipping foreset beds suggest slumping on the prodelta slope. The prodelta facies grades up to the delta-front facies, which consists of burrowed and bioturbated cross-bedded fine sand. Deltaic deposits are 5–6 m thick. The lower-fan facies forms the base of the fan sequence and consists of several metres of irregularly bedded, laminated, oxidized siltstone and fine sand. The middle-fan facies consists of cross-bedded, medium-grained to gravelly sand-filled channels cut into the lower-fan facies. Interbedded lens-shaped siltstone beds 2 m thick and several metres across were deposited in abandoned channels. The upper-fan facies consists of moderately to strongly weathered clayey gravel and sand containing pebble imbrication and crude stratification. Argillization during post-depositional soil formation has blurred the distinction between mud-supported debris-flow deposits and clast-supported channel deposits, but both are present in this facies. The deposits described here demonstrate the need for additional fan models in order to incorporate the variety of deposits developed in alluvial fan sequences deposited in humid climates. In previous models based on arctic fans, debris flows, abandoned channels, or widespread siltstone beds are not present in fan sequences, nor are marginal lacustrine and deltaic deposits well represented.  相似文献   

2.
《Sedimentary Geology》1999,123(3-4):199-218
Gravelly shoreline deposits of the latest Pleistocene highstand of Lake Lahontan occur in pristine depositional morphology, and are exposed in gravel pits along Churchill Butte in west-central Nevada. Four environments differentiated at this site are alluvial fan/colluvium, lakeshore barrier spit, lake lower-shoreface spit platform, and lake bottom. Lakeshore deposits abut, along erosional wave headcuts, either unsorted muddy to bouldery colluvium fringing Churchill Butte bedrock, or matrix-supported, cobbly and pebbly debris-flow deposits of the Silver Springs fan. The lakeshore barrier spit is dominated by granule pebble gravel concentrated by wave erosion of the colluvial and alluvial-fan facies. The lakeward side of the barrier consists of beachface deposits of well-sorted granules or pebbles in broad, planar beds 1–10 cm thick and sloping 10–15°. They interfinger downslope with thicker (10–25 cm) and less steep (5–10°) lakeward-dipping beds of fine to medium pebble gravel of the lake upper shoreface. Interstratified with the latter are 10–40-cm-thick sets of high-angle cross-beds that dip southward, alongshore. Higher-angle (15–20°), landward-dipping foresets of similar texture but poorer sorting comprise the proximal backshore on the landward side of the barrier. They were deposited during storm surges that overtopped the barrier berm. Gastropod-rich sand and mud, also deposited by storm-induced washover, are found landward of the gravel foresets in a 15-m-wide backshore pond. Algal stromatolites, ostracodes, and diatoms accumulated in this pond between storm events. The lake lower shoreface, extending from water depths of 2 to 8 m, consists of a southward-prograding spit platform built by longshore drift. The key component of this platform is large-scale sandy pebble gravel in 16° southward-dipping `Gilbert' foresets that grade at a water depth of about 6–7 m to 4°-dipping sandy toesets. A shift from bioturbated lower-shoreface sand and silt, to flat and laminated lake-bottom silt and mud, occurs between water depths of 10–40 m and over a shore-normal distance of ≥250 m. This lake-bottom mud facies, unlike the others, is areally expansive.  相似文献   

3.
At Godøya near Ålesund sequences of unconsolidated fine sand and silt below two till beds are interpreted as remains of a sandur. Two facies sequences dominate: One comprises erosional scours followed by horizontally and current-ripple laminated fine sand, massive silt and erosional scours. The other sequence differs by planar wedge-shaped cross-beds replacing the horizontal lamination. The planar cross-beds are assumed to represent migrating linguoid or transverse bars, with an orientation partly at a high angle to current ripples in the same beds. The frequent silt beds are interpreted as a result of rapid vertical accretion due to isostatic subsidence during deposition. A Middle Weichselian age is assumed from thermoluminescence, radiocarbon and amino acid dates.  相似文献   

4.
Despite a low tidal range and relatively low wave conditions, the Mackenzie Delta is not prograding seaward but rather is undergoing transgressive shoreface erosion and drowning of distributary channel mouths. In the Olivier Islands region of the Mackenzie Delta the resultant morphology consists of a network of primary and secondary channels separated by vegetated islands. New ground is formed through channel infilling and landward-directed bar accretion. This sedimentation is characterized by seven sedimentary facies: (1) hard, cohesive silty clay at the base of primary channels which may be related to earlier, offshore deposition; (2) ripple laminated sand beds, believed to be channel-fill deposits; (3) ripple laminated sand and silt, interpreted as flood-stage subaqueous bar deposits; (4) ripple laminated or wavy bedded sand, silt and clay, representing the abandonment phase of channel-fill deposits and lateral subaqueous bar deposition from suspension settling; (5) a well sorted very fine sand bed, presumed to result from a single storm event; (6) parallel or wavy beds of rooted silt, sand and clay, interpreted as lower energy emergent bar deposits; and (7) parallel or wavy beds of rooted silt and clay, believed to represent present-day subaerial bar aggradation. The distribution of sedimentary facies can be interpreted in terms of the morphological evolution of the study area. Initial bar deposition of facies 3 and channel deposition of facies 2 was followed by lateral and upstream bar sedimentation of facies 3 and 4 which culminated with the deposition of the storm bed of facies 5. Facies 6 and 7 signify bar stabilization and abandonment. Patterned ground formed by thermal contraction and preserved in sediments as small, v-shaped sand wedges provides the most direct sedimentological indicator of the arctic climate. However, winter ice and permafrost also govern the stratigraphic development of interchannel and channel-mouth deposits. Ice cover confines flow at primary channel mouths, promoting the bypassing of sediments across the delta front during peak discharge in the spring. Permafrost minimizes consolidation subsidence and accommodation in the nearshore, further enhancing sediment bypass. Storms limit the seaward extent of bar development and promote a distinctive pattern of upstream and lateral island growth. The effects of these controls are reflected in the vertical distribution of facies in the Olivier Islands. The sedimentary succession differs markedly from that of a low-latitude delta.  相似文献   

5.
嫩江现代河流沉积体岩相及内部构形要素分析   总被引:10,自引:0,他引:10       下载免费PDF全文
王俊玲  任纪舜 《地质科学》2001,36(4):385-394
嫩江是松辽盆地北部一条多河型河流。本文以黑龙江省富裕县塔哈乡大马岗嫩江现代河流沉积露头为例,运用Miall结构要素分析法对嫩江现代河流沉积体岩相类型、层次界面及内部构形要素进行了系统研究,表明大马岗沉积体主要由块状层理细砾相、大型及小型低角度槽状交错层理细砂相、同沉积变形层理细砂相、波状交错层理细砂相、薄层状粉砂质泥与细砂互层相、微波状层理粉砂相、块状层理泥质粉砂相、水平层理泥相、块状层理粉砂质泥相等16种岩相构成,不同岩相空间分布变化差异较大。在大马岗沉积体内部识别出1~5级层次界面,划分出具有成因意义的7种构形要素:河道、砾质坝、侧向加积沉积体、单一侧积砂层、纹层砂席、砂底形及越岸细粒沉积,这种构形要素的划分丰富了Miall的分类方案。  相似文献   

6.
7.
Particle over-passing on depth-limited gravel bars   总被引:3,自引:0,他引:3  
An experimental channel is used to examine the transport of mixed sand and gravel bedload over the crestal platform of ‘hump-back’ bars and along the top of planar gravel sheets. Hydraulic processes result in the simultaneous transport of cobbles and pebbles over a static closely packed bed consisting of like-sized and finer particles. For prescribed conditions, flat upper-stage plane sand-beds develop over the crestal location with pebbles rolling easily over the sandy bed. At the brinkpoint, flow separation ensures effective segregation of the gravel from the sand. Over the slip-face the deposition rate of the sand is insufficient to fill fully the interstices within the gravel foresets before rapid deposition of gravel further advances the bed-form. Consequently, distinctive vertical assemblages of open-work and closed contact framework gravels could be generated as another bar migrates over, and preserves, the initial structure. In respect to the observed mechanisms of sorting over the bars, a mathematical expression is developed to explain the critical conditions allowing coarse particle mobility over planar sand or gravel beds under upper-stage plane-bed conditions on the crestal platform. The model then is used to ascertain whether the depositional environment ascribed to certain facies in the Bunter Pebble Beds, described in a recent publication, is appropriate given the distinctive facies assemblages generated in this experiment and the known hydrodynamic control of the particle-segregation process.  相似文献   

8.
9.
The upper part of the Lower Cambrian succession in northeast Kangaroo Island comprises three interbedded facies associations. The fine-grained association is composed of siltstone, mudstone and minor sandstone. It contains flat lamination and abundant ripple cross-lamination which shows bipolar palaeocurrents, and occurs in combinations of flaser bedding, lenticular bedding and wavy lamination. Although body fossils are relatively rare, trilobite traces and desiccation cracks are common, and the association is interpreted as a predominantly subtidal to intertidal deposit. The conglomerate facies association contains horizontally bedded cobble to boulder conglomerate, with subordinate trough cross-stratified coarse sandstone to granule/pebble conglomerate. Fabrics and structures in the coarse conglomerates are consistent with alluvial transport (stream and debris flow), but not beach deposition. The conglomerate association is attributed to tectonic uplift and erosion of a Precambrian-Lower Cambrian succession developed adjacent to the present north coast of Kangaroo Island. Southward progradation of an alluvial fan complex occurred across east-west oriented tidal flats on which limited wave activity reworked sand and fine gravel, but not coarser material. The sandstone facies association mainly comprises trough cross-stratified and plane-laminated sandstone, the latter with current lineation predominantly sub-parallel to the east-west shoreline. Trough cross-stratification is ascribed to onshore waves and longshore currents, and current lineation to predominantly shore-parallel tidal currents, augmented by longshore drift and storm surge. Tectonic movements gave rise to cycles of transgression and regression as tidal and alluvial processes dominated alternately.  相似文献   

10.
The Dupi Tila Formation is composed of yellow to light brown medium to very fine moderately hard to loose sandstone, siltstone, silty clay, mudstone and shale with some conglomerates with clasts of petrified wood. The lithofacies of matrix supported conglomerate, trough cross bedded conglomerate, massive sandstone, trough cross bedded sandstone, planar cross bedded sandstone, ripple cross laminated sandstone-siltstone, flaser laminated sandstone-shale, lenticular laminated sandstone-siltstone-shale, parallel laminated sandstone-siltstone, wavy laminated shale, parallel laminated blue shale, and mudstone are delineated within this formation. Based on the grain size, sedimentary structures, water depth and genesis of individual facies, facies are grouped into three types of facies associations like (i) coarse-grained conglomerate facies association in relation to tractive current deposits of alluvial fan set up at the base of litho-succession (FAC), (ii) medium to fine-grained sandstone-siltstone-mudstone facies association or facies association in relation to strong tide (FAT) characterizing the middle part of litho-succession, (iii) very fine-grained sandstone-siltstone-mudstone facies association in relation to less frequent weak tide or heterolithic facies association (FAHL) characterizing upper part of litho-succession and shallow marine facies association (FASM) composing the uppermost litho-succession. Presence of gluconite indicates that the depositional environment was shallow to deep marine. The dominant paleoflow direction during the deposition of Dupi Tila Formation was toward southeast to southwestern direction. The rivers were of braided type at the piedmont alluvial depositional set up at the lower part, which later changed to estuarine-tidal flat type environmental set up in the middle part to upper part and paleo-environment was shallow marine in the uppermost part.  相似文献   

11.
Current understanding of submarine sediment density flows is based heavily on their deposits, because such flows are notoriously difficult to monitor directly. However, it is rarely possible to trace the facies architecture of individual deposits over significant distances. Instead, bed‐scale facies models that infer the architecture of ‘typical’ deposits encapsulate current understanding of depositional processes and flow evolution. In this study, the distribution of facies in 12 individual beds has been documented along downstream transects over distances in excess of 100 km. These deposits were emplaced in relatively flat basin‐plain settings in the Miocene Marnoso Arenacea Formation, north‐east Italy and the late Quaternary Agadir Basin, offshore Morocco. Statistical analysis shows that the most common series of vertical facies transitions broadly resembles established facies models. However, mapping of individual beds shows that they commonly deviate from generalized models in several important ways that include: (i) the abundance of parallel laminated sand, suggesting deposition of this facies from both high‐density and low‐density turbidity current; (ii) three distinctly different types of grain‐size break, suggesting waxing flow, erosional hiatuses and bypass of silty sediment; (iii) the presence of mud‐rich debrites demonstrating hybrid flow deposition; and (iv) dune‐scale cross‐lamination in fine‐medium grained sandstones. Submarine sediment density flows in basin‐plain settings flow over relatively simple topography. Yet, their deposits record complex flow events, involving transformation between different flow types, rather than the simple waning surges often associated with the distal parts of turbidite systems.  相似文献   

12.
The Anvil Spring Canyon fan of the Panamint Range piedmont in central Death Valley was built entirely by water-flow processes, as revealed by an analysis of widespread 2- to 12-m-high stratigraphic cuts spanning the 9·7 km radial length of this 2·5–5·0° sloping fan. Two facies deposited from fan sheetfloods dominate the fan from apex to toe. The main one (60–95% of cuts) consists of sandy, granular, fine to medium pebble gravel that regularly and sharply alternates with cobbly coarse to very coarse pebble gravel in planar couplets 5–25 cm thick oriented parallel to the fan surface. The other facies (0–25% of cuts) comprises 10- to 60-cm-thick, wedge-planar and wedge-trough beds of pebbly sand and sandy pebble gravel in backsets sloping 3–28°. Both facies are interpreted as resulting from rare, sediment-charged flash floods from the catchment, and were deposited by supercritical standing waves of expanding sheetfloods on the fan. Standing waves were repeatedly initiated, enlarged, migrated, and then terminated either by gradually rejoining the flood or by more violent breakage and washout. The frequent autocyclic growth and destruction of standing waves during an individual sheetflood resulted in the deposition of multiple coarse and fine couplet and backset sequences 50–250 cm thick across the active depositional lobe of the fan. Erosional intensity during washout of the standing wave determined whether early-phase backset-bed deposits or washout-phase sheetflood couplet deposits were selectively preserved in a given cycle. Two minor facies are also found in the Anvil fan. Pebble–cobble gravel lags (0–20% of cuts) are present above erosional scours into the sheetflood couplet and backset deposits. They consist of coarse gravel concentrated through fine-fraction winnowing of the host sheetflood facies by sediment-deficient water flows. This reworking occurred during recessional flood stage or from non-catastrophic discharge during the long intervals between major flash floods. This facies is common at the surface, giving rise to a ‘braided-stream’ appearance. However, it is stratigraphically limited, present as thin, continuous to discontinuous beds or lenses that bound 50- to 250-cm-thick sheetflood sequences. The other minor facies of the Anvil fan consists of clast-supported and imbricated, thickly stratified, pebbly, cobbly, boulder gravel present in narrow, radially aligned ribbons nested within sheetflood deposits. This facies is interpreted as representing deposition in the incised channel of the fan, a subenvironment characterized by greater flow competence resulting from maintained depth from channel-wall confinement, and by more frequent water flows and winnowing events caused by its direct connection with the catchment feeder channel.  相似文献   

13.
Sedimentary successions in small coastal lakes situated from 0 to 11 m above the 7000 year BP shoreline along the western coast of Norway, contain a distinctive deposit, very different from the sediments above and below. The deposit is interpreted to be the result of a tsunami inundating the coastal lakes. An erosional unconformity underlies the tsunami facies and is traced throughout the basins, with most erosion found at the seaward portion of the lakes. The lowermost tsunami facies is a graded or massive sand that locally contains marine fossils. The sand thins and decreases in grain size in a landward direction. Above follows coarse organic detritus with rip-up clasts, here termed ‘organic conglomerate’, and finer organic detritus. The tsunami unit generally fines and thins upwards. The higher basins (6–11 m above the 7000 year shoreline) show one sand bed, whereas basins closer to the sea level 7000 years ago, may show several sand beds separated by organic detritus. These alternations in the lower basins may reflect repeated waves of sea water entering the lakes. In basins that were some few metres below sea level at 7000 years BP, the tsunami deposit is more minerogenic and commonly present as graded sand beds, but also in some of these shallow marine basins organic-rich facies occur between the sand beds. The total thickness of the tsunami deposit is 20–100 cm in most studied sites. An erosional and depositional model of the tsunami facies is developed.  相似文献   

14.
Sediments exposed at low tide on the transgressive, hypertidal (>6 m tidal range) Waterside Beach, New Brunswick, Canada permit the scrutiny of sedimentary structures and textures that develop at water depths equivalent to the upper and lower shoreface. Waterside Beach sediments are grouped into eleven sedimentologically distinct deposits that represent three depositional environments: (1) sandy foreshore and shoreface; (2) tidal‐creek braid‐plain and delta; and, (3) wave‐formed gravel and sand bars, and associated deposits. The sandy foreshore and shoreface depositional environment encompasses the backshore; moderately dipping beachface; and a shallowly seaward‐dipping terrace of sandy middle and lower intertidal, and muddy sub‐tidal sediments. Intertidal sediments reworked and deposited by tidal creeks comprise the tidal‐creek braid plain and delta. Wave‐formed sand and gravel bars and associated deposits include: sediment sourced from low‐amplitude, unstable sand bars; gravel deposited from large (up to 5·5 m high, 800 m long), landward‐migrating gravel bars; and zones of mud deposition developed on the landward side of the gravel bars. The relationship between the gravel bars and mud deposits, and between mud‐laden sea water and beach gravels provides mechanisms for the deposition of mud beds, and muddy clast‐ and matrix‐supported conglomerates in ancient conglomeratic successions. Idealized sections are presented as analogues for ancient conglomerates deposited in transgressive systems. Where tidal creeks do not influence sedimentation on the beach, the preserved sequence consists of a gravel lag overlain by increasingly finer‐grained shoreface sediments. Conversely, where tidal creeks debouch onto the beach, erosion of the underlying salt marsh results in deposition of a thicker, more complex beach succession. The thickness of this package is controlled by tidal range, sedimentation rate, and rate of transgression. The tidal‐creek influenced succession comprises repeated sequences of: a thin mud bed overlain by muddy conglomerate, sandy conglomerate, a coarse lag, and capped by trough cross‐bedded sand and gravel.  相似文献   

15.
Wave-dominated sandy shores occur along much of the coast of Western Australia. Despite local variations there is a characteristic distribution of lithofacies (corresponding to different geomorphic zones). Five lithofacies are recognised: (1) trough-bedded sand/gravel; (2) laminated sand; (3) laminated/bubble sand; (4) laminated/disrupted sand; and (5) aeolian cross-stratified sand.The trough-bedded sand/gravel lithofacies is being deposited in the shallow shoreface below LWL. The laminated sand and laminated/bubble sand lithofacies are sands with gravel layers being deposited on the foreshore swash zone; extensive bubble (or vesicular) sand is common towards HWL especially in berms. The laminated/disrupted sand lithofacies is being deposited on the backshore between HWL and storm water levels and consists of horizontally layered to homogeneous sands with storm debris, especially wood, weed and floatable skeletons (e.g. Sepla and Spirula). The aeolian cross-stratified sand lithofacies is forming in beach ridge/dune areas and consists of fine sands with large-scale, generally landward-dipping forests; soils and rootlets are common.Recognition of these lithofacies within a sedimentary sequence enables reconstruction of gross shoreline conditions in terms of wave and eolian environments, tidal and storm heights, and palaeogeography. Each of these lithofacies with their characteristic features is recognised in Pleistocene sequences in Perth Basin. The Pleistocene sequences fit a model of coastal progradation with the trough-bedded sand/gravel lithofacies at the base and the aeolian sand lithofacies at the top. The value of such a stratigraphic sequence, however, extends beyond the Pleistocene.  相似文献   

16.
Aeolian processes and ephemeral water influx from the Variscan Iberian Massif to the mid‐Cretaceous outer back‐erg margin system in eastern Iberia led to deposition and erosion of aeolian dunes and the formation of desert pavements. Remains of aeolian dunes encased in ephemeral fluvial deposits (aeolian pods) demonstrate intense erosion of windblown deposits by sudden water fluxes. The alternating activity of wind and water led to a variety of facies associations such as deflation lags, desert pavements, aeolian dunes, pebbles scattered throughout dune strata, aeolian sandsheets, aeolian deposits with bimodal grain‐size distributions, mud playa, ephemeral floodplain, pebble‐sand and cobble‐sand bedload stream, pebble–cobble‐sand sheet flood, sand bedload stream, debris flow and hyperconcentrated flow deposits. Sediment in this desert system underwent transport by wind and water and reworking in a variety of sub‐environments. The nearby Variscan Iberian Massif supplied quartzite pebbles as part of mass flows. Pebbles and cobbles were concentrated in deflation lags, eroded and polished by wind‐driven sands (facets and ventifacts) and incorporated by rolling into the toesets of aeolian dunes. The back‐erg depositional system comprises an outer back‐erg close to the Variscan highlands, and an inner back‐erg close to the central‐erg area. The inner back‐erg developed on a structural high and is characterized by mud playa deposits interbedded with aeolian and ephemeral channel deposits. In the inner back‐erg area ephemeral wadis, desiccated after occasional floods, were mud cracked and overrun episodically by aeolian dunes. Subsequent floods eroded the aeolian dunes and mud‐cracked surfaces, resulting in largely structureless sandstones with boulder‐size mudstone intraclasts. Floods spread over the margins of ephemeral channels and eroded surrounding aeolian dunes. The remaining dunes were colonized occasionally by plants and their roots penetrated into the flooded aeolian sands. Upon desiccation, deflation resulted in lags of coarser‐grained sediments. A renewed windblown supply led to aeolian sandsheet accumulation in topographic wadi depressions. Synsedimentary tectonics caused the outer back‐erg system to experience enhanced generation of accommodation space allowing the accumulation of aeolian dune sands. Ephemeral water flow to the outer back‐erg area supplied pebbles, eroded aeolian dunes, and produced hyperconcentrated flow deposits. Fluidization and liquefaction generated gravel pockets and recumbent folds. Dune damming after sporadic rains (the case of the Namib Desert), monsoonal water discharge (Thar Desert) and meltwater fluxes from glaciated mountains (Taklamakan Desert) are three potential, non‐exclusive analogues for the ephemeral water influx and the generation of hyperconcentrated flows in the Cretaceous desert margin system. An increase in relief driven by the Aptian anti‐clockwise rotation of Iberia, led to an altitude sufficient for the development of orographic rains and snowfall which fed (melt)water fluxes to the desert margin system. Quartzite conglomerates and sands, dominantly consisting of quartz and well‐preserved feldspar grains which are also observed in older Cretaceous strata, indicate an arid climate and the mechanical weathering of Precambrian and Palaeozoic metamorphic sediments and felsic igneous rocks. Unroofing of much of the cover of sedimentary rocks in the Variscan Iberian Massif must therefore have taken place in pre‐Cretaceous times.  相似文献   

17.
Pleistocene coastal terrace deposits exposed in sea cliffs near Gold Beach, Oregon can be divided into four stratigraphic units: a basal gravelly unit and three overlying sandy units, each with mud beds, a paleosol, or the modern soil in its uppermost part. The gravelly unit consists of gravel and sand in its lower part, sand, in part pebbly or cobbly, in its middle part, and mud and sand in its upper part. Black sand and transported pieces of wood are common in the middle part of the unit, and wood is common in the mud. This unit is interpreted as a progradational deposit including environments ranging from lower forebeach at the base to backbeach flats and streams at the top.The main sandy parts of the sandy units are made up of a crossbedded sand facies, the dominant structure in which is medium-scale crossbedding, and an irregularly bedded sand facies, which is locally pebbly and is dominated by scour-and-fill structures. Deciding between shallow marine and eolian interpretations of the sandy units proved exceptionally difficult until modern analogues were found in the fine details of the internal structures. Largely on the basis of such structural details, the crossbedded sand facies is interpreted as the product of small eolian dunes, and the irregularly bedded sand facies is interpreted as deposits of interdune ephemeral streams, ephemeral ponds, and wet to dry subaerial flats. The mud beds and paleosols at the tops of the sandy units represent times of temporary stabilization of the dune field.  相似文献   

18.
Facies relationships in Pleistocene braided outwash deposits in southern Ontario demonstrate the presence of a large braid bar with adjacent side channel. The core of the bar is up to 6 m high, and consists of crudely horizontally stratified gravels. Downstream from the core is the bar front facies, consisting of large gravelly foresets up to 4 m high, rounded off in many places by reactivation surfaces. Upstream from the core is the bar stoss side facies consisting of several sets (individually up to 35 cm thick) of tabular cross-bedding, arranged in coarsening-upward sequences. The stoss side—core—bar front relationships are continuously exposed in one 400 m long quarry face which is cut almost parallel to the palaeoflow direction. A transverse quarry face shows the side channel facies, which consists of trough cross-bedded sands. Gravel layers can be seen to finger from the main gravelly bar into the sandy side channel, but they do not reach the base of the channel. This surprising relationship indicates that gravel moved only in the topographically higher parts of the system. After deposition in the side channel, and growth upstream and downstream from the bar core, the entire system aggraded. Crudely horizontally stratified, and imbricated gravel sheets were laid down as a bar top facies. Grain size analyses indicate strongly bimodal distributions, implying that much of the sand in the spaces between pebbles and boulders filtered in after the gravel had been deposited. This interpretation is strengthened by velocity calculations—mean velocities in excess of 300 cm/s would be needed to roll the gravel as bed load, but at such a velocity, a large amount of sand would be transported entirely in suspension. In a final section of the paper, our results are combined with other work on braided systems in an attempt to formulate a more general facies model.  相似文献   

19.
The Barataria barrier coast formed between two major distributaries of the Mississippi River delta: the Plaquemines deltaic headland to the east and the Lafourche deltaic headland to the west. Rapid relative sea‐level rise (1·03 cm year?1) and other erosional processes within Barataria Bay have led to substantial increases in the area of open water (> 775 km2 since 1956) and the attendant bay tidal prism. Historically, the increase in tidal discharge at inlets has produced larger channel cross‐sections and prograding ebb‐tidal deltas. For example, the ebb delta at Barataria Pass has built seaward > 2·2 km since the 1880s. Shoreline erosion and an increasing bay tidal prism also facilitated the formation of new inlets. Four major lithofacies characterize the Barataria coast ebb‐tidal deltas and associated sedimentary environments. These include a proximal delta facies composed of massive to laminated, fine grey‐brown to pale yellow sand and a distal delta facies consisting of thinly laminated, grey to pale yellow sand and silty sand with mud layers. The higher energy proximal delta deposits contain a greater percentage of sand (75–100%) compared with the distal delta sediments (60–80%). Associated sedimentary units include a nearshore facies consisting of horizontally laminated, fine to very fine grey sand with mud layers and an offshore facies that is composed of grey to dark grey, laminated sandy silt to silty clay. All facies coarsen upwards except the offshore facies, which fines upwards. An evolutionary model is presented for the stratigraphic development of the ebb‐tidal deltas in a regime of increasing tidal energy resulting from coastal land loss and tidal prism growth. Ebb‐tidal delta facies prograde over nearshore sediments, which interfinger with offshore facies. The seaward decrease in tidal current velocity of the ebb discharge produces a gradational contact between proximal and distal tidal delta facies. As the tidal discharge increases and the inlet grows in dimensions, the proximal and distal tidal delta facies prograde seawards. Owing to the relatively low gradient of the inner continental shelf, the ebb‐tidal delta lithosome is presently no more than 5 m thick and is generally only 2–3 m in thickness. The ebb delta sediment is sourced from deepening of the inlet and the associated channels and from the longshore sediment transport system. The final stage in the model envisages erosion and segmentation of the barrier chain, leading to a decrease in tidal discharge through the former major inlets. This process ultimately results in fine‐grained sedimentation seaward of the inlets and the encasement of the ebb‐tidal delta lithosome in mud. The ebb‐tidal deltas along the Barataria coast are distinguished from most other ebb deltas along sand‐rich coasts by their muddy content and lack of large‐scale stratification produced by channel cut‐and‐fills and bar migration.  相似文献   

20.
Marine shelf strata of the Quinault Formation reflect the influences of storm–flood processes and convergent margin tectonism on sedimentation and palaeocommunity distributions in an active forearc basin of Early Pliocene age, western Washington, USA. The sedimentologic, ichnologic and invertebrate megafaunal character of coastal sea cliff exposures in the Pratt Cliff–Duck Creek area, Quinault Indian Nation, reveal five different sedimentary facies – scoured, Rosselia, bioturbated, mixed and Acharax. These facies document the shifting interplay and intensities among storms, waves and river‐flood plumes during transgression in inner to mid‐shelf settings. Storm sedimentation on the inner shelf is recorded north of Pratt Cliff by amalgamated, proximal tempestites of the scoured facies, which grade up‐section to thick deposits of hummocky cross‐stratified sandstone, indicative of strong wave influences. These hummocky beds alternate, in metre‐scale packages, with banded mudstone and siltstone that have distinctive sedimentologic and ichnofaunal characteristics (Rosselia facies). In particular the mudstone and siltstone occur as 1–15 cm‐thick, rhythmic, parallel beds that are laterally continuous, internally homogeneous to faintly laminated, and thus similar in nature to fine‐grained, oceanic flood deposits reported from shelf settings offshore the modern Eel River, northern California. The Quinault flood deposits are dominated by the ubiquitous trace fossil Rosselia socialis, comprising vertical, mud‐packed, flaring burrows with a sand‐filled central shaft which has been inferred as the feeding‐dwelling structure of a vermiform invertebrate adapted to high sedimentation rates in inner‐shelf settings. Fairweather conditions in between the higher energy periods of storms, waves and floods are recorded north of Pratt Cliff by the mixed facies, which is interpreted as representing the sand and mud zone of the inner‐ to mid‐shelf transition. Quieter, deeper, mid‐shelf, fairweather settings are typified by the bioturbated facies south of Pratt Cliff, where lower sedimentation rates and lower physical energies produced extensively bioturbated deposits of sandy siltstone punctuated, in places, by isolated sandy beds of distal tempestites. Quinault strata also chronicle stratigraphic signatures of subduction of the Juan de Fuca plate beneath western Washington during the Pliocene. For example, the imprint of geochemically unusual authigenic carbonates and a chemosynthetic palaeocommunity (Acharax facies) have been interpreted as a methane seep on the Quinault seafloor. Furthermore, a mobile rockground epifauna of pholadid bivalves became established on abundant, dark mudstone cobbles and pebbles sourced from the Hoh Assemblage, a Miocene accretionary prism that was actively deforming as well as interacting with Quinault forearc sediments during the Pliocene. Hoh mudstone clasts were supplied to the Quinault shelf via seafloor‐piercing diapirs and eroding mélange shear zones, exposures of which today occur in fault contact with Quinault strata along the coast from Taholah to the Raft River.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号